Overview

m Course theme
m Five realities
m How the course fits into the CS/ECE curriculum

m Academic integrity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2



Course Theme:

Abstraction Is Good But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis
m These abstractions have limits
= Especially in the presence of bugs
"= Need to understand details of underlying implementations

m Useful outcomes from taking 213
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
" Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3



Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1:Is x? 2 0?

" Float’s: Yes!

" |nt’s:

Carnegie Mellon

oo 2.

Fro

A

.. ,306... 1,307. ..

BAAA

5D
B

—

... 32,767...-32,78...

375

i=]

...=32,767... 32,76 ...

EI i

=

= 40000 * 40000 => 1600000000
= 50000 * 50000 = ??

m Example 2:Is (x +y)+z = x+(y +2)?
® Unsigned & Signed Int’s: Yes!

" Float’s:

= (1e20 +-1e20) + 3.14-->3.14
= 1e20+(-1e20 + 3.14) --> ??

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Source: xkcd.com/571 4



Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I {4 I”

m Cannot assume all “usual” mathematical properties
" Due to finiteness of representations
" Integer operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation
" Need to understand which abstractions apply in which contexts

" Important issues for compiler writers and serious application programmers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5



Great Reality #2:

You've Got to Know Assembly

m Chances are, you’ll never write programs in assembly
= Compilers are much better & more patient than you are

m But: Understanding assembly is key to machine-level execution
model

Behavior of programs in presence of bugs

= High-level language models break down

Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency

Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state

Creating / fighting malware
= x86 assembly is the language of choice!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6



Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
" |t must be allocated and managed
" Many applications are memory dominated

m Memory referencing bugs especially pernicious

= Effects are distant in both time and space

m Memory performance is not uniform
® Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7



Carnegie Mellon

Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct t;

double fun(int i) {
volatile struct t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

fun(0) = 3.14

fun (1) -> 3.14

fun(2) = 3.1399998664856
fun (3) = 2.00000061035156
fun (4) -> 3.14

fun (6) = Segmentation fault

= Result is system specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8



Carnegie Mellon

Memory Referencing Bug Example

Explanation:

struct t <

.

typedef struct { fun (0)
int a[2]; fun (1)
double d; fun (2)

} struct t; fun (3)

fun (4)
fun (6)

Critical State

?

?

20 2 2R 2 2

O = N W B~ U1 O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

.14
.14

.1399998664856
.0000006103515¢6
.14

Segmentation fault

wW N W wWw

Location accessed by
fun (1)



Carnegie Mellon

Memory Referencing Errors

m C and C++ do not provide any memory protection
® Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby, Python, ML, ...
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10



Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance
" Easily see 10:1 performance range depending on how code written
" Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"



Carnegie Mellon

Memory System Performance Example

void copyij(int src[2048] [2048], void copyji(int src[2048] [2048],
int dst[2048][2048]) int dst[2048][2048])
{ {
int irj; int i,j,‘
for (i = 0; i < 2048; i++) for (J = 0; j < 2048; j++)
for (jJ = 0; j < 2048; j++)::>‘:: for (i = 0; i < 2048; i++)
dst[i] [J] = src[i][]]; dst[i] [J] = src[i][]];
} }
4.3ms 81.8ms

2.0 GHz Intel Core i7 Haswell

m Hierarchical memory organization
m Performance depends on access patterns

" Including how step through multi-dimensional array

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12



Why The Performance Differs

copyij

16000 -
14000 -
12000 '

I

10000 B

Read throughput (MB/s)

s3

512k

2m

s5

s7

Stride (x8 bytes) s9 8m

32m

s11
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Size (bytes)

13



Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

m They need to get data in and out
= |/O system critical to program reliability and performance

m They communicate with each other over networks
" Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility

= Complex performance issues

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14



Role within CS/ECE Curriculum

Carnegie Mellon

CS 412 ECE 545/549
OS Practicum Capstone
ECE 349 ECE 348
CS 415 CS 441 S 41.0 CS411 EC.E .340 ECE 447
Operating . Digital . Embedded Embedded
Databases Networks Compilers . Architecture
Systems Computation Systems System Eng.
N ) / / /

Data Reps Network Processes Machine : 1 Model

) Protocols ~ Mem. Mgmt Code Arithmetic xecution Moade

Memory Model Memory System

CS 440

_

Foundation of Computer Systems
1 Underlying principles for hardware,
software, and networking

Distributed*——— Network Prog

systems Concurrency \

CS 122
Imperative
Programming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15



