Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Everything is bits

m EachbitisOor1l
m By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)

= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation

= Easy to store with bistable elements

= Reliably transmitted on noisy and inaccurate wires

— > < > ‘
0 1 “— 0

1.1V —

/"/\f\/\
0.9V —

o - / N

N\J
0.0V —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as11101101101101,
= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10* as 1.1101101101101, X 2%3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Encoding Byte Values

> 8
m Byte = 8 bits o oec’,\‘;\o&
" Binary 000000002 to 11111111, 010 10000
= Decimal: 010 to 25510 1 |1 10001
. 2 12 10010
" Hexadecimal 0016 to FFi6 3 13 10011
. : 4 4 0100
Base 16 number representation = 5 0101
» Use characters ‘O’ to ‘9’ and ‘A’ to ‘F’ 6 | 6 10110
- Write FA1D37B1s in C as R B
— OXFA1D37B 0 1 0 | 1001
A |110[1010
— Oxfald37b B |11]11011
C (1211100
D |13 11101
E 11411110
FFPol1I5[1111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double = = 10/16
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
O0(0 O O(0 1
110 1 111 1
Not Exclusive-Or (Xor)
m “A=1when A=0 s AAB =1 when either A=1 or B=1, but not both
~| A0 1
O] O(0 1
110 111 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors
= (QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~_ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Example: Representing & Manipulating Sets
m Representation
= Width w bit vector represents subsets of {0, ..., w—1}

" a=1lifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Bit-Level Operations in C

m Operations &, |, ~, A Availablein C

= Apply to any “integral” data type
-« long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~Px41 = OxBE
« ~01000001, — 10111110;
= ~Qx00 — OxFF
= ~00000000; - 11111111,
= Px69 & 0Ox55 = 0x41
» 01101001; & 01010101, —» 01000001:
= Ox69 | Ox55 = Ox7D

- 01101001; | 01010101, = 01111101>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &, |, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1

= Early termination

m Examples (char data type)
= 10x41 - 0x00
= 19x00 - Ox01

110x41 = 0x01

0x09 && Ox55 = 0x01
0xe9 || @x55 = 0x01

p && *p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &, |1, |

= View 0 as “Fa

= Anythi

= Alway

"tV 'Watch out for && vs. & (and || vs. |)...

m Example W
| Ox41 one of the more common oopsies In

loxo0 | C programming
110x41

o

)

0x09 && Ox55 = 0x01
0xe9 || @x55 = 0x01

p && *p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Shift Operations

m Left Shift: x << y Argument x| 01100010
= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: x >> y
= Shift bit-vector x right y positions
= Throw away extra bits on right Argument x [10100010
= |ogical shift << 3 00010000
= Fill with 0’s on left
= Arithmetic shift
= Replicate most significant bit on left

Log. >> 2 | 00011000

Arith. >> 2100011000

Log.>> 2 | 00101000

Arith. >> 2111101000

m Undefined Behavior

= Shift amount < 0 or = word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
N
m Integers
= Representation: unsigned and signed
|
|
|
|
n
n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w-1 i w=2)
B2UX) = Yx -2 B2T(X) = -x,,2" "+ Yx 2
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y -15213| c4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Bryant and O’Hallaron, Computer Systems: A PS)Hmner's Perspective, Third Edl'|51213 '15213 17

Carnegie Mellon

Numeric Ranges

m Unsigned Values

m Two’s Complement Values

| 1 =
U’(‘)ﬁ’g ; 0 = TMin = —2w!
100...0
| - w_
UMax 2" " TMax = 2%i-1
111..1 011..1
m Other Values
" Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768 80 00| 10000000 00OOOOOOO
-1 -1 FF FF| 11111111 11111111
0 0 00 00| 00000000 0OOOOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Values for Different Word Sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = f#include <limits.h>
= Asymmetric range = Declares constants, e.g.,
= UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Unsignhed & Signed Numeric Values

X B2U(X B2T(X
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 —6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 —2
1111 15 -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m => Can Invert Mappings

= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer

20

Carnegie Mellon

Today: Bits, Bytes, and Integers

u
u
m Integers
o
= Conversion, casting
o
o
0
N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Mapping Between Signed & Unsigned

Two’s Complement - Unsigned
X *| T2B 7 B2U > UX

Maintain Same Bit Pattern

Unsigned U2T Two’s Complement

ux *[U2B [B2T > X
X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Mapping Signed <= Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 —JT20— 5
0110 6 6
0111 7 2T 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Mapping Signed <= Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 - 3
0100 4 H 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Relation between Sighed & Unsigned

Two’s Complement - Unsigned
X *| T2B 7’ B2U > UX

Maintain Same Bit Pattern

w—1 0
ux [+[+I+ eeo [+[+[+

x [+ cee [+[+[+

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Conversion Visualized

m 2’s Comp. — Unsigned
= QOrdering Inversion ® UMax
® UMax—-1

= Negative — Big Positive

_ ° ﬁ. TMax + 1 | unsigned
TMax ® TMax Range

2’s Complement ® -®
Range _2 .J/ 0)

—2

_TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

" |mplicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

® Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation

0 ou == unsigned

-1 0 < signed

-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned

-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Summary
Casting Signed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
N
m Integers
o
o
= Expanding, truncating
o
o
n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

l —
B X = Xpyq e Xpye1r Xpe1 2 Xy o000 Xg

k copies of MSB < w >
o 00
X, o0 0 ()

<€ k > € " >

Bryant and O’Hallaron, Computer Systems: A Programmer’s | ____ _ctive, Third Edition 3

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
vy -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
" Unsigned: mod operation
= Signed: similar to mod

= For small numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
O
m Integers
¥
o
o
= Addition, negation, multiplication, shifting
O
O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Unsigned Addition

Operands: w bits u se e

+ VvV o000
True Sum: w+1 bits U+ —
Discard Carry: w bits ~ UAdd, (u , V) Y

m Standard Addition Function
" |gnores carry output

m Implements Modular Arithmetic
s = UAdd,(u, V) = u+v mod2%

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bitintegers u, v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

® Forms planar surface

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Visualizing Unsigned Addition

m Wraps Around Overflow
\

" |f true sum = 2%

= At most once

True Sum

2W+1“ Overflow
» "_LT
o -

Modular Sum

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Two’s Complement Addition

Operands: w bits u L
+ V o0 0

True Sum: w+1 bits
u-+v XK
Discard Carry: w bits TAdd (u ,v) (XX

m TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Willgive s ==

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

TAdd Overflow

m Functionality True Sum
" True sum requires w+1 0111.1 2v-1 T
bits o2 TAdd Result
= Drop off MSB 0100..0 2w-1-1 + T o011.1
® Treat remaining bits as
2’s comp. integer 0000..0 0 T T 000..0
1011..1 _ow-1 4 L oo
1 000...0 _ow L1 NegOver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver

m Values
= 4-bit two’s comp.
= Range from -8 to +7
m Wraps Around
= |f sum = 2w
= Becomes negative
= At most once
" |f sum < -2w-1
= Becomes positive
= At most once

u 6 - PosOver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2%2 = 22w—-w+l 4+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (=2w1)*(2w1-1) = —22w=24 2wl
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Result range: x * y < (—2w1) 2 = 22w
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition M

Carnegie Mellon

Unsigned Multiplication in C

I/t o 00
Operands: w bits
* o000
\%
True Product: 2*w bitsit = V K Xy
UMult, (u , v) o

Discard w bits: w bits

m Standard Multiplication Function
= |gnores high order w bits

m Implements Modular Arithmetic

UMult (u,v)= u -v mod 2%

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Signed Multiplication in C

u o 00
Operands: w bits
%* o000
\%
True Product: 2*w bitsid * V ° 00 ° 00
TMUltw(u R V) o0 0

Discard w bits: w bits

m Standard Multiplication Function
" |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= |Lower bits are the same

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k

= Both signed and unsigned k
Operands: w bits " —
* Nk |0] eee |0]1]0] eee [0]O
True Product: w+k bits u * 2% coe 0] eee [0]0
Discard k bits: w bits UMult, (u , 2%) 0o 0| eee |0l0]

TMult, (u , 2%)
m Examples

" u << 3 == u * 8

" (u<<K b)) - (u<K 3)== u * 24

= Most machines shift and add faster than multiply
= Compiler generates this code automatically

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
" u >> kgives |u / 2]
= Uses logical shift

k
o 4 u AL AL Binary Point
erands:

p l 2k _O 'YX) OI]_IO (Y X (ﬂg /
Division: u/2k 1ol eee Jolo e T T
Result: | /2] Lol e« lolo AL

Division [Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x >> 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 [59.4257813 59 00 3B| 00000000 00111011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Today: Bits, Bytes, and Integers

u
u
m Integers
" Summary
N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

" Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Why Should | Use Unsignhed?

m Don’t use without understanding implications
= Easy to make mistakes
unsigned 1i;
for (i = cnt-2; i >= 0; i--)
af[i] += a[i+l1];

® Can be very subtle
#define DELTA sizeof (int)
int 1;
for (1 = CNT,; i-DELTA >= 0; i-= DELTA)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Why Should I Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets

" Logical right shift, no sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Today: Bits, Bytes, and Integers

|
|
m Integers

m Representations in memory, pointers, strings

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
" An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Machine Words

m Any given computer has a “Word Size”
®" Nominal size of integer-valued data
= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

" Increasingly, machines have 64-bit word size
= Potentially, could have 18 EB (exabytes) of addressable memory
= That’s 18.4 X 1018

" Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Word-Oriented Memory Organization

32-bit 64-bit

. Bytes Addr.
m Addresses Specify Byte Words Words 7
Locations 0000
]) Addr

= Address of first byte in word = 0001
. . 0000 0002

" Addresses of successive words differ Addr
by 4 (32-bit) or 8 (64-bit) = 0003
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
0008 Addr 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double = = 10/16
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
® Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
o7 45 23 01

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Decimal: 15213

Representing Integers [Binary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
1A32, x86-64 Sun
1A32 x86-64 Sun
6D [¢
3B |
00 ¢
00 ¢

int B = -15213;
I1A32, x86-64 Sun

T~

Two’s complement representation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, size t len) {
size t i;
for (1 = 0; 1 < len; i++)
printf (“%$p\t0x%.2x\n" ,start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%X : Print Hexadecimal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc od
Ox7fffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7fffb7f71dbf 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun I1A32 x86-64
EF AC 3C
FF 28 1B
FB F'5 FE
2C FF 82
FD
7F
00
00

Different compilers & machines assign different locations to objects

+Even get different results each time run program o

Carnegie Mellon

Representing Strings

char S[6] = "18213";
m StringsinC
= Represented by array of characters
® Each character encoded in ASCIl format I1A32 Sun
= Standard 7-bit encoding of character set 31 | | 31
= Character “0” has code 0x30 38 | | 38
— Digit i has code 0x30+i 32 | SIEY
= String should be null-terminated 31 | o 31
= Final character =0 33 1 J 33
m Compatibility 00 I J 00

= Byte ordering not an issue

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Integer C Puzzles

- x <0 = ((x*2) < 0)
cux >= 0
X &7 =17 = (x<<30) < 0
c ux > -1
* X >y = -X < -y
X * x>0
Initialization *x>0688y>0 = x+y>0
- + x >= 0 = -x <=0
int x = foo(); . x <= 0 o —x >= 0
int y = bar(); « (x|-x)>>31 == -1
unsigned ux = x; * ux >> 3 == ux/8
unsigned uy = y; * x >> 3 == x/8

x & (x-1) '=0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Bonus extras

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Negation: Complement & Increment

m Claim: Following Holds for 2’s Complement

~X + 1 == -x

m Complement
® QObservation: ~x + x == 1111..111 == -1

x |110]0]1{1]1{0]1
+ ~x |0{1]1]0]0]0f1]0

m Complete Proof?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Carnegie Mellon

Complement & Increment Examples

x =15213
Decimal| Hex Binary

X 15213| 3B 6D| 00111011 01101101

~X -15214| C4 92(11000100 10010010

~x+1 | -15213| C4 93| 11000100 10010011

y -15213| C4 93| 11000100 10010011
x=0

Decimal | Hex Binary

0 0| 00 00| 00000000 00000000

~0 -1| FF FF| 11111111 11111111

~0+1 0| 00 00| 00000000 00000000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

Carnegie Mellon

Compiled Multiplication Code

C Function

long mull2 (long x)
{

return x*12;

}
Compiled Arithmetic Operations Explanation
leaqg (%rax,%rax,2), %rax t <- x+x*2
salg $2, %rax return t << 2;

m C compiler automatically generates shift/add code when
multiplying by constant

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 78

Carnegie Mellon

Compiled Unsigned Division Code

C Function

unsigned long udiv8
(unsigned long x)

{
return x/8;
}
Compiled Arithmetic Operations Explanation
shrg $3, %rax # Logical shift

return x >> 3;

m Uses logical shift for unsigned

m For Java Users
= Logical shift written as >>>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 79

Carnegie Mellon

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
" x > kgives | x / 2]
= Uses arithmetic shift

"= Rounds wrong direction whenu < 0

k
X 2ee 2ee Binary Point
Operands:
l 2k 10 KX X) OI]_IO (XX m
Division: X / 2k YY) YY) (YY)
Result: RoundDown(x / 2¥) eoe voo
Division [Computed Hex Binary
y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49(11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 80

Carnegie Mellon

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
" Want [x / 2¥] (Round Toward 0)
= Computeas | (x+2k-1)/ 2k]
- InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k
Dividend: y L1 eee|]o] «e- J0l0
+2k_1 0] eee |0]0]1] eee [1]1]
1 coo 1] _eee J1]1] Binary Point
Divisor: | 2k Lol ee JOl1l0[e~ f0l0 /
|'u/2k'| 1] eee J1]1]1 coe ’1_1 oee [1]1]

Biasing has no effect

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 81

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

k
Dividend: x Ll | eee oo
+2k_1 0] eee OIOI]_ XY m
] XX XX
\ J
Y
Incremented by 1 Binary Point
Divisor: | 2k [0l eee JO[1]0] eee]O]O]
|-.X/2k -| _]_ eoe |1]1111 YY) 4 eooeo
\ J
Y

Incremented by 1

Biasing adds 1 to final result

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 82

Carnegie Mellon

Compiled Signed Division Code

C Function
long idiv8 (long x)
{
return x/8;
}
Compiled Arithmetic Operations Explanation
testqg %rax, Srax if x < 0
js L4 x += 7;
L3: # Arithmetic shift
sarqg $3, %rax return x >> 3;
ret
L4 : [L3 [] []
addg $7, %rax m Uses arithmetic shift for int
jmp L3 m For Java Users

= Arith. shift written as >>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 83

