Today

- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Locality

 Principle of Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently

Temporal locality:

 Recently referenced items are likely to be referenced again in the near future

Spatial locality:

 Items with nearby addresses tend to be referenced close together in time

General Cache Concepts

General Cache Concepts: Hit

Data in block b is needed

Block b is in cache: Hit!

General Cache Concepts: Miss

Data in block b is needed

Block b is not in cache: Miss!

Block b is fetched from memory

Block b is stored in cache

- Placement policy: determines where b goes
- Replacement policy: determines which block gets evicted (victim)

General Caching Concepts: Types of Cache Misses

Cold (compulsory) miss

Cold misses occur because the cache is empty.

Conflict miss

- Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of the block positions at level k.
 - E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.
- Conflict misses occur when the level k cache is large enough, but multiple data objects all map to the same level k block.
 - E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Capacity miss

 Occurs when the set of active cache blocks (working set) is larger than the cache.

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in cache
- Typical system structure:

Recap from Lecture 10:

Modern CPU Design

How it Really Looks Like

Desktop PC

Source: Dell

Source: PC Magazine

Source: techreport.com

Source: Dell

Source: Dell

What it Really Looks Like (Cont.)

Intel Sandy Bridge Processor Die

L1: 32KB Instruction + 32KB Data

L2: 256KB

L3: 3-20MB

General Cache Organization (S, E, B)

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

If tag doesn't match: old line is evicted and replaced

Direct-Mapped Cache Simulation

t=1	s=2	b=1
Х	XX	х

M=16 bytes (4-bit addresses), B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

	•	
0	[<mark>000</mark> 0 ₂],	miss
1	$[0001_{2}^{-}],$	hit
7	$[0111_{2}],$	miss
8	$[1000_{2}^{-}],$	miss
0	$[0000_{3}]$	miss

	V	Та	Block
Set 0	1	0	M[0-1]
Set 1			
Set 2			
Set 3	1	0	M[6-7]

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes

S sets

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

t=2	t=2 $s=1$ $b=3$	
ХХ	X	X

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0	[<mark>000</mark> 0 ₂],	miss
1	$[0001_{2}^{2}],$	hit
7	$[01\underline{1}1_2],$	miss
8	$[10\underline{0}0_{2}^{-}],$	miss
0	$[0000_{2}]$	hit

	V	Та	Block
Set 0	1	00	M[0-1]
	1	10	M[8-9]

Set 1	1	01	M[6-7]
Jet I	0		

What about writes?

Multiple copies of data exist:

L1, L2, L3, Main Memory, Disk

What to do on a write-hit?

- Write-through (write immediately to memory)
- Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)

What to do on a write-miss?

- Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
- No-write-allocate (writes straight to memory, does not load into cache)

Typical

- Write-through + No-write-allocate
- Write-back + Write-allocate

Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache:

32 KB, 8-way, Access: 4 cycles

L2 unified cache:

256 KB, 8-way, Access: 10 cycles

L3 unified cache:

8 MB, 16-way, Access: 40-75 cycles

Block size: 64 bytes for

all caches.

Example: Core i7 L1 Data Cache

32 kB 8-way set associative 64 bytes/block

47 bit address range

Block offset: . bits

Set index: . bits

Tag: . bits

Stack Address:

0x00007f7262a1e010

Block offset: 0x??

Set index: 0x??

Tag: 0x??

Example: Core i7 L1 Data Cache

32 kB 8-way set associative

64 bytes/block

47 bit address range

$$B = 64$$

$$S = 64$$
, $s = 6$

$$E = 8, e = 3$$

 $C = 64 \times 64 \times 8 = 32,768$

Block offset: 6 bits

Set index: 6 bits

Tag: 35 bits

Block offset: 0x10

Set index: 0x0

Tag: 0x7f7262a1e

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 = 1 hit rate
- Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 4 clock cycle for L1
 - 10 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Let's think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

```
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
```

99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

■ This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```
long data[MAXELEMS]; /* Global array to traverse */
/* test - Iterate over first "elems" elements of
          array "data" with stride of "stride", using
          using 4x4 loop unrolling.
 */
int test(int elems, int stride) {
    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long length = elems, limit = length - sx4;
    /* Combine 4 elements at a time */
    for (i = 0; i < limit; i += sx4) {</pre>
        acc0 = acc0 + data[i];
        acc1 = acc1 + data[i+stride];
        acc2 = acc2 + data[i+sx2];
        acc3 = acc3 + data[i+sx3];
    /* Finish any remaining elements */
    for (; i < length; i++) {</pre>
        acc0 = acc0 + data[i];
    return ((acc0 + acc1) + (acc2 + acc3));
                               mountain/mountain.c
```

Call test() with many combinations of elems and stride.

For each elems and stride:

- 1. Call test() once to warm up the caches.
- 2. Call test() again and measure the read throughput(MB/s)

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Matrix Multiplication Example

Description:

- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

Miss Rate Analysis for Matrix Multiply

Assume:

- Block size = 32B (big enough for four doubles)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:
 - for (i = 0; i < N; i++)
 sum += a[0][i];</pre>
 - accesses successive elements
 - if block size (B) > sizeof(a_{ii}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ii}) / B
- Stepping through rows in one column:
 - for (i = 0; i < n; i++)
 sum += a[i][0];</pre>
 - accesses distant elements
 - no spatial locality!
 - miss rate = 1 (i.e. 100%)

38

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}

matmult/mm.c</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
}</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
}</pre>
```

```
ijk (& jik):
```

- 2 loads, 0 stores
- misses/iter = **1.25**

kij (& ikj):

- 2 loads, 1 store
- misses/iter = **0.5**

jki (& kji):

- 2 loads, 1 store
- misses/iter = **2.0**

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example: Matrix Multiplication

n

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

First iteration:

n/8 + n = 9n/8 misses

 Afterwards in cache: (schematic)

n

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

Second iteration:

• Again: n/8 + n = 9n/8 misses

Total misses:

• $9n/8 n^2 = (9/8) n^3$

Blocked Matrix Multiplication

n/B blocks

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks \blacksquare fit into cache: $3B^2 < C$

■ First (block) iteration:

- B²/8 misses for each block
- $2n/B \times B^2/8 = nB/4$ (omitting matrix c)

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C

Second (block) iteration:

- Same as first iteration
- $2n/B \times B^2/8 = nB/4$

Total misses:

 $\blacksquare nB/4 * (n/B)^2 = n^3/(4B)$

Block size B x B

Blocking Summary

- No blocking: (9/8) n³
- Blocking: $1/(4B) n^3$
- Suggest largest possible block size B, but limit 3B² < C!
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: $3n^2$, computation $2n^3$
 - Every array elements used O(n) times!
 - But program has to be written properly

Cache Summary

- Cache memories can have significant performance impact
- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it's read from memory.