Floating Point

15-213/18-213/15-513: Introduction to Computer Systems 18-613: Foundations of Computer Systems

4th Lecture, Jan. 24, 2019

Instructors:

Franz Franchetti, Seth Copen Goldstein, Brandon Lucia, and Brian Railing

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value	Representation					
5 3/4 = <mark>23/</mark> 4	101.112					
2 7/8 = <mark>23/</mark> 8	10.111_{2}					
1 7/16 = 23/16	1.01112					
$23 = 16 + 4 + 2 + 1 = 10111_{2}$						

= 4 + 1 + 1/2 + 1/4

- = 2 + 1/2 + 1/4 + 1/8
- = 1 + 1/4 + 1/8 + 1/16

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation
 - 1/3 0.0101010101[01]...2
 - 1/5 0.001100110011[0011]...2
 - 1/10 0.0001100110011[0011]...2

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

Background: Fractional binary numbers

IEEE floating point standard: Definition

- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Some CPUs don't implement IEEE 754 in full e.g., early GPUs, Cell BE processor

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

Example: 15213₁₀ = (-1)⁰ × 1.1101101101₂ x 2¹³

Sign bit s determines whether number is negative or positive

 $(-1)^{s} M 2^{E}$

- **Significand M** normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes *E* (but is not equal to E)
- frac field encodes M (but is not equal to M)

s exp frac

Precision options

Single precision: 32 bits

 \approx 7 decimal digits, 10^{±38}

Double precision: 64 bits

 \approx 16 decimal digits, 10^{±308}

	s		frac
--	---	--	------

1 11-bits 52-bits

Other formats: half precision, quad precision

Three "kinds" of floating point numbers

"Normalized" Values

$$v = (-1)^{s} M 2^{E}$$

When: exp ≠ 000...0 and exp ≠ 111...1

Exponent coded as a biased value: E = Exp – Bias

- Exp: unsigned value of exp field
- Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

Significand coded with implied leading 1: M = 1.xxx...x₂

- xxx...x: bits of frac field
- Minimum when frac=000...0 (M = 1.0)
- Maximum when frac=111...1 (M = 2.0 ε)
- Get extra leading bit for "free"

Normalized Encoding Example

$$v = (-1)^{s} M 2^{E}$$

E = Exp - Bias

Value: float F = 15213.0;

15213₁₀ = 11101101101101₂ = 1.1101101101101₂ x 2¹³

Significand

M =	1.101101101_2
frac=	<u>1101101101101</u> 000000000 ₂

Exponent

Ε	=	13	
Bias	=	127	
Ехр	=	140 =	10001100 ₂

Result:

S

frac

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

exp

Denormalized Values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

Condition: exp = 000...0

Exponent value: E = 1 – Bias (instead of E = 0 – Bias)

Same exponent as smallest normalized numbers, but leading 0: consistent

■ Significand coded with implied leading 0: *M* = 0.xxx...x₂

- xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

Condition: exp = 111...1

Case: exp = 111...1, frac = 000...0

- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

• Case: exp = 111...1, $frac \neq 000...0$

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined

• E.g., sqrt(-1),
$$\infty - \infty$$
, $\infty \times 0$

C float Decoding Example

float: 0xC0A00000

Bias = $2^{k-1} - 1 = 127$

C float Decoding Example

$$v = (-1)^{s} M 2^{E}$$
$$E = \exp - Bias$$

float: 0xC0A00000

1	1	1000 0001	010	0000	0000	0000	0000	0000	
1	1	8-bits				-bits			imal
E =								Het 0 (1 1	
S =								2 2 3 3 4 4	3 001 1 010
M = 1.								5 5 6 6 7 7 8 8	5 011 7 011
								9 9 A 1	<pre>100 0 101</pre>
v = (-1) ^s	⁵ N	/1 2 ^E =						B 1 C 1 D 1	2 110
								E 1 F 1	4 111 5 111

C float Decoding Example

float: 0xC0A00000

 $v = (-1)^{s} M 2^{E}$ $E = \exp - Bias$

 $Bias = 2^{k-1} - 1 = 127$

D

Ε

F

13

14

15

1101

1110

1111

binary: 1100 0000 1010 0000 0000 0000 0000 0000

											-
	1	1000	0001	010	0000	0000	0000	0000	000	0	
	1	8-b	oits			23 [.]	-bits			t	imal
1 8-bits 23-bits E = exp - Bias = 129 - 127 = 2 (decimal) O 0								Bill			
c – ex	Р-	DId5 –	123 -	12/-		iiidi)			0	1	000
			_						2	2	001
S = 1 -> negative number							3	3	001		
		0							4	4	010
N.A. 1	<u>^</u>				000	~~~~	000	^	5	5	010
M = 1	. U .	LU UU		JUU U	000	0000	0000	U	6	6	011
									7	7	011
=1 + 1/4 = 1.25							8	8	100		
	•	-/ -							9	9	100
									Α	10	101
	15 m	A DE	(1)1 *	1 75 *	7 2 _ F				В	11	101
v = (-1	יו ״ן		(- ⊥) ⁺ *	1.25 *	$Z^{2} = -5$				С	12	110

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

s	exp	frac
1	4-bits	3-bits

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

 $v = (-1)^{s} M 2^{E}$

Dynamic Range (Positive Only)

Dyna			vang					n: E = Exp – Bias
	S	exp	frac	Е	Value			d: E = 1 – Bias
	0	0000	000	-6	0			Bias = 7
	0	0000	001	-6	1/8*1/64	=	1/512	closest to zero
Denormalized numbers	0	0000	010	-6	2/8*1/64	=	2/512	(-1) ⁰ (0+1/4)*2 ⁻⁶
	0	0000	110	-6	6/8*1/64	=	6/512	
	0	0000	111	-6	7/8*1/64	=	7/512	largest denorm
	0	0001	000	-6	8/8*1/64	=	8/512	smallest norm
	0	0001	001	-6	9/8*1/64	=	9/512	$(-1)^{0}(1+1/8)*2^{-6}$
	0	0110	110	-1	14/8*1/2	=	14/16	
	0	0110	111	-1	15/8*1/2	=	15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	=	1	
numbers	0	0111	001	0	9/8*1	=	9/8	closest to 1 above
	0	0111	010	0	10/8*1	=	10/8	
	0	1110	110	7	14/8*128	=	224	
	0	1110	111	7	15/8*128	=	240	largest norm
	0	1111	000	n/a	inf			

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 2³⁻¹-1 = 3

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

S	exp	frac
1	3-bits	2-bits

Special Properties of the IEEE Encoding

FP Zero Same as Integer Zero

All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider –0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield? The answer is complicated.
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

x $+_{f}$ y = Round(x + y)

```
x \times_{f} y = Round(x \times y)
```

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

-	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1↓	\$1↓	\$1 ↓	\$2 ↓	-\$11
■ Round down (-∞)	\$1↓	\$1↓	\$1 ↓	\$2 ↓	-\$2↓
Round up (+ ∞)	\$2 🕇	\$2 🕇	\$2 1	\$3 🕇	-\$11
Nearest Even (default)	\$1↓	\$2 🕇	\$2 🕇	\$2 🖌	-\$2 🖌

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- C99 has support for rounding mode management
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7. <mark>895</mark> 0000	7. <mark>90</mark>	(Half way—round up)
7.8850000	7. <mark>88</mark>	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.0 <mark>0</mark> 2	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.1 <mark>0</mark> 2	(1/2—down)	2 1/2

Rounding 1.BBGRXXX Guard bit: LSB of result Sticky bit: OR of remaining bits Round bit: 1st bit removed

Round up conditions

- Round = 1, Sticky = 1 → > 0.5
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Fraction	GRS	Incr?	Rounded
1.0000000	000	N	1.000 Sticky = 1 does not change it
1.10 <mark>10</mark> 000	100	N	1.101
1.0001000	010	N	1.000
1.00 11 000	110	Y	1.010
1.00 <mark>01</mark> 010	011	Y	1.001
1.11 <mark>11</mark> 100	111	Y	10.000

FP Multiplication

■ $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$

Exact Result: (-1)^s M 2^E

	Sign <i>s</i> :	s1 ^ s2
--	-----------------	---------

- Significand M: M1 x M2
- Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round *M* to fit **frac** precision

Implementation

Biggest chore is multiplying significands

4 bit mantissa: $1.010*2^2 \times 1.110*2^3 = 10.0011*2^5$ = $1.00011*2^6 = 1.001*2^6$

Floating Point Addition

 $= (-1)^{s_1} M 1 2^{E_1} + (-1)^{s_2} M 2 2^{E_2}$

Assume E1 > E2

■ Exact Result: (-1)^s M 2^E

- Sign *s*, significand *M*:
 - Result of signed align & add
- Exponent E: E1

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k</p>
- Overflow if E out of range
- Round M to fit frac precision

 $1.010*2^{2} + 1.110*2^{3} = (0.1010 + 1.1100)*2^{3}$ = 10.0110 * 2³ = 1.00110 * 2⁴ = 1.010 * 2⁴

Get binary points lined up

(-1)^s M

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition? Yes But may generate infinity or NaN Commutative? Yes No Associative? Overflow and inexactness of rounding • (3.14+1e10) - 1e10 = 0, 3.14 + (1e10 - 1e10) = 3.14Yes • 0 is additive identity? Almost Every element has additive inverse? Yes, except for infinities & NaNs Monotonicity

Almost

- $a \ge b \Rightarrow a+c \ge b+c?$
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication? Yes But may generate infinity or NaN Multiplication Commutative? Yes Multiplication is Associative? No Possibility of overflow, inexactness of rounding Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20 Yes 1 is multiplicative identity? No Multiplication distributes over addition? Possibility of overflow, inexactness of rounding Ie20*(1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 = NaN Monotonicity Almost • $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$ Except for infinities & NaNs

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- float single precision
- double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int ightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int ightarrow float
 - Will round according to rounding mode

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

int x = ...;float f = ...; double d = ...;

Assume neither **d** nor **f** is NaN Gcc/x86-64 on shark

- x == (int)(float) x
- x == (int) (double) x
- f == (float)(double) f
- d == (double)(float) d
- f == -(-f);
- 2/3 == 2/3.0
- $d < 0.0 \implies ((d*2) < 0.0)$
- $d > f \qquad \Rightarrow -f > -d$
- d * d >= 0.0
- (d+f) d == f

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Single precision: 32 bits					
	s	exp	frac		
	1	8-bits 23-bits			
Double precision: 64 bits					
	s	exp	frac		
	1	11-bits	52-bits		

Additional Slides

frac

3-bits

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to dea

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	1000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

I with effects of rounding	

exp

4-bits

S

1

Normalize

S	ехр	frac		
1	4-bits	3-bits		

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Interesting Numbers

{single,double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	2 ^{-{23,52}} x 2 ^{-{126,1022}}
Single ≈ 1.4 x 10 ⁻⁴⁵			
Double ≈ 4.9 x 10 ⁻³²⁴			
Largest Denormalized	0000	1111	(1.0 – ε) x 2 ^{-{126,1022}}
Single ≈ 1.18 x 10 ⁻³⁸			
Double ≈ 2.2 x 10 ⁻³⁰⁸			
Smallest Pos. Normalized	0001	0000	1.0 x 2 ^{-{126,1022}}
Just larger than largest denorr	nalized		
One	0111	0000	1.0
Largest Normalized	1110	1111	(2.0 – ε) x 2 ^{127,1023}
Single ≈ 3.4 x 10 ³⁸			

Double $\approx 1.8 \times 10^{308}$