Carnegie Mellon

Today

m Cache memory organization and operation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they

have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C

m Spatial locality:

= |tems with nearby addresses tend
to be referenced close together in time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Example Memory
A Hierarchy 0: A

CPU registers hold words retrieved

Smaller, H from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
; from the L2 cache.

costlier Lo. L2 cache
(per byte) . (SRAM)
storage L2 cache holds cache lines
devices retrieved from L3 cache

L3: L3 cache

(SRAI\/I)

L3 cache holds cache lines
retrieved from main memory.

Larger,

slower, L4: Main memory

and (DRAM) Main memory holds disk
cheaper blocks retrieved from local
(per byte) disks.

storage |. Local secondary storage

devices (local disks)

Local disks hold files
v retrieved from disks
on remote servers

L6: Remote secondary storage
(e.g., Web servers)

Bryant and Q’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

General Cache Concepts

Smaller, faster, more expensive
memory caches a subset of
the blocks

Cache 4 9 10 3

Data is copied in block-sized

10 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
] o ° o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 8 9 14 3 Block b is in cache:
ache Hit!

Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
® o6 o o o o o o o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cache 2 = 12 3 Block b is not in cache:
Miss!
5 Request: 12 Block b is fetched from
memory
M 5 n > 3 Block b is stored in cache
emory *Placement policy:
4 5 6 7 determines where b goes
*Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)
o o o o o L o o o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

General Caching Concepts:

Types of Cache Misses

m Cold (compulsory) miss

= Cold misses occur because the cache is empty.

m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

« E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

» E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
m Capacity miss

= QOccurs when the set of active cache blocks (working set) is larger than
the cache.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware

= Hold frequently accessed blocks of main memory
m CPU looks first for data in cache
m Typical system structure:

CPU chip
Register file
Cache <—> | :> AL
memory U

ﬁ : System bus Memory bus
// l Main
| o K>
Bus interface . memor
bridge

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recap from Lecture 10:

Modern CPU Design

Instruction Control

R R > Address
. >
Registe .
Ipstructlons
A Operations
Register Updates - Prediction OK?
: ¥ ¥ ¥ 'V ¥ ¥
Functional
Units

| B S —

Operation Results

Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

How it Really Looks Like

CPU chip

Desktop PC Register file
Cache <:> |::> ALU
memory
j E Systembus Memory bus
Bus interface I/O <:> ain
bridge memory

/

CPU (Intel Core i7)

Motherboard

Source: Dell 4th Gen
1 Intel” Core™ i7

Source: PC Magazine

-
“f k sy E
Core - Core - Core - Cn(e e g

Processor .3
Graphics

Source techreport com

Source: Dell

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

What it Really Looks Like (Cont.)

Intel Sandy Bridge
Processor Die

DRAM cqﬁ}olle; i

EEE

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2° lines per set

AL
e ~
4 —
® [J { -]
\
@ [] [
S=Zssets< e o

\.
Cache size:
L] [te |PRET -- P C =S x E x B data bytes
N— .
. . Y
valid bit B = 2° bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

CaChe Read sLocate set

*Check if any line in set
has matching tag

E = 2° lines per set *Yes + line valid: hit
f A ~ sLocate data starting
r at offset
o ®

Address of word:
t bits s bits |b bits
_ 9s S~~~
$S=2 sets< ° o tag set block
index offset

data begins at this offset

V| | tee D L p |- B
valid bit N~——

B = 2° bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Example: Direct Mapped Cache (E=1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

4 Address of int:
Vllwe |pPRPBRBEETD tbits |0..01 [100

v] | tag D |1 IZ 3 |4 b k’ / find set

N e [= JEEEBERED
[JPIEFFEET

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Example: Direct Mapped Cache (E=1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0...01 /100

valid? + match: assume yes = hit

V1|t |phpPBkEBEY

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Example: Direct Mapped Cache (E=1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0...01 /100

valid? + match: assume yes = hit

bllte |[pPhPBREBEY

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Direct-Mapped Cache Simulation

t=1 s=2 b=1 M=16 bytes (4-bit addresses), B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001)], hit
7 [Oﬂlz], miss
8 [1000,], miss
0 [0000,] miss
v Ta Block

set0 | 1 | O M[0-1]

Set1l

Set 2

Set3 | 1 | 0O M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes
Address of short int:

2 lines per set t bits 0...01 (100
AL
' N\
f
[l[tae JDLRBBBEEVIIN] e 101 RBREFY
[1[tee |PLEBEBEFV I|F][tee JPERBREEp || — findset
{ [l[tae JDLRBBBEEVIIN] e 101 RBREFY

(s
Q)
oQ
L4
==
T~
W
=
\¥ A |
)
T
<
(s
Q)
oQ

D) b

W
=
Wi
1#)]
T

\

S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0...01 100

compare both

valid? + | match: yes = hit

|/_ tag D 1 tag D | P

1=
W
=
Wi
1*)]

T

—

W
=
Wi
1#)]
T

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0...01 100

compare both

valid? + | match: yes = hit

|/_ tag D 1 tag D | p

1=
W
=
Wi
1*)]

T

—

W
=
Wi
1#)]
T

block offset
short int (2 Bytes) is here
No match:

* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111], miss
8 [1000,], miss
0 [o0000,] hit

v Ta Block

seto |2 l00 [m[0-1]
1 |10 |M[89]

1 o1 [Mm[6-7]
0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Set1l

What about writes?

m Multiple copies of data exist:
= L1, L2, L3, Main Memory, Disk
m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
« Need a dirty bit (line different from memory or not)
m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
« Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)
m Typical
= Write-through + No-write-allocate

= Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€85 €gs Access: 4 cycles
. o . o .
d-cac | | i-cach d-cac | | i-cach L2 unified cache:
256 KB, 8-way,
’ T " ’ T Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache .
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Example: Core i7 L1 Data Cache

\
>
&
SR
L. E = 2¢ lines per set Q\d" 000 Q\(\
32 kB 8-way set associative e A ~ L 0 [0] 0000
64 bytes/block I I eoeel B ine 21, é 882(1,
47 bit address range | I [| 2 2 8%(1)
S=2$sets< I II |oooo| I 5 5 0101
= 6 | 6 | 0110
_ _ 00 000000OCOCGEOOOOONOOOOEOONONOONONONONTOO 7 7 0111
5= ,5 | I B | 8 |8 11000
= ,e= s 9 [9 [1001
A (10 1010
C= Cache size: B (111011
ml we | [0]1]2] [51] C =S5 x E x B data bytes c [12] 1100
| D |13 | 1101
A — E (14| 1110
valid bit F 15 [1111
Address of word:
| thits | sbits | b bits |
e
ta set block
- index offset Stack Address: Block offset: 0x?°?
0x00007£f7262al1le010 Set index: 0x?7?
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Example: Core i7 L1 Data Cache

\
&
E = 2¢ lines per set Q\G" 000\6\(\%
32 kB 8-way set associative e A > 0 [0 [0000
64 bytes/block | I BN e 12
47 bit address range | I [| 3 [3 | 0011
e e e o0
B=6 6 | 6 | 0110
S = 64’ S = 6 7 7 0111
E=8,e=3 | /- 519 1001
C=64x64x8=32,768 cocheicise: B0 o
ml we | [o]1]2] [61] C =S5 x E x B data bytes C |12 | 1100
D |13] 1101
valiclibit H/_/ E 14 1110
F |15 1111
Address of word:
| thits | sbits | b bits |
e A A
tag set block
index offset Stack Address: Block offset: 0x10
0x00007f7262ale010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 o00O0O0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Cache Performance Metrics

m Miss Rate

= Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate

= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time

= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache

= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2
m Miss Penalty

= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Let’s think about those numbers

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)

= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Today

m Performance impact of caches

* The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

&3 array "data" with stride of "stride", using
e using 4x4 loop unrolling.

*/

int test(int elems, int stride) {

long i, sx2=stride*2, sx3=stride*3, sxi=stride*4;
long accO0 = 0, acel = 0, acc2 = 0, acec3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */

for (1 = 0; i < limit; i += sx4) {
acc0 = accO0 + datal[i];
accl = accl + data[i+stride];
acc2 = acc2 + datal[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = acc0 + data[i];

}

return ((accO0 + accl) + (acc2 + acc3));

mountain/mountain.c

Call test () with many
combinations of elems
and stride.

For each elems and
stride:

1. Call test() once to
warm up the caches.

2. Call test() again and
measure the read
throughput(MB/s)

32

Carnegie Mellon

Core i7 Haswell
2.1 GHz

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Matrix Multiplication Example

Variable sum

m Description:

/* ijk */ held in register
= Multiply N x N matrices for (i=0; i<n; i++) {
= Matrix elements are for (j=0; j<n; j++) {
doubles (8 bytes) sum = 0.0; <

for (k=0; k<n; k++)

sum += a[i] [k] * b[k]I[j];
= N reads per source c[i][j] = sum;

element }

= O(N?) total operations

= N values summed per matmult/mm.c
destination

» but may be able to
hold in register

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)

= Matrix dimension (N) is very large
« Approximate 1/N as 0.0

= Cache is not even big enough to hold multiple rows

m Analysis Method:

= Look at access pattern of inner loop

B0 - X)

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
» each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; i++)
sum += a[0][1];
= accesses successive elements
= if block size (B) > sizeof(aij) bytes, exploit spatial locality
= miss rate = sizeof(aij) /B
m Stepping through rows in one column:
= for (1 = 0; 1 < n; i++)
sum += a[i][0];
= accesses distant elements

= no spatial locality!
« miss rate =1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Matrix Multiplication (1jk)

/* ijk */ Inner loop:
for (i=0; i<n; i++) {

for (3=0; j<n; Jj++) { o .
sum = 0.0; g - (Iij)
for (k=0; k<n; k++) (i,%)

A B

sum += a[i] [k] * b[k][3j]; C

c[i] [j] = sum; T T T
}

} matmult/mm.c Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C
0.25 1.00.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Matrix Multiplication (jik)

/* jik */ Inner loop:
for (j=0; j<n; j++) {
for (i=0; i<n; i++) { (*,i)
sum = 0.0; (i,j)
for (k=0; k<n; k++) g(h*) [IJ: "
sum += a[i] [k] * b[k]l[]]- A B C
c[i] [j] = sum T T
}
} matmult/mm.c Row-wise Column- Fixed
wise

Misses per inner loop iteration:

A B C
0.25 1.00.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Matrix Multiplication (ki)

/* kij */ Inner loop:
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i,k) E(k'*)g .
r = a[i] [k]; O (i,*)
B C

for (j=0; j<n; j++) A

c[1][J] += r * b[k][]]’ T T T
}

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C
0.00.25 0.25

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Matrix Multiplication (1k)

/* ikj */ Inner loop:
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) EEEEﬂ(K*)L;;;J
r = a[i] [k]; O (i,*)
B C

for (3=0; j<n; j++) A

c[1][J] += r * b[k][]]’ T T T
}

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C
0.00.25 0.25

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Matrix Multiplication (ki)

Inner | :
/% ki */ er loop

for (3=0; j<n; j++) { (*,k) (*,J)

for (k=0; k<n; k++) { ” ‘(k,j) H
r = b[k][]]; =
A B

for (i=0; i<n; i++) C
c[1][]J] += a[i] [k] * x; T T

matmult/mm.c COhﬁnn' Fixed Cohynn-
wise wise

Misses per inner loop iteration:
A B C
1.00.01.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Matrix Multiplication (kj1i)

/* kji */ Inner loop:
for (k=0; k<n; k++) {

f j=0; j<n; 7 *,k) *]
or (Jj=0; j<n; j++) {) -)
r = b[k][j]; ‘(':,J)

A B

for (i=0; i<n; i++) c
c[i][J] += a[i][k] * r;

* b

matmult/mm. c

Column- Fixed Column-
wise wise
Misses per inner loop iteration:

A B C

1.00.01.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]]’
c[i] [J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; Jj++)
c[i] [J] += r * b[k][]]~
}
}

for (3=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][3]7
for (i=0; i<n; i++)
c[i] [J] += al[i]l[k] * r;

ik (& jik):
¢ 2 |loads, O stores
e misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
e misses/iter = 2.0

44

Carnegie Mellon

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

100
jki/kji

wijki
*kji
-ijk
= jik
wkij
ik ijk /jik

10

1

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, 3, k;
for (i = 0; 1 < n; i++4)
for (j = 0; j < n; J++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

Il
X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles

= Cache size C << n {much smaller than n)

n
m First iteration: - ~
* n/8 +n=9n/8 misses
= X
= Afterwards in cache:
(schematic) 0 C —
= X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache block = 8 doubles

= Cache size C << n {much smaller than n)

n
: . N
m Second iteration: - ~
= Again:
n/8 + n = 9n/8 misses — X

8 wide
m Total misses:
= 9n/8 n?=(9/8) n3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; jJ < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (31 = j; jl < j+B; Jj++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl] += a[il*n + kl]*b[kl*n + jl];
} matmult/bmm. c

jl
Cc a b Cc
= X +
] il

Block size Bx B 50

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n {much smaller than n)
= Three blocks ™ fit into cache: 3B2< C

n/B blocks
m First (block) iteration: — A
= B2/8 misses for each block ™ EREER B
= 2n/B x B?/8 = nB/4 = X =
(omitting matrix c) ?

Block size Bx B

= Afterwards in cache [] BN

(schematic)

X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n {much smaller than n)
= Three blocks ™ fit into cache: 3B2< C

_ _ n/B blocks
m Second (block) iteration: —_—A
= Same as first iteration O HEERRER
= 2n/B x B*/8 = nB/4 — X
m Total misses: Block size B x B

= nB/4 * (n/B)? = n3/(4B)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Blocking Summary

= No blocking: (9/8) n®
s Blocking: 1/(4B) n®

m Suggest largest possible block size B, but limit 3B% < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:

. Input data: 3n?, computation 2n3
« Every array elements used O(n) times!

= But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.

= Try to maximize spatial locality by reading data objects with
sequentially with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

