

CSCI0330 Intro Computer Systems Doeppner

x64 Cheat Sheet
Fall 2018

1. x64 Registers
x64 assembly code uses sixteen 64-bit registers. Additionally, the lower bytes of some of these
registers may be accessed independently as 32-, 16- or 8-bit registers. The register names are
as follows:

8-byte register Bytes 0-3 Bytes 0-1 Byte 0

%rax %eax %ax %al
%rcx %ecx %cx %cl
%rdx %edx %dx %dl
%rbx %ebx %bx %bl
%rsi %esi %si %sil
%rdi %edi %di %dil
%rsp %esp %sp %spl
%rbp %ebp %bp %bpl
%r8 %r8d %r8w %r8b
%r9 %r9d %r9w %r9b
%r10 %r10d %r10w %r10b
%r11 %r11d %r11w %r11b
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d %r14w %r14b
%r15 %r15d %r15w %r15b

For more details of register usage, see Register Usage, below.

2. Operand Specifiers
The basic types of operand specifiers are below. In the following table,

● Imm​ refers to a constant value, e.g. ​0x8048d8e​ or ​48​,
● E​x​ refers to a register, e.g.​ ​%rax​,
● R[E​x​]​ refers to the value stored in register ​E​x​, and
● M[x]​ refers to the value stored at memory address ​x​.

CSCI0330 x86-64 Guide Doeppner

Type From Operand Value Name

Immediate $Imm Imm Immediate
Register E​a R[E​a] Register
Memory Imm M[Imm] Absolute
Memory (E​a) M[R[E​b]] Absolute
Memory Imm(E​b​, E​i,​ s) M[Imm + R[E​b​] + (R[E​i​] x s)] Scaled indexed

More information about operand specifiers can be found on pages 169-170 of the textbook.

3. x64 Instructions
In the following tables,

● “byte” refers to a one-byte integer (suffix ​b​),
● “word” refers to a two-byte integer (suffix ​w​),
● “doubleword” refers to a four-byte integer (suffix​ ​l​), and
● “quadword” refers to an eight-byte value (suffix​ ​q​).

Most instructions, like ​mov​, use a suffix to show how large the operands are going to be. For
example, moving a quadword from ​%rax​ to ​%rbx​ results in the instruction ​movq %rax, %rbx​.
Some instructions, like ​ret​, do not use suffixes because there is no need. Others, such as ​movs
and ​movz​ will use two suffixes, as they convert operands of the type of the first suffix to that of
the second. Thus, assembly to convert the byte in ​%al​ to a doubleword in ​%ebx​ with
zero-extension would be ​movzbl %al, %ebx​.

In the tables below, instructions have one suffix unless otherwise stated.

3.1 Data Movement

Instruction Description Page #
Instructions with one suffix

mov​ ​S, D Move source to destination 171
push​ ​S Push source onto stack 171
pop​ ​D Pop top of stack into destination 171

Instructions with two suffixes
mov​ ​S, D Move byte to word (sign extended) 171
push​ ​S Move byte to word (zero extended) 171

Instructions with no suffixes
cwtl Convert word in ​%ax​ to doubleword in ​%eax​ (sign-extended) 182
cltq Convert doubleword in ​%eax​ to quadword in ​%rax​ ​(sign-extended) 182
cqto Convert quadword in ​%rax​ to octoword in​ ​%rdx:%rax 182

CSCI0330 x86-64 Guide Doeppner

3.2 Arithmetic Operations
Unless otherwise specified, all arithmetic operation instructions have one suffix.

3.2.1 Unary Operations

Instruction Description Page #
inc D Increment by 1 178
dec D Decrement by 1 178
neg D Arithmetic negation 178
not D Bitwise complement 178

3.2.2 Binary Operations

Instruction Description Page #
leaq S, D Load effective address of source into destination 178
add S, D Add source to destination 178
sub S, D Subtract source from destination 178
imul S, D Multiply destination by source 178
xor S, D Bitwise XOR destination by source 178
or S, D Bitwise OR destination by source 178
and S, D Bitwise AND destination by source 178

3.2.3 Shift Operations

Instruction Description Page #
sal / shl k, D Left shift destination by ​k​ bits 179
sar k, D Arithmetic right shift destination by ​k​ bits 179
shr k, D Logical right shift destination by ​k​ bits 179

3.2.4 Special Arithmetic Operations

Instruction Description Page #

imulq S Signed full multiply of %rax by S
Result stored in %rdx:%rax 182

CSCI0330 x86-64 Guide Doeppner

mulq S Unsigned full multiply of ​%rax​ by S
Result stored in ​%rdx:%rax 182

idivq S
Signed divide​ %rdx:%rax​ by S
Quotient stored in ​%rax
Remainder stored in ​%rdx

182

divq S
Unsigned divide ​%rdx:%rax​ by S
Quotient stored in ​%rax
Remainder stored in ​%rdx

182

3.3 Comparison and Test Instructions
Comparison instructions also have one suffix.

Instruction Description Page #
cmp S​2​, S​1 Set condition codes according to S​1 - S​2 185
test S​2​, S​1 Set condition codes according to S​1​ & S​2 185

3.4 Accessing Condition Codes
None of the following instructions have any suffixes.

3.4.1 Conditional Set Instructions

Instruction Description Condition Code Page #
sete​ / ​setz D Set if equal/zero ZF 187
setne​ ​/ ​setnz D Set if not equal/nonzero ~​ZF 187
sets D Set if negative SF 187
setns D Set if nonnegative ~​SF 187
setg​ / ​setnle D Set if greater (signed) ~​(SF​ ​̂0F)&​~​ZF 187
setge​ / ​setnl D Set if greater or equal (signed) ~​(SF​ ​̂0F) 187
setl​ / ​setnge D Set if less (signed) SF^0F 187
setle​ / ​setng D Set if less or equal (SF​ ​̂OF)|ZF 187
seta​ / ​setnbe D Set if above (unsigned) ~​CF&​~​ZF 187
setae​ / ​setnb D Set if above or equal (unsigned) ~​CF 187
setb​ / ​setnae D Set if below (unsigned) CF 187
setbe​ / ​setna D Set if below or equal (unsigned) CF|ZF 187

CSCI0330 x86-64 Guide Doeppner

3.4.2 Jump Instructions

Instruction Description Condition Code Page #
jmp Label Jump to label 189
jmp *Operand Jump to specified location 189
je​ / ​jz Label Jump if equal/zero ZF 189
jne​ / ​jnz Label Jump if not equal/nonzero ~​ZF 189
js Label Jump if negative SF 189
jns Label Jump if nonnegative ~​SF 189
jg​ / ​jnle Label Jump if greater (signed) ~​(SF​ ​̂0F)&​~​ZF 189
jge​ / ​jnl Label Jump if greater or equal (signed) ~​(SF​ ​̂0F) 189
jl​ / ​jnge Label Jump if less (signed) SF^0F 189
jle​ / ​jng Label Jump if less or equal (SF​ ​̂OF)|ZF 189
ja​ / ​jnbe Label Jump if above (unsigned) ~​CF&​~​ZF 189
jae​ / ​jnb Label Jump if above or equal (unsigned) ~​CF 189
jb​ / ​jnae Label Jump if below (unsigned) CF 189
jbe​ / ​jna Label Jump if below or equal (unsigned) CF|ZF 189

3.4.3 Conditional Move Instructions
Conditional move instructions do not have any suffixes, but their source and destination
operands must have the same size.

Instruction Description Condition Code Page #
cmove​ / ​cmovz S, D Move if equal/zero ZF 206
cmovne​ / ​cmovnz S, D Move if not equal/nonzero ~​ZF 206
cmovs S, D Move if negative SF 206
cmovns S, D Move if nonnegative ~​SF 206
cmovg​ / ​cmovnle S, D Move if greater (signed) ~​(SF​ ​̂0F)&​~​ZF 206
cmovge​ / ​cmovnl S, D Move if greater or equal (signed) ~​(SF​ ​̂0F) 206
cmovl​ / ​cmovnge S, D Move if less (signed) SF^0F 206
cmovle​ / ​cmovng S, D Move if less or equal (SF​ ​̂OF)|ZF 206
cmova​ / ​cmovnbe S, D Move if above (unsigned) ~​CF&​~​ZF 206
cmovae​ / ​cmovnb S, D Move if above or equal (unsigned) ~​CF 206
cmovb​ / ​cmovnae S, D Move if below (unsigned) CF 206
cmovbe​ / ​cmovna S, D Move if below or equal (unsigned) CF|ZF 206

CSCI0330 x86-64 Guide Doeppner

3.5 Procedure Call Instruction
Procedure call instructions do not have any suffixes.

Instruction Description Page #
call Label Push return address and jump to label 221
call *Operand Push return address and jump to specified location 221
leave Set ​%rsp​ to ​%rbp​, then pop top of stack into ​%rbp 221
ret Pop return address from stack and jump there 221

4. Coding Practices

4.1 Commenting
Each function you write should have a comment at the beginning describing what the function
does and any arguments it accepts. In addition, we strongly recommend putting comments
alongside your assembly code stating what each set of instructions does in pseudocode or
some higher level language. Line breaks are also helpful to group statements into logical blocks
for improved readability.

4.2 Arrays
Arrays are stored in memory as contiguous blocks of data. Typically an array variable acts as a
pointer to the first element of the array in memory. To access a given array element, the index
value is multiplied by the element size and added to the array pointer. For instance, if ​arr​ is an
array of ​int​s, the statement:

 ​arr[i] = 3;

can be expressed in x86-64 as follows (assuming the address of ​arr​ is stored in​ %rax​ and the
index ​i​ is stored in ​%rcx​):

 ​movq $3, (%rax, %rcx, 8)

More information about arrays can be found on pages 232-241 of the textbook.

CSCI0330 x86-64 Guide Doeppner

4.3 Register Usage
There are sixteen 64-bit registers in x86-64: ​%rax​, ​%rbx​, ​%rcx​, ​%rdx​, ​%rdi​, ​%rsi​, ​%rbp​,
%rsp​, and ​%r8-r15​. Of these, ​%rax​, ​%rcx​, ​%rdx​, ​%rdi​, ​%rsi​, ​%rsp​, and ​%r8-r11​ are
considered caller-save registers, meaning that they are not necessarily saved across function
calls. By convention, ​%rax​ is used to store a function’s return value, if it exists and is no more
than 64 bits long. (Larger return types like structs are returned using the stack.) Registers ​%rbx​,
%rbp​, and ​%r12-r15​ are callee-save registers, meaning that they are saved across function
calls. Register​ ​%rsp​ is used as the ​stack pointer​, a pointer to the topmost element in the stack.

Additionally, ​%rdi​,​ %rsi​, ​%rdx​, ​%rcx​, ​%r8​, and ​%r9​ are used to pass the first six integer
or pointer parameters to called functions. Additional parameters (or large parameters such as
structs passed by value) are passed on the stack.

In 32-bit x86, the ​base pointer​ (formerly ​%ebp​, now​ ​%rbp​) was used to keep track of the base of
the current stack frame, and a called function would save the base pointer of its caller prior to
updating the base pointer to its own stack frame. With the advent of the 64-bit architecture, this
has been mostly eliminated, save for a few special cases when the compiler cannot determine
ahead of time how much stack space needs to be allocated for a particular function (see
Dynamic stack allocation).

4.4 Stack Organization and Function Calls

4.4.1 Calling a Function

To call a function, the program should place the first six integer or pointer parameters in the
registers ​%rdi​, ​%rsi​, ​%rdx​, ​%rcx​, ​%r8​, and ​%r9​; subsequent parameters (or parameters
larger than 64 bits) should be pushed onto the stack, with the first argument topmost. The
program should then execute the call instruction, which will push the return address onto the
stack and jump to the start of the specified function.

Example:

 # Call foo(1, 15)

 movq $1, %rdi # Move 1 into %rdi

 Movq $15, %rsi # Move 15 into %rsi

 call foo # Push return address and jump to label foo

If the function has a return value, it will be stored in ​%rax​ after the function call.

CSCI0330 x86-64 Guide Doeppner

4.4.2 Writing a Function
An x64 program uses a region of memory called the stack to support function calls. As the name
suggests, this region is organized as a stack data structure with the “top” of the stack growing
towards lower memory addresses. For each function call, new space is created on the stack to
store local variables and other data. This is known as a ​stack frame​. To accomplish this, you will
need to write some code at the beginning and end of each function to create and destroy the
stack frame.

Setting Up:​ When a ​call​ instruction is executed, the address of the following instruction is
pushed onto the stack as the return address and control passes to the specified function.

If the function is going to use any of the callee-save registers (​%rbx​, ​%rbp​, or​ ​%r12-r15​), the
current value of each should be pushed onto the stack to be restored at the end. For example:

 Pushq %rbx

 pushq %r12

 pushq %r13

Finally, additional space may be allocated on the stack for local variables. While it is possible to
make space on the stack as needed in a function body, it is generally more efficient to allocate
this space all at once at the beginning of the function. This can be accomplished using the call
subq $N, %rsp​ where N is the size of the callee’s stack frame. For example:

 subq $0x18, %rsp # Allocate 24 bytes of space on the stack

This set-up is called the ​function prologue​.

Using the Stack Frame:​ Once you have set up the stack frame, you can use it to store and
access local variables:

● Arguments which cannot fit in registers (e.g. structs) will be pushed onto the stack before
the call instruction, and can be accessed relative to ​%rsp​. Keep in mind that you will
need to take the size of the stack frame into account when referencing arguments in this
manner.

● If the function has more than six integer or pointer arguments, these will be pushed onto
the stack as well.

● For any stack arguments, the lower-numbered arguments will be closer to the stack
pointer. That is, arguments are pushed on in right-to-left order when applicable.

● Local variables will be stored in the space allocated in the function prologue, when some
amount is subtracted from ​%rsp​. The organization of these is up to the programmer.

Cleaning Up:​ After the body of the function is finished and the return value (if any) is placed in
%rax​, the function must return control to the caller, putting the stack back in the state in which it

CSCI0330 x86-64 Guide Doeppner

was called with. First, the callee frees the stack space it allocated by adding the same amount
to the stack pointer:

 addq $0x18, %rsp # Give back 24 bytes of stack space

Then, it pops off the registers it saved earlier

 popq %r13 # Remember that the stack is FILO!

 popq %r12

 popq %rbx

Finally, the program should return to the call site, using the ret instruction:

 ret

Summary:​ Putting it together, the code for a function should look like this:

foo:

 pushq %rbx # Save registers, if needed

 pushq %r12

 pushq %r13

 subq $0x18, %rsp # Allocate stack space

 # Function body

 addq $0x18, %rsp # Deallocate stack space

 popq %r13 # Restore registers

 popq %r12

 popq %rbx ret # Pop return address and return control

to caller

4.4.3 Dynamic stack allocation

You may find that having a static amount of stack space for your function does not quite cut it. In
this case, we will need to borrow a tradition from 32-bit x86 and save the base of the stack
frame into the base pointer register. Since ​%rbp​ ​is a callee-save register, it needs to be saved
before you change it. Therefore, the function prologue will now be prefixed with:

 pushq %rbp

 movq %rsp, %rbp

Consequently, the epilogue will contain this right before the ​ret​:

CSCI0330 x86-64 Guide Doeppner

 movq %rbp, %rsp

 popq %rbp

This can also be done with a single instruction, called ​leave​. The epilogue makes sure that no
matter what you do to the stack pointer in the function body, you will always return it to the right
place when you return. Note that this means you no longer need to add to the stack pointer in
the epilogue.

This is an example of a function which allocates between 8-248 bytes of random stack space
during its execution:

 pushq %rbp # Use base pointer

 movq %rsp, %rbp

 pushq %rbx # Save registers

 pushq %r12

 subq $0x18, %rsp # Allocate some stack space

 ...

 call rand # Get random number

 andq $0xF8, %rax # Make sure the value is 8-248 bytes and

aligned on 8 bytes

 subq %rax, %rsp # Allocate space

 …

 movq (%rbp), %r12 # Restore registers from base of frame

 movq 0x8(%rbp), %rbx

 movq %rbp, %rsp # Reset stack pointer and restore base

pointer

 popq %rbp ret

This sort of behavior can be accessed from C code by calling pseudo-functions like alloca,
which allocates stack space according to its argument.

More information about the stack frame and function calls can be found on pages 219-232 of
the textbook.

