Carnegie Mellon

Bits, Bytes, and Integers — Part 2

15-213: Introduction to Computer Systems
3rd Lecture, Jan. 22, 2019
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Summary From Last Lecture

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating
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Encoding Integers

Unsigned Two’s Complement
w—1 ) w—2 )
BUX) = Y x;-2' BT(X) = —x,,-2""+ > x -2
) \ZO

Sign Bit
Two’s Complement Examples (w = 5)

-16 8 4 2 1
10= 0 1 O0 1 O 8+2

10

-16 8 4 2 1
-10 =1 0 1 1 O -16+4+2 = -10
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Unsigned & Signed Numeric Values

X B2U(X) | B2T(X) m Equivalence
0000 0 0 = Same encodings for nonnegative
0001 1 1 values
10 2 2 m Uniqueness
0011 3 3
0100 4 4 = Every bit pattern represents
0101 5 5 unique integer value
0110 6 6 = Each representable integer has
0111 7 7 unique bit encoding
1000 8 —S m Expression containing signed
1001 9 —7 g oned int:
1010 10 6 gn -un5|gne |nl s
1011 11 o intiscasttounsigned
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1
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Sign Extension and Truncation

m Sign Extension
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Today: Bits, Bytes, and Integers

]
I
m Integers
o
m
n
= Addition, negation, multiplication, shifting
]
I
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Unsigned Addition

Operands: w bits U -2
+ VvV oo
True Sum: w+1 bits 1y + v —
Discard Carry: wbits ~ UAdd, (u , v) xy .
>
. . S o°°\(;3\°06
m Standard Addition Function 5T T 0000
" |gnores carry output é é 882(1)
m Implements Modular Arithmetic a4 o100
s = UAdd, (u,v) = u+v mod2¥ 2 2 8123
7 7 0111
unsigned char 1110 1001 E9 223 s b ot
+ 1101 0101  + D5 + 213 A [10 [ 1010
B (11 | 1011
1 1011 1110 1BE 446 C |12 | 1100
1011 1110 BE 190 [ {i4]1it0
F |15
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Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

" 4-bit integers u,v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface
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Visualizing Unsigned Addition

m Wraps Around

Overflow

\
UAdd,(u, v)

If true sum > 2%

= At most once

True Sum w0

2W+1 T 14
Overflow 12

2W "_\_

Modular Sum

L
|
v
ol\.)-ho"’oo
=
N
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Two’s Complement Addition

Operands: w bits u 200
+ V o 00

True Sum: w+1 bits
u + VY o000
Discard Carry: w bits TAdd, (u , v) XX

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:
int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Will give s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
1 1011 1110 1BE -66

1011 1110 BE -66
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TAdd Overflow

m Functionality
" True sum requires w+1
bits
= Drop off MSB

" Treat remaining bits as
2’s comp. integer
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0111..

0 100...

0 000...

1011...

1 000...
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True Sum
271
PosO
> TAdd Result
2w-1-1 + T 011..1
0O + T 000..0
—2w-1l &4 - 100..0
ow 1 NegOver
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Visualizing 2’s Complement Addition

NegOver

m Values \

= 4-bit two’s comp.

TAdd,(u , v)

= Range from -8 to +7

m Wraps Around

= |fsum > 2wl

= Becomes negative
= At most once

" |fsum<—2w1

= Becomes positive
= At most once

PosOver
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Characterizing TAdd

Positive Overflow

m Functionality TAdd(u , v) |
= True sum requires w+1 bits 50 \
= Drop off MSB Vv
= Treat remaining bits as 2’s <0 \
comp. integer /
/<Ou>0

Negative Overflow

(Utv+ oW utv< TMin,, (NegOver)
TAdd,,(u,v) = u+v TMin,, <u+v < TMax,,
ku+v— 2W TMCZXW <U+V (PosOver)
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Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2v-1)2 = 22w -2w*1 +1
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (-2w1)*(2w-1-1) = —22w=24 w1
" Two’s complement max (positive): Up to 2w bits, but only for (TMin,, )?
= Resultrange: x *y < (-2w1) 2 = 22w=2
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
" jsdonein software, if needed
= e.g., by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

u o 00
Operands: w bits
* o000
\ %
True Product: 2*w bits U " V soe oo
UMUlt u.,v co o
Discard w bits: w bits l )
m Standard Multiplication Function
" |gnores high order w bits
m Implements Modular Arithmetic
UMult,(u,v)= u -v mod 2%
1110 1001 E9 223
* 1101 0101 * D5 * 213
1100 0001 1101 1101 C1DD 47499

1101 1101 DD 221
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Signed Multiplication in C

u o 00
Operands: w bits
* o000
\ %
True Product: 2*w bits U " Vv s o s o
TMUlt u.,v )
Discard w bits: w bits CERY
m Standard Multiplication Function
" |gnores high order w bits
= Some of which are different for signed
vs. unsigned multiplication
= Lower bits are the same
1110 1001 E9 -23
* 1101 0101 * D5 * -43
0000 0011 1101 1101 03DD 989
1101 1101 DD -35
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Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k

u e 0 o

Operands: w bits

* 2k Ol eee JOI1110]| eee |O]|0
True Product: w+k bits U - Dk oo o0 0] eee |0]O
Discard k bits: w bits UMult, (u , 2%) XX 0] eee [0]O
TMult, (u , 2%)
m Examples
" u << 3 == u * 8
" (u <K )b - (u <K 3)== u * 24

= Most machines shift and add faster than multiply
= Compiler generates this code automatically
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Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= u > kgies|Lu / 2¢]
= Uses logical shift

k
u 0oe oeoe Binary Point
Operands:
/ 2k Ol eee |OI1110| eee |0O]0
Division: u/2k O] e [0]O 2ee ( 2oe
Result: | 44/ 2k | [0o] ==« JO]O coe
Division Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x > 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 | 59.4257813 59 00 3B| 00000000 0OO111011
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Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
" x > kgives L x / 2¢]
= Uses arithmetic shift
= Rounds wrong direction whenu < 0

k
X see see Binary Point
Operands:
/ 2k Ol eee |0|110| eee |00 /
Division: x / 2k L L |/ see
Result:  RoundDown(x / 2¥) eoe m
Division Computed Hex Binary
Y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 [-59.4257813 -60 FF C4| 11111111 11000100
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Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
= Want [ x / 2] (Round Toward 0)
= Compute as | (x+2%-1)/ 2¢]
= InC: (x + (1<k)-1) >> k

= Biases dividend toward O

Case 1: No rounding i
Dividend: y [T eee TTo[ eeeT0JO
+2k_1 [O] eee JOJOJ1] eee J1f1
1 Y 1] eee [1[1] Binary Point
Divisor: | 2k [0] eee Jof1f0] e« JoOJO /
| 4 /2k | [AIeee TaTATAT T eee ./1 eee [1]1

Biasing has no effect
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Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: X 1 okt XX
_%2k;_1 Ol eee |OI0|1] eee |1]1

1 (XX eoo
L J
Y
Incremented by 1 Binary Point
Divisor: [ 2k (O] eee JO[1]0] eee JO]O /
/
rX/zk—I 1 00 11111 (X X . XX
L J
Y

Incremented by 1

Biasing adds 1 to final result
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Negation: Complement & Increment

m Negate through complement and increase

~X + == -X
m Example
= QObservation: ~x + x == 1111..111 == -1
x |1]0]0]1]1}1{0j1
+ ~x [0{1{1{0]|0|0}|1]0
-1 |1{1)2)111}1{1}1
X =15213
Decimal | Hex Binary
X 15213| 3B 6D| 00111011 01101101
~X -15214| C4 92| 11000100 10010010

~x+1 | -15213| C4 93| 11000100 10010011
y -15213| C4 93| 11000100 10010011
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Complement & Increment Examples

x=0
Decimal Hex Binary

0 0| 00 00| 00000000 00000000

~0 -1| FF FF| 11111111 11111111

~0+1 0| 00 00| 00000000 00000000
X = TMin

Decimal [ Hex Binary

X -32768( 80 00| 10000000 00OOOOQOOOO

~X 32767 7F FF| 01111111 11111111

~x+1 -32768( 80 00| 10000000 0OOOOOQOOO

Canonical counter example
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Today: Bits, Bytes, and Integers

N
H
m Integers
0
:
= Summary
H
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Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

® Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)
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Why Should | Use Unsignhed?

m Don’t use without understanding implications

= Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+l];

= Can be very subtle
#define DELTA sizeof (int)
int 1i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
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Counting Down with Unsignhed

m Proper way to use unsigned as loop index
unsigned 1i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+l];
m See Robert Seacord, Secure Coding in C and C++
= (C Standard guarantees that unsigned addition will behave like modular

arithmetic
= 0—1-2> UMax

m Even better
size t i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+l];
" Datatype size_t defined as unsigned value with length = word size
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Why Should | Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic

= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets

" Logical right shift, no sign extension

m Do Use In System Programming

= Bit masks, device commandes,...
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Today: Bits, Bytes, and Integers

N
H
m Integers

m Representations in memory, pointers, strings
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Byte-Oriented Memory Organization

QQ ‘QQ.

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
" An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”

" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others
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Machine Words

m Any given computer has a “Word Size”
= Nominal size of integer-valued data
= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

" |ncreasingly, machines have 64-bit word size
= Potentially, could have 18 EB (exabytes) of addressable memory
= That’s 18.4 X 108

= Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes
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Word-Oriented Memory Organization

32-bit  64-bit Bvtes Addr
m Addresses Specify Byte Words Words Y '
Locations 0000
] ] Addr 0001
= Address of first byte in word =
. , 0000 0002
= Addresses of successive words differ Addr 0003
by 4 (32-bit) or 8 (64-bit) =
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
0008 Addr 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8
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Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86, ARM processors running Android, iOS, and Linux
= Least significant byte has lowest address
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Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01
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Decimal: 15213
Representing Integers |sinary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
o | [IA32, x86-64 Sun
g IA32 X86-64 Sun
§ 6D |«
£ 3B |«
o 00 [
£V 00 |

int B = -15213;
|IA32, Xx86-64 Sun

T~

Two’s complement representation
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Examining Data Representations

m Code to Print Byte Representation of Data

= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes(pointer start, size t 1len) {
size t i;
for (i = 0; 1 < len; i++)
printf ("%p\t0x%.2x\n" ,start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%X: Print Hexadecimal
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show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc od
Ox7f£ffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7f£ffb7f71dbf 00
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Representing Pointers

int B = -15213;
int *P = &B;
Sun |A32 x86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program
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Representing Strings

char S[6] = "18213";
m StringsinC
= Represented by array of characters
= Each character encoded in ASCII format IA32 Sun
= Standard 7-bit encoding of character set 31 |« > 31
= Character “0” has code 0x30 38 |+ | 38
— Digit i has code 0x30+/ 32 |« 32
= man ascii for code table 31 |« J 31
= String should be null-terminated 33 J 33
= Final character =0 00 k 00

m Compatibility

= Byte ordering not an issue
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Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836c¢c: 83 bb 28 00 00 00 00 cmpl x0,0x28 (%ebx)

m Deciphering Numbers

= Value: O0x12ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

= Reverse: ab 12 00 00
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Integer C Puzzles

x <0 = ((x*2) < 0)
ux >= 0
X &7 =7 = (x<<30) < 0
ux > -1
X >y = X < -y
x * x>0
Initialization x>0 & y>0
x >= 0
x <=0
int y = bar(); (x]-x)>>31 == -1

x+y >0
-x <=0
-x >= 0

int x = foo();

VIR

unsigned ux = x; ux >> 3 == ux/8
x >> 3 == x/8
x & (x-1) '=0

unsigned uy = y;

XX I XXA XXX\ X
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Summary

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating
= Addition, negation, multiplication, shifting

m Representations in memory, pointers, strings
® Summary
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