Carnegie Mellon

Cache Memories

15-213/18-213/15-513: Introduction to Computer Systems
12th Lecture, February 26, 2019

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2



Carnegie Mellon

Today

m Cache memory organization and operation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3



Carnegie Mellon

Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware
= Hold frequently accessed blocks of main memory

m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file

Cache <—>
memory % |
@ System bus  Memory bus
L L
Bus interface < > b:{c:?ge mer:I:ry

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

ALU




Recall: Modern CPU Design

Carnegie Mellon

Instruction Control

. Retirement
: llllll Unit

Fetch Address
Control -

Register Instruction PR {ITdIH

File Decode

Operations

Instruction

Cache

Register Updates Prediction OK?

A 4

Functional
Units

\ 4

4 ‘

Operation Results
Addr.

Execution

Addr.

Data

Data
Cache

Data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

11



Carnegie Mellon

What it ReaIIy Looks Like

CPU chip

Memory Controller

Register file
By LERELEY DY SER Cache <—> /|
‘ | — memory C:I

Bus interface

ALU

Core.i7-3960X

HyperTransport™ Ph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edltlon 12




Carnegie Mellon

Intel Sandy Bridge
Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3-20MB

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13



Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
'd N\
4 «—
R —
R
S=ZSSEtS< R

o000
\.
Cache size:
=S x E x B data bytes
v tag 01112 ccccee B-1
T N— _/
- v
valid bit B = 20 bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14



Carnegie Mellon

CaChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
r A ~ * Locate data starting
4 at offset
o000

Address of word:
t bits s bits | b bits
= 9s S~
S =2%ssets < ccee tag set block
index offset

data begins at this offset

v tag 0|12 =cce- B-1

N— 7

valid bit B = 2% bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15




Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

r t T Ll:lal:11- Address of int:
v ag t bits 0..01 | 100

'} tag 0|112|314]|5]|6]7

find set
S=Zssets<
'} tag 011121314 |5]|6]7
OO0 000000 OCDCOCEOGCOOOOOONOS®OOO
Vv tag 0|112)314]|5]16]|7
\.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16



Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:

Carnegie Mellon

valid? + match: assume yes (= hit)

t bits

0..01

100

v tag 0{1]2|314]|5]6]7

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

17



Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 0j]112|314]|5]|6]7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18



Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit addresses (address space size M=16 bytes)
X XX X S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] miss
v Tag Block
Set0 | 1 0 MI[O-1]
Setl1| O
Set 2 0
Set3 | 1] 0 M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19



Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size B=8 bytes

2 lines per set
A

Address of short int:

t bits

0..01 | 100

v tag 0|1|2]|3]|4]|5]|6]|7 '} tag

v tag 0|1|2]|3]|4]|5]|6]|7 v tag

< '} tag_|01234567 '} tag

'} tag 0|1]|2]|3]4]|5]|6]|7 '} tag_l

\

S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

—1find set

20



Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v| | tag | |[0]1]2]3]4a]|5]6]7 vl | tag | [o]1]2]3]a]|5]6|7|] —

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21



Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

vV tag 0]1]2|3]4]|5]|6]7 v tag 01112]13|4]|5]|6]|7]|| —

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22



Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block
1 00 | M[O-1]
1 10 | M[8-9]

Set 0

Set 1 1 01 | M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23



What about writes?

m Multiple copies of data exist: L‘{ ‘F tag | 10]1[2] 52
= |1, L2, L3, Main Memory, Disk L ~ —~ —
y valid bit dirty bit B = 2% bytes

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data differs from memory)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location will follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24



Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

K‘Standard Method: \
Middle bit indexing

4 Address of int:
vi [ tae [[Of1]2[3]4]>5]6(7 tbits | 0..01 | 100
'} tag 011121|3|4]|5]|6]7 -
find set /
S=2s sets<
v tag 0]1]2)3]4f>5]6]7 /Alternative Method: \
High bit indexing
000000000 OCGEOGEOGOEOEOOEOOSOOS OO
Address of int:
v tag ol1]2]|3lals]e6]7 1..11 t bits | 100
\. .
find set

\_ J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25



Carnegie Mellon

lllustration of Indexing 0000xx
Approaches Pon e
0010xx

m 64-byte memory 001 1xx
" 6-bit addresses 0100xx

m 16 byte, direct-mapped cache 010Lsx
m Block size = 4. Thus 4 sets. 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 011lxx
1000xx

1001xx

Set0 1010xx

Set 1 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



Carnegie Mellon

Middle Bit Indexing

m Addresses of form TTSSBB

= TT Tag bits
= SS Set index bits
= BB Offset bits

m Makes good use of spatial locality

= Adjacent memory blocks map to
different sets

SetO

Set1l

Set 2

Set3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

27



Carnegie Mellon

o . . 0000xx
High Bit Indexing 0001sx
0010xx
m Addresses of form SSTTBB
0011xx
= SS Set index bits
0100xx
= TT Tag bits
: 0101xx
= BB Offset bits
. . . . 0110xx
m Program with high spatial locality 0111
XX
would generate lots of conflicts
1000xx
= Adjacent blocks map to same set
1001xx
Set0 1010xx
Set 1l 1011xx
Set 2 1100xx
Set 3 1101xx
1110xx
1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28



Carnegie Mellon

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€8s €gs Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
oo Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache _
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29



Carnegie Mellon

Example: Core i7 L1 Data Cache

A
2
&
.. E = 2¢° lines per set Q\d“- 000\6\(\@
32 kB 8-way set associative 7 N 010 10000
64 bytes/block I | eeee ; ; 882(1,
47 bit address range | I |- - 2 2 8%(1)
S=2sets{ | I Jeeee ] 5 [ 5 | 0101
B= 6 | 6 | 0110
L B B BN BN B BN B BN BN BN BN BN BN B B BN BN I N N N N N N ) 7 -7 0111
= ,S= 8 [ 8 [1000
- e= (| ) G — 9 |9 | 1001
¢ A [10] 1010
C= Cache size: B |11 1011
LT..l [Twe | [o]1]2] ]51] C =S x E x B data bytes C [12 ] 1100
D [13] 1101
I_c"b, ~— E |14 | 1110
valid bit F |15 | 1111
Address of word:
| thits | sbits | b bits |
— A A
ta set block
g index offset Stack Address: Block offset: 0x??
0x00007£7262ale010 Set index: 0x??
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30



Carnegie Mellon

Example: Core i7 L1 Data Cache \

&
E = 2¢ lines per set Q\é“- 000\6\(\@
32 kB 8-way set associative 7 N 0 T0 10000
64 bytes/block I | eeee ; ; 8823
47 bit address range | I |- - 2 3 8%(1)
_ S=2setsq | | oo oo | 5 [ 5 | 0101
B=64 6 | 6 | 0110
S=64,5=6 | eemeeeeeses cecessessesccns 7710111
8 | 8 | 1000
E=8,e=3 9 ) ] — 9 [ 9 [ 1001
C=64x64x8=32,768 Cache size: T
I_Trl [Twe | [o]1]2] ]51] C =S x E x B data bytes C [12| 1100
| D [13 ] 1101
valid bit H_/ E 14 1110
F |15 1111
Address of word:
| thits | sbits | b bits |
A A
= i:;:x :flfsilf( Stack Address: Block offset: 0x10
0x00007£7262ale010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£f7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 0000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31



Carnegie Mellon

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
"= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32



Carnegie Mellon

Let’s think about those numbers

m Huge difference between a hit and a miss

" Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33



Carnegie Mellon

Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34



Carnegie Mellon

Today

m Performance impact of caches

= The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36



Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37



Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array "data" with stride of "stride"“, Call test () with many
* using 4x4 loop unrolling. combinations of elems
w2/

int test(int elems, int stride) ({ and stride.

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO0 = 0, accl = 0, acc2 = 0, acec3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */

for (i = 0; i < limit; i += sx4) { 1. Call test() once to

ceel) = sEs@ b cleis ) - warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2]; 2. Call test() again and

acc3 = acc3 + data[i+sx3]; measure the read

; throughput(MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + datali];

}

return ((accO + accl) + (acc2 + acc3));

} mountain/mountain.c

38




Carnegie Mellon

Core i7 Haswell
M 2.1 GHz
The Memory Mountain o cache
256 KB L2 cache
Aggressive 8 MB L3 cache

prefetching 64 B block size
16000 ’
. 14000
o
S 12000
2 10000 ‘
(@]
£ 8000 A Ridges
2 o \ /‘ > of temporal
S .
o /) locality
4000
2000 A ‘
Slopes / e
of spatial A 32k
locality s3 128k

sll
128m

512k

s5 om

s7
Stride (x8 bytes)

8m

Size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39



Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40



Carnegie Mellon

Matrix Multiplication Example

m Description:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiply N x N matrices

Matrix elements are
doubles (8 bytes)

O(N3) total operations

N reads per source
element

N values summed per
destination

= but may be able to
hold in register

Variable sum

/* i3k */ held in register
for (i=0; i<n; i++)
for (j=0; j<n; j++) { //
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];
c[i] []]

sum,

matmult/mm.c

41



Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
® Cache is not even big enough to hold multiple rows

m Analysis Method:

= Look at access pattern of inner loop

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42



Carnegie Mellon

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i = 0; i < N; i++)
sum += a[0][1];
" accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
* miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; i++)
sum += a[i] [0];
= accesses distant elements
" no spatial locality!

= miss rate = 1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43



Carnegie Mellon

Matrix Multiplication (i jk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { *)
sum = 0.0; L;;;J - (&D
for (k=0; k<n; k++) (i,%)
A B

C

Inner loop:

sum += a[i][k] * b[k]1[j];

c[il[j] = sum; ‘ ‘ ‘
}

} matmult/mm. c

Row-wise Column- Fixed
wise

Miss rate for inner loop iterations:

A B C

0.25 1.0 0.0
Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44



Carnegie Mellon

Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i,k) i(k,*)g
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][j] += r * b[k][]]’ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45



Carnegie Mellon

Matrix Multiplication (ki)

/* 3ki */ Inner loop:
for (j=0; j<n; j++) { (*,k) (*,J)
for (k=0; k<n; k++) { j:| (kj) [
r = b[k][j]; .
for (i=0; i<n; i++) A B C
c[i] []J] += a[i]l[k] * r; ‘
matmult/mm.cf Column-  Fixed  Column-
wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46



Carnegie Mellon

Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (j=0; j<n; Jj++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][jl;
c[i][]] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][]];
}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]j]’
for (i=0; i<n; i++)
c[i][j] += alil[k] * r;

ijk (& jik):
e 2 loads, O stores
e avg misses/iter = 1.25

kij (& ikj):
e 2 |oads, 1 store
* avg misses/iter = 0.5

jki (& kji):
¢ 2 |loads, 1 store
* avg misses/iter = 2.0

47



Carnegie Mellon

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

100

jki/kji (2.0)

—jki
—-kji
——ijk

ijk/jik (1.25)

10

_——r
kij/ikj (0.5)
1 I I I I I I I I I I I I 1

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48




Carnegie Mellon

Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49



Carnegie Mellon

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; 1 < n; i++4)
for (j = 0; j < n; J++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

]
X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50



Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

m Firstiteration: r ~
" n/8+n=9n/8 misses

Il
X

= Afterwards in cache:
(schematic) . EEEEEEE—

1|
X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51



Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

n
m Second iteration: —N
= Again: :
n/8 + n =9n/8 misses _ X

8 wide

m Total misses:
" 9n/8n*=(9/8) n*

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52



Carnegie Mellon

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++)
for (k1 = k; kl < k+B; k++)
c[il*n+3j1l] += a[il*n + kl]*b[kl*n + jl];

} matmult/bmm. c

1
o] a b o]
= X +
] 1 1[0
A
Block size B x B 53

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective



Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

. ] ) n/B blocks
m First (block) iteration: A
= B2/8 misses for each block M BEEEEE B
= 2n/Bx BY/8 = nB/4 _ —
(omitting matrix c) - X ]

Block size B x B

. .
Afterwards in cache [ EEEEE

(schematic)

X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54



Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

. . n/B blocks
m Second (block) iteration: A
" Same as first iteration [] BEEEE
= 2n/BxB2/8 =nB/4 _ X
m Total misses: Block size B x B

= nB/4 * (n/B)?=n3/(4B)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55



Carnegie Mellon

Blocking Summary

m No blocking: (9/8) n® misses
m Blocking: (1/(4B)) n® misses

m Use largest block size B, such that B satisfies 3B2< C

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
" But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56



Carnegie Mellon

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects sequentially
with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57



