
1

Today

 Processes
 Process Control

2

Processes
 Definition: A process is an instance of a running

program.
 One of the most profound ideas in computer science

 Not the same as “program” or “processor” or “application”

 Process provides each program with two key
abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU
 Provided by kernel mechanism called context switching

 Private address space
 Each program seems to have exclusive use of main

memory.
 Provided by kernel mechanism called virtual memory

CPU
Registers

Memory

Stack
Heap

Code
Data

3

Multiprocessing: The Illusion

 Computer runs many processes simultaneously
 Applications for one or more users

 Web browsers, email clients, editors, …

 Background tasks
 Monitoring network & I/O devices

CPU
Registers

Memory

Stack
Heap

Code
Data

CPU
Registers

Memory

Stack
Heap

Code
Data …

CPU
Registers

Memory

Stack
Heap

Code
Data

4

Multiprocessing Example

 Running program “top” on FreeBSD
 System has 49 processes, only one is active

 Identified by Process ID (PID)

5

Multiprocessing: The (Traditional) Reality

 Single processor executes multiple processes concurrently
 Process executions interleaved (multitasking)

 Address spaces managed by virtual memory system (later in course)

 Register values for inactive (nonexecuting) processes saved in memory

CPU
Registers

Memory

Stack
Heap

Code
Data

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

6

Multiprocessing: The (Traditional) Reality

 Save current registers in memory

CPU
Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

7

Multiprocessing: The (Traditional) Reality

 Schedule next process for execution

CPU
Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Stack
Heap

Code
Data

Saved
registers

…

8

Multiprocessing: The (Traditional) Reality

 Load saved registers and switch address space (context switch)

CPU
Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

9

Multiprocessing: The (Modern) Reality

 Multicore processors
 Multiple CPUs on single chip

 Share main memory (and some caches)

 Each can execute a separate process
 Scheduling of processors onto cores

done by kernel

CPU
Registers

Memory

Stack
Heap

Code
Data

Stack
Heap

Code
Data

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

10

Concurrent Processes
 Each process is a logical control flow.
 Two processes run concurrently (are concurrent)

 if their flows overlap in time
 Otherwise, they are sequential
 Examples (running on single core):

 Concurrent: A & B, A & C

 Sequential: B & C

Process A Process B Process C

Time

11

User View of Concurrent Processes

 Control flows for concurrent processes are physically
disjoint in time

 However, we can think of concurrent processes as running
in parallel with each other

Time

Process A Process B Process C

12

Context Switching
 Processes are managed by a shared chunk of memory-

resident OS code called the kernel
 Important: the kernel is not a separate process, but rather runs as part

of some existing process.

 Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

13

Today

 Exceptional Control Flow
 Exceptions
 Processes
 Process Control

14

System Call Error Handling
 On error, Linux system-level functions typically return -1 and

set global variable errno to indicate cause.
 Hard and fast rule:

 You must check the return status of every system-level function

 Only exception is the handful of functions that return void
 Example:

if ((pid = fork()) < 0) {
 fprintf(stderr, "fork error: %s\n", strerror(errno));
 exit(-1);
}

15

Error-reporting functions

 Can simplify somewhat using an error-reporting function:

 But, must think about application. Not always
appropriate to exit when something goes wrong.

void unix_error(char *msg) /* Unix-style error */
{
 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
 exit(-1);
}

 if ((pid = fork()) < 0)
 unix_error("fork error");

16

Error-handling Wrappers

 We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

 NOT what you generally want to do in a real application

pid_t Fork(void) {
 pid_t pid;

 if ((pid = fork()) < 0)
 unix_error("Fork error");
 return pid;
}

 pid = Fork();

17

Obtaining Process IDs

 pid_t getpid(void)
 Returns PID of current process

 pid_t getppid(void)
 Returns PID of parent process

18

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

 Running
 Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

 Stopped
 Process execution is suspended and will not be scheduled until

further notice (next lecture when we study signals)

 Terminated
 Process is stopped permanently

19

Terminating Processes

 Process becomes terminated for one of three reasons:
 Receiving a signal whose default action is to terminate (next lecture)

 Returning from the main routine

 Calling the exit function

 void exit(int status)
 Terminates with an exit status of status
 Convention: normal return status is 0, nonzero on error

 Another way to explicitly set the exit status is to return an integer value
from the main routine

 exit is called once but never returns.

20

Creating Processes

 Parent process creates a new running child process by
calling fork

 int fork(void)
 Returns 0 to the child process, child’s PID to parent process

 Child is almost identical to parent:
 Child get an identical (but separate) copy of the parent’s virtual

address space.
 Child gets identical copies of the parent’s open file descriptors
 Child has a different PID than the parent

 fork is interesting (and often confusing) because
it is called once but returns twice

21

Conceptual View of fork

 Make complete copy of execution state
 Designate one as parent and one as child

 Resume execution of parent or child

CPU
Registers

Memory

Stack

Heap

Code
Data

Saved
registers

CPU
Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

parent child

22

fork Example

int main(int argc, char** argv) {
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 return 0;
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 return 0;
}

linux> ./fork
parent: x=0
child : x=2

fork.c

 Call once, return twice
 Concurrent execution

 Can’t predict execution
order of parent and child

linux> ./fork
child : x=2
parent: x=0

linux> ./fork
parent: x=0
child : x=2

linux> ./fork
parent: x=0
child : x=2

23

Making fork More Nondeterministic

 Problem
 Linux scheduler does not create much run-to-run variance

 Hides potential race conditions in nondeterministic programs
 E.g., does fork return to child first, or to parent?

 Solution
 Create custom version of library routine that inserts

random delays along different branches
 E.g., for parent and child in fork

 Use runtime interpositioning to have program use special
version of library code

Carnegie Mellon

24

Variable delay fork
/* fork wrapper function */
pid_t fork(void) {
 initialize();
 int parent_delay = choose_delay();
 int child_delay = choose_delay();
 pid_t parent_pid = getpid();
 pid_t child_pid_or_zero = real_fork();
 if (child_pid_or_zero > 0) {
 /* Parent */
 if (verbose) {
 printf("Fork. Child pid=%d, delay = %dms."
 "Parent pid=%d, delay = %dms\n",
 child_pid_or_zero, child_delay,
 parent_pid, parent_delay);
 fflush(stdout);
 }
 ms_sleep(parent_delay);
 } else {
 /* Child */
 ms_sleep(child_delay);
 }
 return child_pid_or_zero;
} myfork.c

25

forkx2 Example
int main(int argc, char** argv) {
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 printf("child : x=%d\n", ++x);
 return 0;
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 printf("parent: x=%d\n", --x);
 return 0;
}

linux> ./fork2
parent: x=0
parent: x=-1
child : x=2
child : x=3

 Call once, return twice
 Concurrent execution

 Can’t predict execution
order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

 Shared open files
 stdout is the same in

both parent and child

26

Modeling fork with Process Graphs

 A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
 Each vertex is the execution of a statement

 a -> b means a happens before b

 Edges can be labeled with current value of variables

 printf vertices can be labeled with output

 Each graph begins with a vertex with no inedges

 Any topological sort of the graph corresponds to
a feasible total ordering.
 Total ordering of vertices where all edges point from left to right

27

Process Graph Example
int main(int argc, char** argv) {
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 return 0;
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 return 0;
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

28

Interpreting Process Graphs

 Original graph:

 Relabeled graph:

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b ecf d

Infeasible total ordering:

29

fork Example: Two consecutive forks

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

30

fork Example: Nested forks in parent

void fork4() {
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

31

fork Example: Nested forks in children

void fork5() {
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

32

Reaping Child Processes
 Idea

 When process terminates, it still consumes system resources
 Examples: Exit status, various OS tables

 Called a “zombie”
 Living corpse, half alive and half dead

 Reaping
 Performed by parent on terminated child (using wait or waitpid)

 Parent is given exit status information

 Kernel then deletes zombie child process

 What if parent doesn’t reap?
 If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)

 So, only need explicit reaping in long-running processes
 e.g., shells and servers

33

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps

Zombie
Example

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

 ps shows child process as
“defunct” (i.e., a zombie)

 Killing parent allows child
to be reaped by init

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 continue; /* Infinite loop */
 }
} forks.c

34

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676

Non-
terminating
Child Example

 Child process still active even though
parent has terminated

 Must kill child explicitly, or else will
keep running indefinitely

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

void fork8() {
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 continue; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
} forks.c

35

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)
 Suspends current process until one of its children terminates

 Implemented as syscall

Parent Process Kernel code

Exception

Returns

syscall
…

And, potentially other user
processes, including a child
of parent

36

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)
 Suspends current process until one of its children terminates

 Return value is the pid of the child process that terminated

 If child_status != NULL, then the integer it points to will be set
to a value that indicates reason the child terminated and the exit
status:

 Checked using macros defined in wait.h
– WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

– See textbook for details

Carnegie Mellon

37

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf

exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Feasible output(s):
HC HP
HP HC
CT CT
ByeBye

38

Another wait Example
 If multiple children completed, will take in arbitrary order
 Can use macros WIFEXITED and WEXITSTATUS

to get information about exit status

void fork10() {
 pid_t pid[N];
 int i, child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = 0; i < N; i++) { /* Parent */
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
}

forks.c

39

waitpid: Waiting for a Specific Process

 pid_t waitpid(pid_t pid, int *status, int options)
 Suspends current process until specific process terminates

 Various options (see textbook)

void fork11() {
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = N-1; i >= 0; i--) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
} forks.c

40

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])
 Loads and runs in the current process:

 Executable file filename
 Can be object file or script file beginning with #!interpreter

(e.g., #!/bin/bash)

 …with argument list argv
 By convention argv[0]==filename

 …and environment variable list envp
 “name=value” strings (e.g., USER=droh)
 getenv, putenv, printenv

 Overwrites code, data, and stack
 Retains PID, open files and signal context (blocked & ignored)

 Called once and never returns
 …except if there is an error

41

Structure of
the stack when
a new program
starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global var)

Bottom of stack

Top of stack

argv
(in %rsi)

envp
(in %rdx)

Stack frame for
libc_start_main

argc
(in %rdi)

42

execve Example

envp[n] = NULL
envp[n-1]

envp[0]
…

"USER=droh"

"PWD=/usr/droh"

environ

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

 Execute "/bin/ls –lt /usr/include" in child process
using current environment:

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

"/bin/ls"
"-lt"
"/usr/include"

myargv

(argc == 3)

43

Summary

 Exceptions
 Events that require nonstandard control flow

 Generated externally (interrupts) or internally (traps and faults)

 Processes
 At any given time, system has multiple active processes

 Only one can execute at a time on any single core

 Each process appears to have total control of
processor + private memory space

44

Summary (cont.)

 Spawning processes
 Call fork
 One call, two returns

 Process completion
 Call exit
 One call, no return

 Reaping and waiting for processes
 Call wait or waitpid

 Loading and running programs
 Call execve (or variant)

 One call, (normally) no return

