Today

B Processes
B Process Control

Processes

B Definition: A process is an instance of a running
program.
® One of the most profound ideas in computer science
" Not the same as “program” or “processor” or “application”

B Process provides each program with two key

abstractions:

" Logical control flow
" Each program seems to have exclusive use of the CPU

" Provided by kernel mechanism called context switching
" Private address space
" Each program seems to have exclusive use of main

memory.
" Provided by kernel mechanism called virtual memory

Memory

Stack

Heap

Data

Code

CPU

Registers

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data cece Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

B Computer runs many processes simultaneously

" Applications for one or more users
" Web browsers, email clients, editors, ...

" Background tasks
" Monitoring network & 1/O devices

Multiprocessing Example

last pid: 24022; load averages: 0.22, 0.21
49 processes: 1 running, 48 sleeping

CPU: ©.9% user, 0.0% nice, 0.2% system, 0.0% interrupt, 98.9% idle

Mem: 350M Active, 5215M Inact, 311M Laundry, 1392M Wired, 758M Buf, 575M Free
Swap: 4096M Total, 4096M Free

, 0.22 up 1+04:05:07 10:49:08

PID USERNAME THR PRI NICE SIZE RES STATE TIME WCPU COMMAND
1335 cahir 3 20 0 35M 20M select 130 .43% python3.6
1163 root 20 0 7™ 45M select 144 .85% Xorg
1334 cahir 20 0 29M 15M kqread 14 .61% i3bar
1337 root 20 0 24M 7240K select :05 .43% upowerd
1069 messagebus 20 0 13M 3608K select 116 .27% dbus-daemon
1330 cahir 20 0 18M 7844K select 230 .08% compton

24021 cahir 20 0 13M 3708K CPU2 :00 .04% top
1141 root 20 0 11TM 2204K select 116 .03% powerd
1267 haldaemon 20 0 22M 8756K select 221 .02% hald

®@ 613M 360M select 46 .01% chrome

0 20M 9808K select 100 .01% sshd

0 19M 19M select .06 .01% ntpd

© 312M 113M select :35 .00% chrome

@ 326M 102M uwait :16 .00% chrome

0 111G 203M uwait 213 .00% chrome

@ 462M 136M uwait 109 .00% chrome

Q 19M 8872K ttyin 102 .00% zsh

23991 cahir
1138 ntpd
2565 cahir
2566 cahir
2853 cahir
2843 cahir

10394 cahir

® Running program “top” on FreeBSD
" System has 49 processes, only one is active
" ldentified by Process ID (PID)

20
20
20
20
20
20
52

3
1
3
1
1
1
1
2
2563 cahir 1 20
1
1
8
4
9
9
1

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data Data ces Data
Code Code Code
Saved Saved
reqgisters reqisters
CPU
Registers

B Single processor executes multiple processes concurrently

" Process executions interleaved (multitasking)
" Address spaces managed by virtual memory system (later in course)

" Register values for inactive (nonexecuting) processes saved in memory

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data ces Data
Code : Code Code
Saved : Saved Saved
reqﬁters : registers registers
CPU
Registers

B Save current registers in memory

Multiprocessing: The (Traditional) Reality

Memory

Stack Stack Stack

Heap Heap Heap

Data Data ces Data

Code Code Code
Saved Saved
registers registers

CPU
Registers

B Schedule next process for execution

Multiprocessing: The (Traditional) Reality

Memory

Stack : Stack : Stack

Heap : Heap : Heap

Data : Data © eue Data

Code : Code : Code
Saved - | Saved : Saved
registers . [reqisters | : registers

CPU
Registers

B | oad saved registers and switch address space (context switch)

Multiprocessing: The (Modern) Reality

Memory

Stack Stack Stack
Heap : Heap Heap
Data = Data ces Data
Code > Code Code

. Saved

registers
CpPU CPU B Multicore processors
Registers | |: :| [Registers " Multiple CPUs on single chip

® Share main memory (and some caches)
" Each can execute a separate process

" Scheduling of processors onto cores
done by kernel

Concurrent Processes

B Each process is a logical control flow.

® Two processes run concurrently (are concurrent)
if their flows overlap in time

B Otherwise, they are sequential

B Examples (running on single core):
" Concurrent: A& B, A&C
" Sequential: B& C

Process A Process B Process C

Time

10

User View of Concurrent Processes

® Control flows for concurrent processes are physically
disjoint in time

® However, we can think of concurrent processes as running
in parallel with each other

Process A Process B Process C

Time

1

Context Switching

B Processes are managed by a shared chunk of memory-
resident OS code called the kernel

" Important: the kernel is not a separate process, but rather runs as part
of some existing process.

B Control flow passes from one process to another via a
context switch

Process A Process B

user code
kernel code } context switch

Time

user code

kernel code } context switch

user code

12

Today

Exceptional Control Flow
Exceptions

Processes

Process Control

13

System Call Error Handling

B On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

® Hard and fast rule:
® You must check the return status of every system-level function
® Only exception is the handful of functions that return void

B Example:

if ((pid = fork()) < 0) {
fprintf (stderr, "fork error: %s\n", strerror(errno))
exit(-1);

}

14

Error-reporting functions

B Can simplify somewhat using an error-reporting function:

void unix error(char *msg) /* Unix-style error */

{

fprintf (stderr, "%s: %s\n", msg, strerror(errno));
exit(-1);
}

if ((pid = fork()) < 0)
unix error ("fork error");

B But, must think about application. Not always
appropriate to exit when something goes wrong.

15

Error-handling Wrappers

B We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

pid t Fork(wvoid) {
pid t pid;

if ((pid = fork()) < 0)
unix error ("Fork error");
return pid;

}

pid = Fork() ;

B NOT what you generally want to do in a real application

Obtaining Process IDs

¥ pid t getpid(void)

® Returns PID of current process

¥ pid t getppid(void)

® Returns PID of parent process

17

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

® Running

" Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

B Stopped

" Process execution is suspended and will not be scheduled until
further notice (next lecture when we study signals)

® Terminated
" Process is stopped permanently

18

Terminating Processes

® Process becomes terminated for one of three reasons:
" Receiving a signal whose default action is to terminate (next lecture)
® Returning from the main routine
" Calling the exit function

B void exit(int status)
" Terminates with an exit status of status
® Convention: normal return status is O, nonzero on error

" Another way to explicitly set the exit status is to return an integer value
from the main routine

B exitis called once but never returns.

19

Creating Processes

B Pparent process creates a new running child process by
calling fork

B int fork(void)
" Returns 0 to the child process, child’s PID to parent process
® Child is almost identical to parent:

" Child get an identical (but separate) copy of the parent’s virtual
address space.

" Child gets identical copies of the parent’s open file descriptors
" Child has a different PID than the parent

B fork is interesting (and often confusing) because
it is called once but returns twice

20

Conceptual View of fork

Memory

Stack

Heap fh

Data
Code

Saved
registers

CPU

Registers

B Make complete copy of execution state
" Designate one as parent and one as child
" Resume execution of parent or child

Memory

parent child
Stack Stack
Heap Heap
Data Data
Code Code
Saved Saved

registers registers
CPU

Registers

21

fork Example

int main(int argc, char** argv) ({
pid t pid;
int x = 1;

pid = Fork() ;

if (pid == 0) { /* Child */
printf ("child : x=%d\n", ++x);
return O;

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

} fork.

B Call once, return twice

B Concurrent execution

" Can’t predict execution
order of parent and child

linux> ./fork linux> ./fork linux> ./fork linux> ./fork
parent: x=0 child : x=2 parent: x=0 parent: x=0
child : x=2 parent: x=0 child : x=2 child : x=2

22

Making £ork More Nondeterministic

¥ Problem

® Linux scheduler does not create much run-to-run variance
" Hides potential race conditions in nondeterministic programs
" E.g., does fork return to child first, or to parent?

B Solution

" Create custom version of library routine that inserts
random delays along different branches

" E.g., for parent and child in fork

" Use runtime interpositioning to have program use special
version of library code

23

Variable delay fork

/* fork wrapper function */
pid t fork(void) ({
initialize();
int parent delay = choose delay();
int child delay = choose delay();
pid t parent pid = getpid();
pid t child pid or zero = real fork();
if (child pid or zero > 0) {
/* Parent */
if (verbose) {
printf ("Fork. Child pid=%d, delay = %dms."
"Parent pid=%d, delay = %dms\n",
child pid or zero, child delay,
parent pid, parent delay);
fflush (stdout) ;
}
ms_sleep (parent delay) ;
} else {
/* Child */
ms_sleep(child delay) ;
}

return child;pid;p:_zero;

} myfork.

24

forkx2 Example

int main(int argc, char** argv) ({
pid t pid;
int x = 1;

pid = Fork();

if (pid = 0) { /* Child */
printf ("child : x=%d\n", ++x);
printf("child : x=%d\n", ++x);
return 0O;

}

/* Parent */

printf ("parent: x=%d\n", --x);
printf ("parent: x=%d\n", --x);
return 0O;

linux> ./fork2
parent: x=0
parent: x=-1
child : x=2
child : x=3

B Call once, return twice

B Concurrent execution
" Can’t predict execution
order of parent and child
B Duplicate but separate
address space

® x has a value of 1 when
fork returns in parent and
child

" Subsequent changes to x
are independent

B Shared open files

" stdoutis the samein
both parent and child

25

Modeling £fork with Process Graphs

B A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:

" Each vertex is the execution of a statement

a -> b means a happens before b

" Edges can be labeled with current value of variables

" printf vertices can be labeled with output

Each graph begins with a vertex with no inedges

® Any topological sort of the graph corresponds to
a feasible total ordering.
" Total ordering of vertices where all edges point from left to right

26

Process Graph Example

int main(int argc, char** argv) ({
pid t pid;
int x = 1;

pid = Fork();

if (pid = 0) { /* Child */
printf("child : x=%d\n", ++x);
return O;

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

} fork.c

11d: x=2 .
childy = »® Child
printf exit

== arent: x=0
s B e *¢ Parent
main fork printf exit

27

Interpreting Process Graphs

B Original graph:

child; x=2
>@)
i printf exit
x==1 parent: x=0
o —>@ »@
main fork printf exit
B Relabeled graph: Feasible total ordering:
>® e
| 22220
- —>e) a b e c f d
a b c d

28

fork Example: Two consecutive forks

{

void fork2 ()

printf ("LO\n") ;

fork () ;

printf ("L1\n") ;

fork () ;

printf ("Bye\n") ;
forks.c

Feasible output:
LO

Ll

Bye

Bxe
printf
L1 Bye
»0— —p —0
printf fork printf
Bye
0
printf
L1l ‘ Bye
I£ —>@— —>0— —p —>0
printf fork printf ork printf

Infeasible output:
LO

Bye

Ll

Bye

Ll

Bye

Bye

29

fork Example: Nested forks in parent

void fork4d () {
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ;
if (fork() '= 0) {
printf ("L2\n") ;
}
}
printf ("Bye\n") ;
} forks.c

Bye

e
printf
" GRS

. > —>0—

printf fork printf fork printf printf

Feasible output:
LO

Ll

Bye

Bye

L2

Bye

Infeasible output:
LO

Bye

Ll

Bye

Bye

L2

30

fork Example: Nested forks in children

void fork5() {
printf ("LO\n") ;
if (fork() == 0) {
printf ("L1\n") ;
if (fork() == 0) {
printf ("L2\n") ;
}
}
printf ("Bye\n") ;
} forks.c

L2 Bye
>0 >

o
printf printf

Ee

Ll
>0 — >
printf fork printf
L0 Bye
o— —» —>9
printf fork printf

Feasible output:
LO

Bye

Ll

L2

Bye

Bye

Infeasible output:

LO
Bye
L1
Bye
Bye
L2

31

Reaping Child Processes

B |dea
" When process terminates, it still consumes system resources

" Examples: Exit status, various OS tables
" Called a “zombie”
" Living corpse, half alive and half dead
B Reaping
" Performed by parent on terminated child (using wait orwaitpid)
" Parent is given exit status information
" Kernel then deletes zombie child process

B What if parent doesn’t reap?

" If any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)
" So, only need explicit reaping in long-running processes
" e.g., shells and servers

32

Zombie
Example

linux> ./forks 7 &

[1] 6639
Running Parent, PID = 6639
Terminating Child, PID
linux> ps

PID
6585
6639
6640
6641

TTY

ttyp9
ttyp9
ttyp9
ttyp9

00:
00:
00:
00:

linux> kill 6639
Terminated
linux> ps

[1]

PID
6585
6642

TTY
ttyp9
ttyp9

00:
00:

void fork7() {

if (fork() == 0) {
/* Child */

printf ("Terminating Child, PID = %d\n", getpid()):;

exit (0) ;
} else {

printf ("Running Parent, PID = %d\n", getpid()):;

while (1)

continue; /* Infinite loop */

forks.c

TIME
00:00
00:03
00:00
00:00

TIME
00:00
00:00

= 6640

CMD
tcsh]
forks

forks <defunct> —
ps
[

CMD

tcsh :l__
ps

ps shows child process as
“defunct” (i.e., a zombie)

Killing parent allows child
to bereaped by init

33

Non-
terminating
Child Example

linux> ./forks 8
Terminating Parent, PID

void fork8() {
if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid());
while (1)
continue; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid()) ;
exit (0) ;
}
} forks.c
= 6675

Running Child, PID = 6676

linux> ps
PID TTY TIME
6585 ttyp9 00:00:00
6676 ttyp9 00:00:06
6677 ttyp9 00:00:00
linux> kill 6676 €=

CMD - : , _
tcsh Child process still active even though

forks/ parent has terminated

linux> ps
PID TTY TIME
6585 ttyp9 00:00:00
6678 ttyp9 00:00:00

PsS
B Must kill child explicitly, or else will
CMD ~ keep running indefinitely
tcsh
PsS

34

wait: Synchronizing with Children

B parent reaps a child by calling the wait function

¥ int wait(int *child status)
" Suspends current process until one of its children terminates
" Implemented as syscall

Parent Process Kernel code
syscall¥, Exception

> And, potentially other user
w processes, including a child
Returns

of parent

35

wait: Synchronizing with Children

B parent reaps a child by calling the wait function

¥ int wait(int *child status)

" Suspends current process until one of its children terminates

Return value is the pid of the child process that terminated

" Ifchild status !'= NULL, then the integer it points to will be set
to a value that indicates reason the child terminated and the exit
status:

" Checked using macros defined in wait.h

— WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

— See textbook for details

36

wait: Synchronizing with Children

void fork9() {
int child status;

if (fork() == 0) {

exit (0) ;
} else {

}
printf ("Bye\n") ;

printf ("HC: hello from child\n");

printf ("HP: hello from parent\n") ;
wait (&child status);
printf ("CT: child has terminated\n");

} forks.c
Feasible output(s):
HC HP
HP HC
CT CT

Bye Bye

HC exit
>0— —>
printf
CT
Bye
HP y
o— —>@— —#éf —>0

fork printf wait printf

Infeasible output:
HP

CT

Bye

HC

37

Another wait Example

® |f multiple children completed, will take in arbitrary order

® Can use macros WIFEXITED and WEXITSTATUS
to get information about exit status

void forklO() {
pid t pid[N];
int i, child status;

for (1 = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (1 = 0; i < N; i++) { /* Parent */
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status)) ;
else
printf ("Child %d terminate abnormally\n", wpid);

forks.c

38

waitpid: Waiting for a Specific Process

¥ pid t waitpid(pid t pid, int *status, int options)
® Suspends current process until specific process terminates
" Various options (see textbook)

void forkll () {
pid t pid[N];
int i;
int child status;

for (i = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = N-1; i > 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED(child_status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminate abnormally\n", wpid);

} forks.c

execve: Loading and Running Programs

B int execve(char *filename, char *argv[], char *envp[])
B | oads and runs in the current process:
" Executable file filename

" Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)
® ...with argument list argv
" By convention argv[0]==filename
..and environment variable list envp
" “name=value” strings (e.g., USER=droh)
getenv, putenv, printenv
B QOverwrites code, data, and stack
" Retains PID, open files and signal context (blocked & ignored)

B Called once and never returns

...except if there is an error

40

Structure of
the stack when
a new program
starts

argv

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL

envp[n—-1]

envp [0]

argv[argc] = NULL

argviargc-1]

(in $rsi)

argc
(in $rdi)

argv[0]

Stack frame for
libc start main

Future stack frame for
main

Bottom of stack

environ
.(global var)

-es’

envp

(in $rdx)

Top of stack

41

execve Example

B Execute "/bin/ls -1t /usr/include" in child process
using current environment:

envp[n] = NULL
envp [n-1] — "PWD=/usr/droh"
environ . envp [0] — "USER=droh"
myargv]argc] = NULL
mvarqv[l] —] "
myargv ———> /2 L (U] — " /bin/1ls"
if ((pid = Fork()) == 0) { /* Child runs program */

if (execve (myargv[0], myargv, environ) < 0) ({
printf ("%$s: Command not found.\n", myargv[0]) ;
exit(1l);

}

}

42

Summary

B Exceptions
" Events that require nonstandard control flow
" Generated externally (interrupts) or internally (traps and faults)

B Processes

" At any given time, system has multiple active processes
" Only one can execute at a time on any single core

" Each process appears to have total control of
processor + private memory space

43

Summary (cont.)

B Spawning processes
" Call fork
" One call, two returns

B Process completion
" Callexit

® One call, no return

B Reaping and waiting for processes
" Callwait orwaitpid

B |oading and running programs
" Call execve (or variant)
® One call, (normally) no return

