Carnegie Mellon

Exceptional Control Flow:
Exceptions and Processes

15-213 : Introduction to Computer Systems
14t Lecture, October 12th, 2017

Instructor:
Randy Bryant

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Exceptional Control Flow
m Exceptions

m Processes

m Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
. inst
Time L2
Inst,
inst,
<shutdown>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
® |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer
= 3, Signals
= Implemented by OS software
= 4. Nonlocal jumps: setjmp () and Longjmp ()
= Implemented by C runtime library

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Exceptional Control Flow
m Exceptions

m Processes

m Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

<

»

Event — I_current\ Exception R
|_next Exception processing
by exception handler
* Return to |_current
* Return to |_next
*Abort

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Exception Tables

Exception

numbers
Code for m Each type of event has a
exception handler 0 unique exception number k

Exception Code for

VvTable .

0 ot exception handler 1 m k= index into exception table

1 o Code for (a.k.a. interrupt vector)

2 C exception handler 2

n-1 o | m Handler k is called each time

exception k occurs

Code for
exception handler n-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

(partial) Taxonomy
ECF

Asynchronous

Synchronous

Interrupts Traps Faults Aborts

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
®= Handler returns to “next” instruction

m Examples:
" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= |/O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
» |ntentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

12

Carnegie Mellon

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

System Call Example: Opening File

m User calls: open (filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__ open>:

e5d79: h8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: of 05 syscall # Return value in %rax
e5d80: 48 3d 01 fo ff ff cmp $OxFFfffffffffffOO1,%rax

e5Sdfa: c3 retq
User code Kernel code m Srax contains syscall number
m Otherargumentsin $rdi,
, Exception $rsi, 3rdx, 3rl10, $r8, $r9

syscall .

cmp) m Returnvaluein $rax
Open file
Returns m Negative value is an error

] corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

System Call | Aimost like a function call
* Transfer of control
m User calls: open (£ : .
* On return, executes next instruction
* Passes arguments using calling convention
00000000000e5d70 < * Gets result in $rax

m Calls__open functi

e5d79: b8 02 00 .
e5d7e: Of 05 One Important exception!

e>d8o: 48 3d 01 .« Executed by Kernel

e5dfa: c3 * Different set of privileges

* And other differences:
* E.g., “address” of “function” is in $rax
* Uses errno
* Etc.

syscall EXCEpl_'__ ‘

cmp '\J Openfile ™ Returnvaluein $rax

Returns m Negative value is an error
] corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

User code

«

Carnegie Mellon

Fault Example: Page Fault

int a[1000];
m User writes to memory location Tain 0
m That portion (page) of user’'s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User code Kernel code

Exception: page fault

movl

] Copy page from

disk to memor
Return and y

4 reexecute movl

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}
80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360
User code Kernel code
l Exception: page fault
movl >

Detect invalid address

A 4

» Signal process

m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Today

m Exceptional Control Flow
m Exceptions

m Processes

m Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Processes

m Definition: A process is an instance of a running

program.
" One of the most profound ideas in computer science

= Not the same as “program” or “processor”

m Process provides each program with two key

abstractions:

= logical control flow
= Each program seems to have exclusive use of the CPU

= Provided by kernel mechanism called context switching
" Private address space
= Each program seems to have exclusive use of main

memory.
= Provided by kernel mechanism called virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory

Stack

Heap

Data

Code

CPU

Registers

19

Carnegie Mellon

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data e Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

m Computer runs many processes simultaneously
= Applications for one or more users
= Web browsers, email clients, editors, ...
= Background tasks
= Monitoring network & I/O devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Multiprocessing Example

X/ Xterm

Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads 11:47:07
Load Avg: 1,03, 1,13, 1,14 CPU usage: 3,272 user, 5,152 sys, 91,56% idle

SharedLibs: 576K resident, OB data, OB linkedit,

MemRegions: 27958 total, 1127M resident, 35M private, 494M shared,

PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free,

YM: 280G wsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,

Networks: packets: 41046228/11G in, B6083096/77C out, i
Disks: 17874391/349C read, 12847373/594G written, !

PID COMMAND #CPU TIME #TH #l0 #PORT #MREG RPRYT RSHRD RSIZE WPRVT VSIZE
93217- Microsoft Of 0,0 02:28.34 4 1 202 418 214 24M 2IM BEBM 7E3M

33051 usbmuxd 0,0 00:04,10 3 1 47 B6 436K 216K 480K BOM 2422M
93006 iTunesHelper 0,0 00:01,23 2 1 5 78 728K 3124K 1124K 434 2429
84286 bash 0,0 00:00,11 1 0 20 24 224K 732K 484Kk 17M 2378M
84285 xterm 0,0 00:00,83 1 0 32 73 BSBK 872K B9ZK 3728K 2352M
55939- Microsoft Ex 0,3 21:58,97 10 3 360 9% 16M B5M 46M 114M 1057M
94751 sleep 0,0 00:00,00 1 0 17 20 92K 212K 360K 9632K 2370
94739 launchdadd 0,0 00:00,00 2 1 33 50 488K 220K 1736K 48M 2409M
54737 top 6.5 0030253171 0 30 23 1416K 216K 2124K 174 2378M
94713 automountd 0,0 00:00,02 7 1 5 64 BBOK 216K 2184K 534 2413M
94701 ocspd 0,0 00:00,05 4 1 61 54 1268K 2644K 3132K 50M 2426M
54661 Grab 0,6 00:02,75 6 3 222+ 389+ 15M+ 26M+ 40M+ 7OM+ 2506M+
54659 cookied 0,0 00:00,15 2 1 40 61 3316K 224K 4088K 424 2411H
G222 mAuarbanr AN NNen B7 4 1 7 a1 RO TA1OK AEM ASM 9429M

m Running program “top” on Mac
= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
: Saved Saved
registers registers

CPU

Registers

m Single processor executes multiple processes concurrently

" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (later in course)

= Register values for nonexecuting processes saved in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
Saved : Saved Saved
registers) registers registers
~ :
CPU
Registers

m Save current registers in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Multiprocessing: The (Traditional) Reality

Memory

Stack Stack Stack

Heap Heap Heap

Data Data cee Data

Code Code Code
Saved Saved
registers registers

CPU
Registers

m Schedule next process for execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Multiprocessing: The (Traditional) Reality

Memory
Stack - | Stack : Stack
Heap : Heap : Heap
Data : Data e Data
Code : Code : Code
Saved - | Saved : Saved
registers - [_registers : registers
N/
CPU
Registers

m Load saved registers and switch address space (context switch)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Multiprocessing: The (Modern) Reality

Memory

Stack .- | Stack : Stack

Heap - Heap : Heap

Data - Data e Data

Code = Code : Code

- : Saved
registers

CPU [::f CPU |1 g Multicore processors
: Registers | |: Registers | |: = Multiple CPUs on single chip
e . T . ; [Share main memory (and some Caches)

® Each can execute a separate process

= Scheduling of processors onto cores
done by kernel

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
= Concurrent: A&B,A&C
= Sequential: B& C

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Context Switching

m Processes are managed by a shared chunk of memory-
resident OS code called the kernel

" |Important: the kernel is not a separate process, but rather runs as part
of some existing process.

m Control flow passes from one process to another via a

context switch
I
Process A 1 Process B

I

I

: user code

I

kernel code } context switch

Time user code

kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

