
Carnegie Mellon

2 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Excep&onal	Control	Flow:		
Excep&ons	and	Processes	
	
15-213	:	Introduc;on	to	Computer	Systems	
14th	Lecture,	October	12th,	2017	

Instructor:		
Randy	Bryant	

Carnegie Mellon

3 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Today	
¢  Excep&onal	Control	Flow	
¢  Excep&ons	
¢  Processes	
¢  Process	Control	

Carnegie Mellon

4 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Control	Flow	

<startup>	
inst1	
inst2	
inst3	
…	
instn	
<shutdown>	

¢  Processors	do	only	one	thing:	
§  From	startup	to	shutdown,	a	CPU	simply	reads	and	executes	

(interprets)	a	sequence	of	instruc;ons,	one	at	a	;me	
§  This	sequence	is	the	CPU’s	control	flow	(or	flow	of	control)	

Physical	control	flow	

Time	

Carnegie Mellon

5 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Altering	the	Control	Flow	
¢  Up	to	now:	two	mechanisms	for	changing	control	flow:	

§  Jumps	and	branches	
§  Call	and	return	
React	to	changes	in	program	state	
	

¢  Insufficient		for	a	useful	system:		
Difficult	to	react	to	changes	in	system	state		
§  Data	arrives	from	a	disk	or	a	network	adapter	
§  Instruc;on	divides	by	zero	
§  User	hits	Ctrl-C	at	the	keyboard	
§  System	;mer	expires	

¢  System	needs	mechanisms	for	“excep&onal	control	flow”	

Carnegie Mellon

6 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Excep&onal	Control	Flow	
¢  Exists	at	all	levels	of	a	computer	system	
¢  Low	level	mechanisms	

§  1.	Excep&ons		
§  Change	in	control	flow	in	response	to	a	system	event		
(i.e.,		change	in	system	state)	

§  Implemented	using	combina;on	of	hardware	and	OS	so[ware
		

¢  Higher	level	mechanisms	
§  2.	Process	context	switch	

§  Implemented	by	OS	so[ware	and	hardware	;mer	
§  3.	Signals	

§  Implemented	by	OS	so[ware		
§  4.	Nonlocal	jumps:	setjmp()	and	longjmp()

§  Implemented	by	C	run;me	library	

Carnegie Mellon

7 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Today	
¢  Excep&onal	Control	Flow	
¢  Excep&ons	
¢  Processes	
¢  Process	Control	

Carnegie Mellon

8 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Excep&ons	
¢  An	excep5on	is	a	transfer	of	control	to	the	OS	kernel	in	response	

to	some	event		(i.e.,	change	in	processor	state)	
§  Kernel	is	the	memory-resident	part	of	the	OS	
§  Examples	of	events:	Divide	by	0,	arithme;c	overflow,	page	fault,	I/O	

request	completes,	typing	Ctrl-C	

User	code	 Kernel	code	

Excep/on	
Excep/on	processing	
by	excep/on	handler	
	• 	Return	to	I_current	

• Return	to	I_next	
• Abort	

Event		 I_current	
I_next	

Carnegie Mellon

9 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

0
1
2 ...

n-1

Excep&on	Tables	

¢  Each	type	of	event	has	a		
unique	excep&on	number	k	

¢  k	=	index	into	excep&on	table		
(a.k.a.	interrupt	vector)	

¢  Handler	k	is	called	each	&me		
excep&on	k	occurs	

Excep&on	
Table	

Code	for			
excep&on	handler	0	

Code	for		
excep&on	handler	1	

Code	for	
excep&on	handler	2	

Code	for		
excep&on	handler	n-1	

...	

Excep&on		
numbers	

Carnegie Mellon

10 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

	(par&al)	Taxonomy	

Asynchronous	 Synchronous	

Interrupts	 Traps	 Faults	 Aborts	

ECF	

Carnegie Mellon

11 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Asynchronous	Excep&ons	(Interrupts)	
¢  Caused	by	events	external	to	the	processor	

§  Indicated	by	se_ng	the	processor’s	interrupt	pin	
§  Handler	returns	to	“next”	instruc;on	

¢  Examples:	
§  Timer	interrupt	

§  Every	few	ms,	an	external	;mer	chip	triggers	an	interrupt	
§  Used	by	the	kernel	to	take	back	control	from	user	programs	

§  	I/O	interrupt	from	external	device	
§  Hi_ng	Ctrl-C	at	the	keyboard	
§  Arrival	of	a	packet	from	a	network	
§  Arrival	of	data	from	a	disk	

Carnegie Mellon

12 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Synchronous	Excep&ons	
¢  Caused	by	events	that	occur	as	a	result	of	execu&ng	an	

instruc&on:	
§  Traps	

§  Inten;onal	
§  Examples:	system	calls,	breakpoint	traps,	special	instruc;ons	
§  Returns	control	to	“next”	instruc;on	

§  Faults	
§  Uninten;onal	but	possibly	recoverable		
§  Examples:	page	faults	(recoverable),	protec;on	faults	
(unrecoverable),	floa;ng	point	excep;ons	

§  Either	re-executes	faul;ng	(“current”)	instruc;on	or	aborts	
§  Aborts	

§  Uninten;onal	and	unrecoverable	
§  Examples:	illegal	instruc;on,	parity	error,	machine	check	
§  Aborts	current	program	

Carnegie Mellon

13 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

System	Calls	

Number	 Name	 Descrip5on	

0	 read Read	file	

1	 write Write	file	

2	 open Open	file	

3	 close Close	file	

4	 stat Get	info	about	file	

57	 fork Create	process	

59	 execve Execute	a	program	

60	 _exit Terminate	process	

62	 kill Send	signal	to	process	

¢  Each	x86-64	system	call	has	a	unique	ID	number	
¢  Examples:	

Carnegie Mellon

14 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

System	Call	Example:	Opening	File	
¢  User	calls:	open(filename, options)	
¢  Calls	__open	func;on,	which	invokes	system	call	instruc;on	syscall	

	
	

	
	

00000000000e5d70 <__open>: !
... !
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2!
e5d7e: 0f 05 syscall # Return value in %rax!
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax !
... !
e5dfa: c3 retq

User	code	 Kernel	code	

Excep/on	

Open	file	
Returns	

syscall	
cmp	

¢  %rax contains	syscall	number	
¢  Other	arguments	in	%rdi,	

%rsi,	%rdx,	%r10,	%r8,	%r9
¢  Return	value	in	%rax
¢  Nega;ve	value	is	an	error	

corresponding	to	nega;ve	
errno

	
	

	

Carnegie Mellon

15 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

System	Call	Example:	Opening	File	
¢  User	calls:	open(filename, options)	
¢  Calls	__open	func;on,	which	invokes	system	call	instruc;on	syscall	

	
	

	
	

00000000000e5d70 <__open>: !
... !
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2!
e5d7e: 0f 05 syscall # Return value in %rax!
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax !
... !
e5dfa: c3 retq

User	code	 Kernel	code	

Excep/on	

Open	file	
Returns	

syscall	
cmp	

¢  %rax contains	syscall	number	
¢  Other	arguments	in	%rdi,	

%rsi,	%rdx,	%r10,	%r8,	%r9
¢  Return	value	in	%rax
¢  Nega;ve	value	is	an	error	

corresponding	to	nega;ve	
errno

	
	

	

Almost	like	a	func&on	call	
•  Transfer	of	control	
•  On	return,	executes	next	instruc&on	
•  Passes	arguments	using	calling	conven&on	
•  Gets	result	in	%rax

One	Important	excep&on!	
•  Executed	by	Kernel	
•  Different	set	of	privileges	
•  And	other	differences:		

•  E.g.,	“address”	of	“func&on”	is	in	%rax
•  Uses	errno
•  Etc.	

Carnegie Mellon

16 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Fault	Example:	Page	Fault	
¢  User	writes	to	memory	loca;on	
¢  That	por;on	(page)	of	user’s	memory		

is	currently	on	disk	

	

int a[1000];
main ()
{
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User	code	 Kernel	code	

Excep/on:	page	fault	
Copy	page	from	
disk	to	memory	Return	and	

reexecute	movl	

movl	

Carnegie Mellon

17 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Fault	Example:	Invalid	Memory	Reference	

¢  Sends	SIGSEGV	signal	to	user	process	
¢  User	process	exits	with	“segmenta;on	fault”	

int a[1000];
main ()
{
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User	code	 Kernel	code	

Excep/on:	page	fault	

Detect	invalid	address	
movl	

Signal	process	

Carnegie Mellon

18 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Today	
¢  Excep&onal	Control	Flow	
¢  Excep&ons	
¢  Processes	
¢  Process	Control	

Carnegie Mellon

19 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Processes	
¢  Defini&on:	A	process	is	an	instance	of	a	running	

program.	
§  One	of	the	most	profound	ideas	in	computer	science	
§  Not	the	same	as	“program”	or	“processor”	

	
¢  Process	provides	each	program	with	two	key	

abstrac&ons:	
§  Logical	control	flow	

§  Each	program	seems	to	have	exclusive	use	of	the	CPU	
§  Provided	by	kernel	mechanism	called	context	switching	

§  Private	address	space	
§  Each	program	seems	to	have	exclusive	use	of	main	
memory.		

§  Provided	by	kernel	mechanism	called	virtual	memory	

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

20 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Mul&processing:	The	Illusion	

¢  Computer	runs	many	processes	simultaneously	
§  Applica;ons	for	one	or	more	users	

§  Web	browsers,	email	clients,	editors,	…	
§  Background	tasks	

§  Monitoring	network	&	I/O	devices	

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …	

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

21 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Mul&processing	Example	

¢  Running	program	“top”	on	Mac	
§  System	has	123	processes,	5	of	which	are	ac;ve	
§  Iden;fied	by	Process	ID	(PID)	

Carnegie Mellon

22 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Mul&processing:	The	(Tradi&onal)	Reality	

¢  Single	processor	executes	mul&ple	processes	concurrently	
§  Process	execu;ons	interleaved	(mul;tasking)		
§  Address	spaces	managed	by	virtual	memory	system	(later	in	course)	
§  Register	values	for	nonexecu;ng	processes	saved	in	memory	

CPU
Registers

Memory
Stack
Heap

Code
Data

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…	

Carnegie Mellon

23 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Mul&processing:	The	(Tradi&onal)	Reality	

¢  Save	current	registers	in	memory	

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…	

Carnegie Mellon

24 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Mul&processing:	The	(Tradi&onal)	Reality	

¢  Schedule	next	process	for	execu&on	

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Stack
Heap

Code
Data

Saved
registers

…	

Carnegie Mellon

25 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Mul&processing:	The	(Tradi&onal)	Reality	

¢  Load	saved	registers	and	switch	address	space	(context	switch)	

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…	

Carnegie Mellon

26 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Mul&processing:	The	(Modern)	Reality	

¢  Mul&core	processors	
§ Mul;ple	CPUs	on	single	chip	
§ Share	main	memory	(and	some	caches)	
§ Each	can	execute	a	separate	process	
§  Scheduling	of	processors	onto	cores	
done	by	kernel	

CPU
Registers

Memory
Stack
Heap

Code
Data

Stack
Heap

Code
Data

Stack
Heap

Code
Data

Saved
registers

…	

CPU
Registers

Carnegie Mellon

27 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Concurrent	Processes	
¢  Each	process	is	a	logical	control	flow.		
¢  Two	processes	run	concurrently	(are	concurrent)	if	their	

flows	overlap	in	&me	
¢  Otherwise,	they	are	sequen5al	
¢  Examples	(running	on	single	core):	

§  Concurrent:	A	&	B,	A	&	C	
§  Sequen;al:	B	&	C	

Process	A	 Process	B	 Process	C	

Time	

Carnegie Mellon

28 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

User	View	of	Concurrent	Processes	
¢  Control	flows	for	concurrent	processes	are	physically	

disjoint	in	&me	

¢  However,	we	can	think	of	concurrent	processes	as	
running	in	parallel	with	each	other	

Time	

Process	A	 Process	B	 Process	C	

Carnegie Mellon

29 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Context	Switching	
¢  Processes	are	managed	by	a	shared	chunk	of	memory-

resident	OS	code	called	the	kernel	
§  Important:	the	kernel	is	not	a	separate	process,	but	rather	runs	as	part	

of	some	exis;ng	process.	

¢  Control	flow	passes	from	one	process	to	another	via	a	
context	switch	
	

Process	A	 Process	B	

user	code	

kernel	code	

user	code	

kernel	code	

user	code	

context	switch	

context	switch	

Time	

