
688 Chapter 6 The Memory Hierarchy

6.30 ◆
Suppose we have a system with the following properties:

. The memory is byte addressable.

. Memory accesses are to 1-byte words (not to 4-byte words).

. Addresses are 13 bits wide.

. The cache is 4-way set associative (E = 4), with a 4-byte block size (B = 4)
and eight sets (S = 8).

Consider the following cache state. All addresses, tags, and values are given in
hexadecimal format. The Index column contains the set index for each set of four
lines. The Tag columns contain the tag value for each line. The V columns contain
the valid bit for each line. The Bytes 0–3 columns contain the data for each line,
numbered left to right starting with byte 0 on the left.

4-way set associative cache

Index Tag V Bytes 0–3 Tag V Bytes 0–3 Tag V Bytes 0–3 Tag V Bytes 0–3

0 F0 1 ED 32 0A A2 8A 1 BF 80 1D FC 14 1 EF 09 86 2A BC 0 25 44 6F 1A

1 BC 0 03 3E CD 38 A0 0 16 7B ED 5A BC 1 8E 4C DF 18 E4 1 FB B7 12 02

2 BC 1 54 9E 1E FA B6 1 DC 81 B2 14 00 0 B6 1F 7B 44 74 0 10 F5 B8 2E

3 BE 0 2F 7E 3D A8 C0 1 27 95 A4 74 C4 0 07 11 6B D8 BC 0 C7 B7 AF C2

4 7E 1 32 21 1C 2C 8A 1 22 C2 DC 34 BC 1 BA DD 37 D8 DC 0 E7 A2 39 BA

5 98 0 A9 76 2B EE 54 0 BC 91 D5 92 98 1 80 BA 9B F6 BC 1 48 16 81 0A

6 38 0 5D 4D F7 DA BC 1 69 C2 8C 74 8A 1 A8 CE 7F DA 38 1 FA 93 EB 48

7 8A 1 04 2A 32 6A 9E 0 B1 86 56 0E CC 1 96 30 47 F2 BC 1 F8 1D 42 30

A. What is the size (C) of this cache in bytes?

B. The box that follows shows the format of an address (1 bit per box). Indicate
(by labeling the diagram) the fields that would be used to determine the
following:

CO. The cache block offset
CI. The cache set index
CT. The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

6.31 ◆◆
Suppose that a program using the cache in Problem 6.30 references the 1-byte
word at address 0x071A. Indicate the cache entry accessed and the cache byte
value returned in hex. Indicate whether a cache miss occurs. If there is a cache
miss, enter “—” for “Cache byte returned.” Hint: Pay attention to those valid
bits!



Homework Problems 689

A. Address format (1 bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

B. Memory reference:

Parameter Value

Block offset (CO) 0x
Index (CI) 0x
Cache tag (CT) 0x
Cache hit? (Y/N)
Cache byte returned 0x

6.32 ◆◆
Repeat Problem 6.31 for memory address 0x16E8.

A. Address format (1 bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

B. Memory reference:

Parameter Value

Cache offset (CO) 0x
Cache index (CI) 0x
Cache tag (CT) 0x
Cache hit? (Y/N)
Cache byte returned 0x

6.33 ◆◆
For the cache in Problem 6.30, list the eight memory addresses (in hex) that will
hit in set 2.

6.34 ◆◆
Consider the following matrix transpose routine:

1 typedef int array[4][4];

2

3 void transpose2(array dst, array src)

4 {

5 int i, j;

6



690 Chapter 6 The Memory Hierarchy

7 for (i = 0; i < 4; i++) {

8 for (j = 0; j < 4; j++) {

9 dst[j][i] = src[i][j];

10 }

11 }

12 }

Assume this code runs on a machine with the following properties:

. sizeof(int) = 4.

. The src array starts at address 0 and the dst array starts at address 64
(decimal).

. There is a single L1 data cache that is direct-mapped, write-through, write-
allocate, with a block size of 16 bytes.

. The cache has a total size of 32 data bytes, and the cache is initially empty.

. Accesses to the src and dst arrays are the only sources of read and write
misses, respectively.

A. For each row and col, indicate whether the access to src[row][col] and
dst[row][col] is a hit (h) or a miss (m). For example, reading src[0][0]
is a miss and writing dst[0][0] is also a miss.

dst array src array

Col. 0 Col. 1 Col. 2 Col. 3 Col. 0 Col. 1 Col. 2 Col. 3

Row 0 m Row 0 m
Row 1 Row 1
Row 2 Row 2
Row 3 Row 3

6.35 ◆◆
Repeat Problem 6.34 for a cache with a total size of 128 data bytes.

dst array src array

Col. 0 Col. 1 Col. 2 Col. 3 Col. 0 Col. 1 Col. 2 Col. 3

Row 0 Row 0
Row 1 Row 1
Row 2 Row 2
Row 3 Row 3

6.36 ◆◆
This problem tests your ability to predict the cache behavior of C code. You are
given the following code to analyze:

1 int x[2][128];

2 int i;



Homework Problems 691

3 int sum = 0;

4

5 for (i = 0; i < 128; i++) {

6 sum += x[0][i] * x[1][i];

7 }

Assume we execute this under the following conditions:

. sizeof(int) = 4.

. Array x begins at memory address 0x0 and is stored in row-major order.

. In each case below, the cache is initially empty.

. The only memory accesses are to the entries of the array x. All other variables
are stored in registers.

Given these assumptions, estimate the miss rates for the following cases:

A. Case 1: Assume the cache is 512 bytes, direct-mapped, with 16-byte cache
blocks. What is the miss rate?

B. Case 2: What is the miss rate if we double the cache size to 1,024 bytes?

C. Case 3: Now assume the cache is 512 bytes, two-way set associative using
an LRU replacement policy, with 16-byte cache blocks. What is the cache
miss rate?

D. For case 3, will a larger cache size help to reduce the miss rate? Why or
why not?

E. For case 3, will a larger block size help to reduce the miss rate? Why or why
not?

6.37 ◆◆
This is another problem that tests your ability to analyze the cache behavior of C
code. Assume we execute the three summation functions in Figure 6.47 under the
following conditions:

. sizeof(int) = 4.

. The machine has a 4 KB direct-mapped cache with a 16-byte block size.

. Within the two loops, the code uses memory accesses only for the array data.
The loop indices and the value sum are held in registers.

. Array a is stored starting at memory address 0x08000000.

Fill in the table for the approximate cache miss rate for the two cases N = 64
and N = 60.

Function N = 64 N = 60

sumA

sumB

sumC



692 Chapter 6 The Memory Hierarchy

1 typedef int array_t[N][N];

2

3 int sumA(array_t a)

4 {

5 int i, j;

6 int sum = 0;

7 for (i = 0; i < N; i++)

8 for (j = 0; j < N; j++) {

9 sum += a[i][j];

10 }

11 return sum;

12 }

13

14 int sumB(array_t a)

15 {

16 int i, j;

17 int sum = 0;

18 for (j = 0; j < N; j++)

19 for (i = 0; i < N; i++) {

20 sum += a[i][j];

21 }

22 return sum;

23 }

24

25 int sumC(array_t a)

26 {

27 int i, j;

28 int sum = 0;

29 for (j = 0; j < N; j+=2)

30 for (i = 0; i < N; i+=2) {

31 sum += (a[i][j] + a[i+1][j]

32 + a[i][j+1] + a[i+1][j+1]);

33 }

34 return sum;

35 }

Figure 6.47 Functions referenced in Problem 6.37.

6.38 ◆
3M decides to make Post-its by printing yellow squares on white pieces of paper.
As part of the printing process, they need to set the CMYK (cyan, magenta, yellow,
black) value for every point in the square. 3M hires you to determine the efficiency
of the following algorithms on a machine with a 1,024-byte direct-mapped data
cache with 16-byte blocks. You are given the following definitions:



Homework Problems 693

1 struct point_color {

2 int c;

3 int m;

4 int y;

5 int k;

6 };

7

8 struct point_color square[16][16];

9 int i, j;

Assume the following:

. sizeof(int) = 4.

. square begins at memory address 0.

. The cache is initially empty.

. The only memory accesses are to the entries of the array square. Variables i
and j are stored in registers.

Determine the cache performance of the following code:

1 for (i = 15; i >= 0; i--){

2 for (j = 15; j >= 0; j--) {

3 square[i][j].c = 0;

4 square[i][j].m = 0;

5 square[i][j].y = 1;

6 square[i][j].k = 0;

7 }

8 }

A. What is the total number of writes?

B. What is the total number of writes that hit in the cache?

C. What is the hit rate?

6.39 ◆
Given the assumptions in Problem 6.38, determine the cache performance of the
following code:

1 for (i = 15; i >= 0; i--){

2 for (j = 15; j >= 0; j--) {

3 square[j][i].c = 0;

4 square[j][i].m = 0;

5 square[j][i].y = 1;

6 square[j][i].k = 0;

7 }

8 }



694 Chapter 6 The Memory Hierarchy

A. What is the total number of writes?

B. What is the total number of writes that hit in the cache?

C. What is the hit rate?

6.40 ◆
Given the assumptions in Problem 6.38, determine the cache performance of the
following code:

1 for (i = 15; i >= 0; i--) {

2 for (j = 15; j >= 0; j--) {

3 square[i][j].y = 1;

4 }

5 }

6 for (i = 15; i >= 0; i--) {

7 for (j = 15; j >= 0; j--) {

8 square[i][j].c = 0;

9 square[i][j].m = 0;

10 square[i][j].k = 0;

11 }

12 }

A. What is the total number of writes?

B. What is the total number of writes that hit in the cache?

C. What is the hit rate?

6.41 ◆◆
You are writing a new 3D game that you hope will earn you fame and fortune. You
are currently working on a function to blank the screen buffer before drawing the
next frame. The screen you are working with is a 640 × 480 array of pixels. The
machine you are working on has a 32 KB direct-mapped cache with 8-byte lines.
The C structures you are using are as follows:

1 struct pixel {

2 char r;

3 char g;

4 char b;

5 char a;

6 };

7

8 struct pixel buffer[480][640];

9 int i, j;

10 char *cptr;

11 int *iptr;

Assume the following:

. sizeof(char) = 1 and sizeof(int) = 4.



Homework Problems 695

. buffer begins at memory address 0.

. The cache is initially empty.

. The only memory accesses are to the entries of the array buffer. Variables i,
j, cptr, and iptr are stored in registers.

What percentage of writes in the following code will hit in the cache?

1 for (j = 639; j >= 0; j--) {

2 for (i = 479; i >= 0; i--){

3 buffer[i][j].r = 0;

4 buffer[i][j].g = 0;

5 buffer[i][j].b = 0;

6 buffer[i][j].a = 0;

7 }

8 }

6.42 ◆◆
Given the assumptions in Problem 6.41, what percentage of writes in the following
code will hit in the cache?

1 char *cptr = (char *) buffer;

2 for (; cptr < (((char *) buffer) + 640 * 480 * 4); cptr++)

3 *cptr = 0;

6.43 ◆◆
Given the assumptions in Problem 6.41, what percentage of writes in the following
code will hit in the cache?

1 int *iptr = (int *)buffer;

2 for (; iptr < ((int *)buffer + 640*480); iptr++)

3 *iptr = 0;

6.44 ◆◆◆
Download the mountain program from the CS:APP Web site and run it on your
favorite PC/Linux system. Use the results to estimate the sizes of the caches on
your system.

6.45 ◆◆◆◆
In this assignment, you will apply the concepts you learned in Chapters 5 and 6
to the problem of optimizing code for a memory-intensive application. Consider
a procedure to copy and transpose the elements of an N × N matrix of type int.
That is, for source matrix S and destination matrix D, we want to copy each
element si,j to dj,i. This code can be written with a simple loop,

1 void transpose(int *dst, int *src, int dim)

2 {

3 int i, j;

4


