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1. x64 Registers 
x64 assembly code uses sixteen 64-bit registers. Additionally, the lower bytes of some of these 
registers may be accessed independently as 32-, 16- or 8-bit registers. The register names are 
as follows: 

 
8-byte register Bytes 0-3 Bytes 0-1 Byte 0 

   

%rax %eax %ax %al 
%rcx %ecx %cx %cl 
%rdx %edx %dx %dl 
%rbx %ebx %bx %bl 
%rsi %esi %si %sil 
%rdi %edi %di %dil 
%rsp %esp %sp %spl 
%rbp %ebp %bp %bpl 
%r8 %r8d %r8w %r8b 
%r9 %r9d %r9w %r9b 
%r10 %r10d %r10w %r10b 
%r11 %r11d %r11w %r11b 
%r12 %r12d %r12w %r12b 
%r13 %r13d %r13w %r13b 
%r14 %r14d %r14w %r14b 
%r15 %r15d %r15w %r15b 

 

For more details of register usage, see Register Usage, below. 

2. Operand Specifiers 
The basic types of operand specifiers are below. In the following table, 
 

● Imm​ refers to a constant value, e.g. ​0x8048d8e​ or ​48​, 
● E​x​ refers to a register, e.g.​ ​%rax​, 
● R[E​x​]​ refers to the value stored in register ​E​x​, and 
● M[x]​ refers to the value stored at memory address ​x​. 
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Type From Operand Value Name 
   

Immediate $Imm Imm Immediate 
Register E​a R[E​a] Register 
Memory Imm M[Imm] Absolute 
Memory (E​a) M[R[E​b]] Absolute 
Memory Imm(E​b​, E​i,​ s) M[Imm + R[E​b​] + (R[E​i​] x s)] Scaled indexed 

 
More information about operand specifiers can be found on pages 169-170 of the textbook. 

3. x64 Instructions 
In the following tables, 
 

● “byte” refers to a one-byte integer (suffix ​b​), 
● “word” refers to a two-byte integer (suffix ​w​), 
● “doubleword” refers to a four-byte integer (suffix​ ​l​), and  
● “quadword” refers to an eight-byte value (suffix​ ​q​).  

 
Most instructions, like ​mov​, use a suffix to show how large the operands are going to be. For 
example, moving a quadword from ​%rax​ to ​%rbx​ results in the instruction ​movq %rax, %rbx​. 
Some instructions, like ​ret​, do not use suffixes because there is no need. Others, such as ​movs 
and ​movz​ will use two suffixes, as they convert operands of the type of the first suffix to that of 
the second. Thus, assembly to convert the byte in ​%al​ to a doubleword in ​%ebx​ with 
zero-extension would be ​movzbl %al, %ebx​. 
 
In the tables below, instructions have one suffix unless otherwise stated. 

3.1 Data Movement 
 

Instruction Description Page # 
Instructions with one suffix 

mov​    ​S, D Move source to destination 171 
push​   ​S Push source onto stack 171 
pop​    ​D Pop top of stack into destination 171 

Instructions with two suffixes 
mov​    ​S, D Move byte to word (sign extended) 171 
push​   ​S Move byte to word (zero extended) 171 

Instructions with no suffixes 
cwtl Convert word in ​%ax​ to doubleword in ​%eax​ (sign-extended) 182 
cltq Convert doubleword in ​%eax​ to quadword in ​%rax​ ​(sign-extended) 182 
cqto Convert quadword in ​%rax​ to octoword in​ ​%rdx:%rax 182 
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3.2 Arithmetic Operations 
Unless otherwise specified, all arithmetic operation instructions have one suffix. 

3.2.1 Unary Operations 
 

Instruction Description Page # 
inc D Increment by 1 178 
dec D Decrement by 1 178 
neg D Arithmetic negation 178 
not D Bitwise complement 178 
 

3.2.2 Binary Operations 
 

Instruction Description Page # 
leaq S, D Load effective address of source into destination 178 
add S, D Add source to destination 178 
sub S, D Subtract source from destination 178 
imul S, D Multiply destination by source 178 
xor S, D Bitwise XOR destination by source 178 
or S, D Bitwise OR destination by source 178 
and S, D Bitwise AND destination by source 178 
 

3.2.3 Shift Operations 
 

Instruction Description Page # 
sal / shl k, D Left shift destination by ​k​ bits 179 
sar k, D Arithmetic right shift destination by ​k​ bits 179 
shr k, D Logical right shift destination by ​k​ bits 179 
 

3.2.4 Special Arithmetic Operations 
 

Instruction Description Page # 

imulq S  Signed full multiply of %rax by S 
Result stored in %rdx:%rax 182 
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mulq S Unsigned full multiply of ​%rax​ by S 
Result stored in ​%rdx:%rax 182 

idivq S 
Signed divide​ %rdx:%rax​ by S 
Quotient stored in ​%rax 
Remainder stored in ​%rdx 

182 

divq S 
Unsigned divide ​%rdx:%rax​ by S 
Quotient stored in ​%rax 
Remainder stored in ​%rdx 

182 

 

3.3 Comparison and Test Instructions 
Comparison instructions also have one suffix. 
 

Instruction Description Page # 
cmp S​2​, S​1 Set condition codes according to S​1 - S​2 185 
test S​2​, S​1 Set condition codes according to S​1​ & S​2 185 
 

3.4 Accessing Condition Codes 
None of the following instructions have any suffixes. 

3.4.1 Conditional Set Instructions 
 

Instruction Description Condition Code Page # 
sete​ / ​setz D Set if equal/zero ZF 187 
setne​ ​/ ​setnz D  Set if not equal/nonzero ~​ZF 187 
sets D  Set if negative SF 187 
setns D  Set if nonnegative ~​SF 187 
setg​ / ​setnle D Set if greater (signed) ~​(SF​ ​̂0F)&​~​ZF 187 
setge​ / ​setnl D  Set if greater or equal (signed) ~​(SF​ ​̂0F) 187 
setl​ / ​setnge D Set if less (signed) SF^0F 187 
setle​ / ​setng D Set if less or equal (SF​ ​̂OF)|ZF 187 
seta​ / ​setnbe D  Set if above (unsigned) ~​CF&​~​ZF 187 
setae​ / ​setnb D  Set if above or equal (unsigned) ~​CF 187 
setb​ / ​setnae D  Set if below (unsigned) CF 187 
setbe​ / ​setna D  Set if below or equal (unsigned) CF|ZF 187 
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3.4.2 Jump Instructions 
 

Instruction Description Condition Code Page # 
jmp Label Jump to label  189 
jmp *Operand Jump to specified location  189 
je​ / ​jz Label Jump if equal/zero ZF 189 
jne​ / ​jnz Label Jump if not equal/nonzero  ~​ZF 189 
js Label Jump if negative SF 189 
jns Label Jump if nonnegative ~​SF 189 
jg​ / ​jnle Label Jump if greater (signed) ~​(SF​ ​̂0F)&​~​ZF 189 
jge​ / ​jnl Label Jump if greater or equal (signed) ~​(SF​ ​̂0F) 189 
jl​ / ​jnge Label Jump if less (signed) SF^0F 189 
jle​ / ​jng Label  Jump if less or equal (SF​ ​̂OF)|ZF 189 
ja​ / ​jnbe Label Jump if above (unsigned) ~​CF&​~​ZF 189 
jae​ / ​jnb Label Jump if above or equal (unsigned) ~​CF 189 
jb​ / ​jnae Label Jump if below (unsigned) CF 189 
jbe​ / ​jna Label Jump if below or equal (unsigned) CF|ZF 189 
 

3.4.3 Conditional Move Instructions 
Conditional move instructions do not have any suffixes, but their source and destination 
operands must have the same size. 
 

Instruction Description Condition Code Page # 
cmove​ / ​cmovz S, D Move if equal/zero ZF 206 
cmovne​ / ​cmovnz S, D  Move if not equal/nonzero ~​ZF 206 
cmovs S, D Move if negative SF 206 
cmovns S, D Move if nonnegative ~​SF 206 
cmovg​ / ​cmovnle S, D Move if greater (signed) ~​(SF​ ​̂0F)&​~​ZF 206 
cmovge​ / ​cmovnl S, D  Move if greater or equal (signed) ~​(SF​ ​̂0F) 206 
cmovl​ / ​cmovnge S, D Move if less (signed) SF^0F 206 
cmovle​ / ​cmovng S, D Move if less or equal (SF​ ​̂OF)|ZF 206 
cmova​ / ​cmovnbe S, D Move if above (unsigned) ~​CF&​~​ZF 206 
cmovae​ / ​cmovnb S, D Move if above or equal (unsigned) ~​CF 206 
cmovb​ / ​cmovnae S, D Move if below (unsigned) CF 206 
cmovbe​ / ​cmovna S, D  Move if below or equal (unsigned) CF|ZF 206 
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3.5 Procedure Call Instruction 
Procedure call instructions do not have any suffixes. 
 

Instruction Description Page # 
call Label Push return address and jump to label 221 
call *Operand Push return address and jump to specified location 221 
leave Set ​%rsp​ to ​%rbp​, then pop top of stack into ​%rbp 221 
ret Pop return address from stack and jump there 221 
 

4. Coding Practices 

4.1 Commenting 
Each function you write should have a comment at the beginning describing what the function 
does and any arguments it accepts. In addition, we strongly recommend putting comments 
alongside your assembly code stating what each set of instructions does in pseudocode or 
some higher level language. Line breaks are also helpful to group statements into logical blocks 
for improved readability. 

4.2 Arrays 
Arrays are stored in memory as contiguous blocks of data. Typically an array variable acts as a 
pointer to the first element of the array in memory. To access a given array element, the index 
value is multiplied by the element size and added to the array pointer. For instance, if ​arr​ is an 
array of ​int​s, the statement: 

    ​arr[i] = 3; 

can be expressed in x86-64 as follows (assuming the address of ​arr​ is stored in​ %rax​ and the 
index ​i​ is stored in ​%rcx​): 

    ​movq $3, (%rax, %rcx, 8) 

More information about arrays can be found on pages 232-241 of the textbook. 
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4.3 Register Usage 
There are sixteen 64-bit registers in x86-64: ​%rax​, ​%rbx​, ​%rcx​, ​%rdx​, ​%rdi​, ​%rsi​, ​%rbp​, 
%rsp​, and ​%r8-r15​. Of these, ​%rax​, ​%rcx​, ​%rdx​, ​%rdi​, ​%rsi​, ​%rsp​, and ​%r8-r11​ are 
considered caller-save registers, meaning that they are not necessarily saved across function 
calls. By convention, ​%rax​ is used to store a function’s return value, if it exists and is no more 
than 64 bits long. (Larger return types like structs are returned using the stack.) Registers ​%rbx​, 
%rbp​, and ​%r12-r15​ are callee-save registers, meaning that they are saved across function 
calls. Register​ ​%rsp​ is used as the ​stack pointer​, a pointer to the topmost element in the stack.  

Additionally, ​%rdi​,​ %rsi​, ​%rdx​, ​%rcx​, ​%r8​, and ​%r9​ are used to pass the first six integer 
or pointer parameters to called functions. Additional parameters (or large parameters such as 
structs passed by value) are passed on the stack.  

In 32-bit x86, the ​base pointer​ (formerly ​%ebp​, now​ ​%rbp​) was used to keep track of the base of 
the current stack frame, and a called function would save the base pointer of its caller prior to 
updating the base pointer to its own stack frame. With the advent of the 64-bit architecture, this 
has been mostly eliminated, save for a few special cases when the compiler cannot determine 
ahead of time how much stack space needs to be allocated for a particular function (see 
Dynamic stack allocation). 

4.4 Stack Organization and Function Calls 

4.4.1 Calling a Function 

To call a function, the program should place the first six integer or pointer parameters in the 
registers ​%rdi​, ​%rsi​, ​%rdx​, ​%rcx​, ​%r8​, and ​%r9​; subsequent parameters (or parameters 
larger than 64 bits) should be pushed onto the stack, with the first argument topmost. The 
program should then execute the call instruction, which will push the return address onto the 
stack and jump to the start of the specified function.  

Example:  

    # Call foo(1, 15) 

    movq $1, %rdi # Move 1 into %rdi  

    Movq $15, %rsi # Move 15 into %rsi  

    call foo # Push return address and jump to label foo  

If the function has a return value, it will be stored in ​%rax​ after the function call. 



 
 
CSCI0330 x86-64 Guide  Doeppner  
 

4.4.2 Writing a Function 
An x64 program uses a region of memory called the stack to support function calls. As the name 
suggests, this region is organized as a stack data structure with the “top” of the stack growing 
towards lower memory addresses. For each function call, new space is created on the stack to 
store local variables and other data. This is known as a ​stack frame​. To accomplish this, you will 
need to write some code at the beginning and end of each function to create and destroy the 
stack frame. 
 

Setting Up:​ When a ​call​ instruction is executed, the address of the following instruction is 
pushed onto the stack as the return address and control passes to the specified function.  

If the function is going to use any of the callee-save registers (​%rbx​, ​%rbp​, or​ ​%r12-r15​), the 
current value of each should be pushed onto the stack to be restored at the end. For example:  

    Pushq %rbx  

    pushq %r12  

    pushq %r13  

Finally, additional space may be allocated on the stack for local variables. While it is possible to 
make space on the stack as needed in a function body, it is generally more efficient to allocate 
this space all at once at the beginning of the function. This can be accomplished using the call 
subq $N, %rsp​ where N is the size of the callee’s stack frame. For example:  

    subq $0x18, %rsp # Allocate 24 bytes of space on the stack  

This set-up is called the ​function prologue​. 

Using the Stack Frame:​ Once you have set up the stack frame, you can use it to store and 
access local variables: 

● Arguments which cannot fit in registers (e.g. structs) will be pushed onto the stack before 
the call instruction, and can be accessed relative to ​%rsp​. Keep in mind that you will 
need to take the size of the stack frame into account when referencing arguments in this 
manner. 

● If the function has more than six integer or pointer arguments, these will be pushed onto 
the stack as well. 

● For any stack arguments, the lower-numbered arguments will be closer to the stack 
pointer. That is, arguments are pushed on in right-to-left order when applicable. 

● Local variables will be stored in the space allocated in the function prologue, when some 
amount is subtracted from ​%rsp​. The organization of these is up to the programmer. 

 
Cleaning Up:​ After the body of the function is finished and the return value (if any) is placed in 
%rax​, the function must return control to the caller, putting the stack back in the state in which it 
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was called with. First, the callee frees the stack space it allocated by adding the same amount 
to the stack pointer: 
 
    addq $0x18, %rsp # Give back 24 bytes of stack space 

 

Then, it pops off the registers it saved earlier 
 
    popq %r13 # Remember that the stack is FILO!  

    popq %r12 

    popq %rbx 

 

Finally, the program should return to the call site, using the ret instruction: 

    ret 

Summary:​ Putting it together, the code for a function should look like this: 

foo:  

    pushq %rbx # Save registers, if needed  

    pushq %r12  

    pushq %r13  

    subq $0x18, %rsp # Allocate stack space  

    # Function body  

    addq $0x18, %rsp # Deallocate stack space  

    popq %r13 # Restore registers  

    popq %r12  

    popq %rbx ret # Pop return address and return control  

# to caller 

4.4.3 Dynamic stack allocation 

You may find that having a static amount of stack space for your function does not quite cut it. In 
this case, we will need to borrow a tradition from 32-bit x86 and save the base of the stack 
frame into the base pointer register. Since ​%rbp​ ​is a callee-save register, it needs to be saved 
before you change it. Therefore, the function prologue will now be prefixed with: 

    pushq %rbp 

    movq %rsp, %rbp  

Consequently, the epilogue will contain this right before the ​ret​:  
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    movq %rbp, %rsp  

    popq %rbp  

This can also be done with a single instruction, called ​leave​. The epilogue makes sure that no 
matter what you do to the stack pointer in the function body, you will always return it to the right 
place when you return. Note that this means you no longer need to add to the stack pointer in 
the epilogue.  

This is an example of a function which allocates between 8-248 bytes of random stack space 
during its execution: 

    pushq %rbp # Use base pointer  

    movq %rsp, %rbp  

    pushq %rbx # Save registers  

    pushq %r12 

    subq $0x18, %rsp # Allocate some stack space  

    ...  

  

    call rand # Get random number 

    andq $0xF8, %rax # Make sure the value is 8-248 bytes and 

# aligned on 8 bytes 

    subq %rax, %rsp # Allocate space 

  

     … 

  

    movq (%rbp), %r12 # Restore registers from base of frame 

    movq 0x8(%rbp), %rbx  

    movq %rbp, %rsp # Reset stack pointer and restore base  

# pointer  

    popq %rbp ret 

This sort of behavior can be accessed from C code by calling pseudo-functions like alloca, 
which allocates stack space according to its argument.  

More information about the stack frame and function calls can be found on pages 219-232 of 
the textbook. 


