Exceptional Control Flow: Exceptions and Processes

15-213 : Introduction to Computer Systems 14th Lecture, October 12th, 2017

Instructor:

Randy Bryant

Today

- Exceptional Control Flow
- **Exceptions**

Processes

Process Control

Control Flow

Processors do only one thing:

- From startup to shutdown, a CPU simply reads and executes (interprets) a sequence of instructions, one at a time
- This sequence is the CPU's control flow (or flow of control)

Physical control flow

Altering the Control Flow

Up to now: two mechanisms for changing control flow:

- Jumps and branches
- Call and return

React to changes in *program state*

Insufficient for a useful system: Difficult to react to changes in system state

- Data arrives from a disk or a network adapter
- Instruction divides by zero
- User hits Ctrl-C at the keyboard
- System timer expires

System needs mechanisms for "exceptional control flow"

Exceptional Control Flow

- Exists at all levels of a computer system
- Low level mechanisms
 - 1. Exceptions
 - Change in control flow in response to a system event (i.e., change in system state)
 - Implemented using combination of hardware and OS software

Higher level mechanisms

- 2. Process context switch
 - Implemented by OS software and hardware timer
- 3. Signals
 - Implemented by OS software
- 4. Nonlocal jumps: setjmp() and longjmp()
 - Implemented by C runtime library

Today

Exceptional Control Flow

Exceptions

Processes

Process Control

Exceptions

An *exception* is a transfer of control to the OS *kernel* in response to some *event* (i.e., change in processor state)

- Kernel is the memory-resident part of the OS
- Examples of events: Divide by 0, arithmetic overflow, page fault, I/O request completes, typing Ctrl-C

Exception Tables

- Each type of event has a unique exception number k
 - k = index into exception table (a.k.a. interrupt vector)
- Handler k is called each time exception k occurs

Asynchronous Exceptions (Interrupts)

Caused by events external to the processor

- Indicated by setting the processor's interrupt pin
- Handler returns to "next" instruction

Examples:

- Timer interrupt
 - Every few ms, an external timer chip triggers an interrupt
 - Used by the kernel to take back control from user programs
- I/O interrupt from external device
 - Hitting Ctrl-C at the keyboard
 - Arrival of a packet from a network
 - Arrival of data from a disk

Synchronous Exceptions

- Caused by events that occur as a result of executing an instruction:
 - Traps
 - Intentional
 - Examples: *system calls*, breakpoint traps, special instructions
 - Returns control to "next" instruction
 - Faults
 - Unintentional but possibly recoverable
 - Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
 - Either re-executes faulting ("current") instruction or aborts
 - Aborts
 - Unintentional and unrecoverable
 - Examples: illegal instruction, parity error, machine check
 - Aborts current program

System Calls

Each x86-64 system call has a unique ID number

Examples:

Number	Name	Description
0	read	Read file
1	write	Write file
2	open	Open file
3	close	Close file
4	stat	Get info about file
57	fork	Create process
59	execve	Execute a program
60	_exit	Terminate process
62	kill	Send signal to process

System Call Example: Opening File

- User calls: open (filename, options)
- Calls <u>open</u> function, which invokes system call instruction syscall

000000000e5d70 <open>:</open>							
 e5d79: e5d7e:	b8 02 00 00 00 0f 05	<pre>mov \$0x2,%eax # open is syscall #2 syscall # Return value in %rax</pre>					
e5d80:	48 3d 01 f0 ff ff	<pre>cmp \$0xfffffffffff001,%rax</pre>					
 e5dfa:	c3	retq					

%rax contains syscall number

- Other arguments in %rdi, %rsi, %rdx, %r10, %r8, %r9
- Return value in %rax
- Negative value is an error corresponding to negative errno

 System Call User calls: open (f Callsopen funct 	 Almost like a function call Transfer of control On return, executes next instruction Passes arguments using calling convention Gets result in % rev 				
e5d79: b8 02 00 e5d7e: 0f 05 e5d80: 48 3d 01 e5dfa: c3	One Important exception! Executed by Kernel Different set of privileges And other differences: 				
User code	 E.g., "address" of "function" is in %rax Uses errno Etc. 				
syscall CKCCP	 <i>Open file</i> Return value in %rax Negative value is an error corresponding to negative errno 				

Fault Example: Page Fault

Fault Example: Invalid Memory Reference

- Sends SIGSEGV signal to user process
- User process exits with "segmentation fault"

Today

- Exceptional Control Flow
- Exceptions

Processes

Process Control

Processes

- Definition: A *process* is an instance of a running program.
 - One of the most profound ideas in computer science
 - Not the same as "program" or "processor"
- Process provides each program with two key abstractions:
 - Logical control flow
 - Each program seems to have exclusive use of the CPU
 - Provided by kernel mechanism called *context switching*
 - Private address space
 - Each program seems to have exclusive use of main memory.
 - Provided by kernel mechanism called virtual memory

Multiprocessing: The Illusion

- Computer runs many processes simultaneously
 - Applications for one or more users
 - Web browsers, email clients, editors, ...
 - Background tasks
 - Monitoring network & I/O devices

Multiprocessing Example

-												
00	0				X	xter	m					
Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads 11:47:07 Load Avg: 1.03, 1.13, 1.14 CPU usage: 3.27% user, 5.15% sys, 91.56% idle SharedLibs: 576K resident, 0B data, 0B linkedit. MemRegions: 27958 total, 1127M resident, 35M private, 494M shared. PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free. VM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts. Networks: packets: 41046228/11G in, 66083096/77G out. Disks: 17874391/349G read, 12847373/594G written.												
PID 99217- 99051 84286 84285 55939- 54751 54739 54737 54719 54701	COMMAND Microsoft Of usbmuxd iTunesHelper bash xterm Microsoft Ex sleep launchdadd top automountd ocspd	2CPU 0.0 0.0 0.0 0.0 0.3 0.0 0.0 6.5 0.0	TIME 02:28.34 00:04.10 00:01.23 00:00.11 00:00.83 21:58.97 00:00.00 00:02.53 00:00.02 00:00.05	#TH 4 3 2 1 1 10 1 2 1/1 7 4	#WQ 1 1 0 3 0 1 0 1	#PORT 202 47 55 20 32 360 17 33 30 53 61	#MREG 418 66 78 24 73 954 20 50 29 64 54	RPRVT 21M 436K 728K 224K 656K 16M 92K 488K 1416K 860K 1268K	RSHRD 24M 216K 3124K 732K 872K 65M 212K 220K 216K 216K 2644K	RSIZE 21M 480K 1124K 484K 692K 46M 360K 1736K 2124K 2184K 3132K	VPRVT 66M 43M 17M 9728K 114M 9632K 48M 17M 53M 50M	VSIZE 763M 2422M 2429M 2378M 2382M 1057M 2370M 2370M 2409M 2378M 2413M 2426M
54661	Grab	0.6	00:02.75	6	3	222+	389+	15M+	26M+	40M+	75M+	2556M+
54659 53818	mdworker	0.0	00:01.67	4	1	40 52	91	7628K	224K 7412K	4088K 16M	420 48M	241111 2438M
50878	edworker	0.0	00:11.17	3 11 .	1.	54	91	2464K	6148K	9976K	44M	2434M

- Running program "top" on Mac
 System has 123 processes, 5 of which are active
 - Identified by Process ID (PID)

18M

.

A 75.

Single processor executes multiple processes concurrently

- Process executions interleaved (multitasking)
- Address spaces managed by virtual memory system (later in course)
- Register values for nonexecuting processes saved in memory

Save current registers in memory

Schedule next process for execution

Load saved registers and switch address space (context switch)

Multiprocessing: The (Modern) Reality

- **Multicore processors**
 - Multiple CPUs on single chip
 - Share main memory (and some caches)
 - Each can execute a separate process
 - Scheduling of processors onto cores done by kernel

Concurrent Processes

- Each process is a logical control flow.
- Two processes run concurrently (are concurrent) if their flows overlap in time
- Otherwise, they are sequential
- **Examples (running on single core):**
 - Concurrent: A & B, A & C
 - Sequential: B & C

User View of Concurrent Processes

- Control flows for concurrent processes are physically disjoint in time
- However, we can think of concurrent processes as running in parallel with each other

Context Switching

- Processes are managed by a shared chunk of memoryresident OS code called the *kernel*
 - Important: the kernel is not a separate process, but rather runs as part of some existing process.
- Control flow passes from one process to another via a context switch

