
Carnegie Mellon

1

Today

 Unix I/O
 Metadata
 Sharing and redirection
 Standard I/O
 RIO (robust I/O) package
 Closing remarks

Carnegie Mellon

2

Today: Unix I/O and C Standard I/O
 Two sets: system-level and C level
 Robust I/O (RIO): special wrappers, good coding practice:

handles error checking, signals, and “short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
 sscanf
sprintf fgets
fputs fflush
fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

Carnegie Mellon

3

Unix I/O Overview

 A Linux file is a sequence of m bytes:
 B0 , B1 , , Bk , , Bm-1

 Cool fact: All I/O devices are represented as files:
 /dev/sda2 (/usr disk partition, block device)

 /dev/tty2 (terminal, character device)

 Even the kernel is represented as a file:
 /boot/vmlinuz-4.19.0-6-amd64 (kernel image)

 /proc (kernel data structures)

Carnegie Mellon

4

Unix I/O Overview

 Elegant mapping of files to devices allows kernel
to export simple interface called Unix I/O:
 Opening and closing files

 open()and close()
 Reading and writing a file

 read() and write()
 Changing the current file position (seek)

 indicates next offset into file to read or write
 lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

Carnegie Mellon

5

File Types

 Each file has a type indicating its role in the system
 Regular file: Contains arbitrary data

 Directory: Index for a related group of files

 Pipe: Simple unidirectional IPC facility

 Socket: For communicating with a process on another machine

 Other file types beyond our scope
 Named pipes (FIFOs)

 Symbolic links

 Character and block devices

Carnegie Mellon

6

Regular Files

 A regular file contains arbitrary data
 Applications often distinguish between text files and binary files

 Text files are regular files with only ASCII or Unicode characters

 Binary files are everything else
 e.g., object files, JPEG images

 Kernel doesn’t know the difference!

 Text file is sequence of text lines
 Text line is sequence of chars terminated by newline char (‘\n’)

 Newline is 0xa, same as ASCII line feed character (LF)

 End of line (EOL) indicators in other systems
 Linux and Mac OS: ‘\n’ (0xa)

 line feed (LF)

 Windows and Internet protocols: ‘\r\n’ (0xd 0xa)
 Carriage return (CR) followed by line feed (LF)

Carnegie Mellon

7

Directories

 Directory consists of an array of links
 Each link maps a filename to a file

 Each directory contains at least two entries
 . (dot) is a link to itself

 .. (dot dot) is a link to the parent directory in the directory
hierarchy (next slide)

 Commands for manipulating directories
 mkdir: create empty directory

 ls: view directory contents

 rmdir: delete empty directory

Carnegie Mellon

8

Directory Hierarchy

 All files are organized as a hierarchy anchored by root directory
named / (slash)

 Kernel maintains current working directory (cwd) for each process
 Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd twi/ cahir/ include/ bin/

stdio.h vimsys/

unistd.h

secure.c

Carnegie Mellon

9

Pathnames

 Locations of files in the hierarchy denoted by pathnames
 Absolute pathname starts with ‘/’ and denotes path from root

 /home/twi/secure.c
 Relative pathname denotes path from current working directory

 ../home/twi/secure.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd twi/ cahir/ include/ bin/

stdio.h vimsys/

unistd.h

secure.c

cwd: /home/cahir

Carnegie Mellon

10

Opening Files
 Opening a file informs the kernel that you are getting ready to

access that file

 Returns a small identifying integer file descriptor
 fd == -1 indicates that an error occurred

 Each process created by a Linux shell begins life with three open
files associated with a terminal:
 0: standard input (stdin)
 1: standard output (stdout)
 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
 perror("open");
 exit(1);
}

Carnegie Mellon

11

Closing Files

 Closing a file informs the kernel that you are finished
accessing that file

 Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

 Moral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
 perror("close");
 exit(1);
}

Carnegie Mellon

12

Reading Files
 Reading a file copies bytes from the current file position to

memory, and then updates file position

 Returns number of bytes read from file fd into buf
 Return type ssize_t is signed integer
 nbytes < 0 indicates that an error occurred
 Short counts (nbytes < sizeof(buf)) are possible and are not

errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
 perror("read");
 exit(1);
}

Carnegie Mellon

13

Writing Files
 Writing a file copies bytes from memory to the current file

position, and then updates current file position

 Returns number of bytes written from buf to file fd
 nbytes < 0 indicates that an error occurred

 As with reads, short counts are possible and are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
 perror("write");
 exit(1);
}

Carnegie Mellon

14

Simple Unix I/O example
 Copying stdin to stdout, one byte at a time

#include "csapp.h"

int main(void) {
 char c;

 while(Read(STDIN_FILENO, &c, 1) != 0)
 Write(STDOUT_FILENO, &c, 1);
 exit(0);
}

Carnegie Mellon

15

On Short Counts
 Short counts can occur in these situations:

 Encountering (end-of-file) EOF on reads

 Reading text lines from a terminal

 Reading and writing network sockets

 Short counts never occur in these situations:
 Reading from disk files (except for EOF)

 Writing to disk files

 Best practice is to always allow for short counts.

Carnegie Mellon

16

Seeking
 Regular files and block devices are seekable

– You can move cursor associated with open file
– SEEK_SET, SEEK_CUR, SEEK_END
– lseek returns a position from the beginning of file
– Seeking past end of file is possible and create holes

 Check file size:

#include "csapp.h"

int main(void) {
 int fd = Open("file.txt", O_RDONLY, 0);
 off_t pos = lseek(fd, 0, SEEK_END);

 printf("file size is %ld bytes\n", pos);
 exit(0);
}

Carnegie Mellon

17

Truncate
 By writing at the end of file we can increase its size
 What if we decided shorten a file?

 Truncate file to given size:

#include "csapp.h"

int main(int argc, char *argv[]) {
 …

 off_t newend = atoi(argv[1]);
 int fd = Open("file.txt", O_RDONLY, 0);
 Ftruncate(fd, newend);
 exit(0);
}

Carnegie Mellon

18

More on open

 int open(const char *pathname,
 int flags, mode_t mode);

 For flags, you can pass a bitwise-OR of one or more flags
 Three kinds of flags (we only discuss the important ones)

 Access modes (one of them must be included):
 O_RDONLY, O_WRONLY, O_RDWR

 File creation flags:
 O_CREAT, O_TRUNC, etc.

 File status flags

Carnegie Mellon

19

Access mode flags and file creation flags

 O_RDONLY / O_WRONLY / O_RDWR
 Open the file read-only / write-only / read-write.

 O_CREAT
 If the provided pathname does not exist, create it as a regular file.

 O_TRUNC

 If the file already exists and if the access mode allows writing (i.e. is
O_RDWR or O_WRONLY), then the file will be truncated to length 0.

 O_APPEND
 Each time file is written to, atomically move cursor

to the end of file and write contents.

 O_DIRECTORY
 Fail if user attempted to open a file that is not a directory.

Carnegie Mellon

20

More on open

 int open(const char *pathname,
 int flags, mode_t mode);

 For mode, you can pass a bitwise-OR of one or more
constants

 Specifies, when creating a file, what permission the file will
be created with

 Only useful when flags contain O_CREAT (or O_TMPFILE)

Carnegie Mellon

21

Linux permissions

 Every file and directory has permission information
 You’ve seen it before

 ls -l prints the permissions for each file/directory like:
-rw-r--r-- ... drwxr-xr-x ...

 chmod changes the permissions for files/directories
 $ chmod -R 777 /

 There are read (R), write (W) and executable (X)
permissions for user (USR), group (GRP) and other (OTH)

Carnegie Mellon

22

Specify permissions in open()

 These constants can be bitwise-OR’d and passed to the
third argument of open()

 What does S_IRWXG | S_IXUSR | S_IXOTH mean?
 How to create a file which everyone can read from but

only the user can write to it or execute it?

Read (R) Write (W) Executable (X) All (RWX)

User (USR) S_IRUSR S_IWUSR S_IXUSR S_IRWXU

Group (GRP) S_IRGRP S_IWGRP S_IXGRP S_IRWXG

Other (OTH) S_IROTH S_IWOTH S_IXOTH S_IRWXO

Carnegie Mellon

23

Today

 Unix I/O
 Metadata
 Sharing and redirection
 Standard I/O
 RIO (robust I/O) package
 Closing remarks

Carnegie Mellon

24

File Metadata
 Metadata is data about data, in this case file data
 Per-file metadata maintained by kernel

 accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */
struct stat {
 dev_t st_dev; /* Device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* Protection and file type */
 nlink_t st_nlink; /* Number of hard links */
 uid_t st_uid; /* User ID of owner */
 gid_t st_gid; /* Group ID of owner */
 dev_t st_rdev; /* Device type (if inode device) */
 off_t st_size; /* Total size, in bytes */
 unsigned long st_blksize; /* Blocksize for filesystem I/O */
 unsigned long st_blocks; /* Number of blocks allocated */
 time_t st_atime; /* Time of last access */
 time_t st_mtime; /* Time of last modification */
 time_t st_ctime; /* Time of last change */
};

Carnegie Mellon

25

Example of Accessing File Metadata
int main (int argc, char **argv) {
 struct stat stat;
 char *type, *readok;

 Stat(argv[1], &stat);
 /* Determine file type */
 if (S_ISREG(stat.st_mode))
 type = "regular";
 else if (S_ISDIR(stat.st_mode))
 type = "directory";
 else
 type = "other";
 /* Check read access */
 if ((stat.st_mode & S_IRUSR))
 readok = "yes";
 else
 readok = "no";

 printf("type: %s, read: %s\n", type, readok);
 exit(0);
}

linux> ./statcheck statcheck.c
type: regular, read: yes
linux> chmod 000 statcheck.c
linux> ./statcheck statcheck.c
type: regular, read: no
linux> ./statcheck ..
type: directory, read: yes

statcheck.c

Carnegie Mellon

26

Where file names are stored?
 Metadata is stored in i-node’s (for ext4 and ufs)

■ File exists within file system mounted from block device st_dev.

■ It’s unique identifier there is st_ino (aka i-node number).

 Yes, files do not have names by themselves!
 No st_name field in struct stat.

 File name is stored in directory file.

 When a directory references a file it bumps its st_nlink.

 Very elegant solution with interesting consequences...

struct stat {
 dev_t st_dev; /* Device */
 ino_t st_ino; /* inode */
 nlink_t st_nlink; /* Number of hard links */
 ...
};

Carnegie Mellon

27

Directories
 The only file type in Unix that is record-oriented.

– You cannot use read or write on it!

– System call to read dirent records is getdirentries,
but not portable – it’s better to use readdir.

 When an association between a name and i-node
is created st_nlink value is bumped up.

 Several system calls devoted to operations on directories.

struct dirent {
 ino_t d_ino; /* Inode number */
 off_t d_off; /* Not an offset; see below */
 unsigned short d_reclen; /* Length of this record */
 unsigned char d_type; /* Type of file */
 char d_name[256]; /* Null-terminated filename */
};

Carnegie Mellon

28

Accessing Directories
 Reading directory entries

 dirent structure contains information about a directory entry

 DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>
#include <dirent.h>

{
 DIR *directory;
 struct dirent *de;
 ...
 if (!(directory = opendir(dir_name)))
 error("Failed to open directory");
 ...
 while (0 != (de = readdir(directory))) {
 printf("Found file: %s\n", de->d_name);
 }
 ...
 closedir(directory);
}

Carnegie Mellon

29

Today

 Unix I/O
 Metadata
 Sharing and redirection
 Standard I/O
 RIO (robust I/O) package
 Closing remarks

Carnegie Mellon

30

refcnt=1

File pos

How the Unix Kernel Represents Open Files
 Two descriptors referencing two distinct open files.

Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...
...

stderr
stdout
stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

File pos is maintained per open file

Carnegie Mellon

31

File Sharing
 Two distinct descriptors sharing the same disk file through

two distinct open file table entries
 E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr
stdout
stdin File access

...

File size

File type

File A (disk)

File B (disk)

Different logical but same physical file

Carnegie Mellon

32

How Processes Share Files: fork
 A child process inherits its parent’s open files

 Note: situation unchanged by exec functions (use fcntl to change)

 Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr
stdout
stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Carnegie Mellon

33

How Processes Share Files: fork
 A child process inherits its parent’s open files
 After fork:

 Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

File is shared between processes

Carnegie Mellon

34

I/O Redirection
 Question: How does a shell implement I/O redirection?

linux> ls > foo.txt

 Answer: By calling the dup2(oldfd, newfd) function
 Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

Carnegie Mellon

35

I/O Redirection Example
 Step #1: open file to which stdout should be redirected

 Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr
stdout
stdin File access

...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

Carnegie Mellon

36

I/O Redirection Example (cont.)
 Step #2: call dup2(4,1)

 cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr
stdout
stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

Two descriptors point to the same file

Carnegie Mellon

37

Warm-Up: I/O and Redirection Example

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1, fd2, fd3;
 char c1, c2, c3;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 fd2 = Open(fname, O_RDONLY, 0);
 fd3 = Open(fname, O_RDONLY, 0);
 Dup2(fd2, fd3);
 Read(fd1, &c1, 1);
 Read(fd2, &c2, 1);
 Read(fd3, &c3, 1);
 printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
 return 0;
} ffiles1.c

Carnegie Mellon

38

Warm-Up: I/O and Redirection Example

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1, fd2, fd3;
 char c1, c2, c3;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 fd2 = Open(fname, O_RDONLY, 0);
 fd3 = Open(fname, O_RDONLY, 0);
 Dup2(fd2, fd3);
 Read(fd1, &c1, 1);
 Read(fd2, &c2, 1);
 Read(fd3, &c3, 1);
 printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
 return 0;
} ffiles1.c

c1 = a, c2 = a, c3 = b

dup2(oldfd, newfd)

Carnegie Mellon

39

Master Class: Process Control and I/O

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1;
 int s = getpid() & 0x1;
 char c1, c2;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 Read(fd1, &c1, 1);
 if (fork()) { /* Parent */
 sleep(s);
 Read(fd1, &c2, 1);
 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);
 } else { /* Child */
 sleep(1-s);
 Read(fd1, &c2, 1);
 printf("Child: c1 = %c, c2 = %c\n", c1, c2);
 }
 return 0;
} ffiles2.c

Carnegie Mellon

40

Master Class: Process Control and I/O

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1;
 int s = getpid() & 0x1;
 char c1, c2;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 Read(fd1, &c1, 1);
 if (fork()) { /* Parent */
 sleep(s);
 Read(fd1, &c2, 1);
 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);
 } else { /* Child */
 sleep(1-s);
 Read(fd1, &c2, 1);
 printf("Child: c1 = %c, c2 = %c\n", c1, c2);
 }
 return 0;
} ffiles2.c

Child: c1 = a, c2 = b
Parent: c1 = a, c2 = c

Parent: c1 = a, c2 = b
Child: c1 = a, c2 = c

Carnegie Mellon

41

Today

 Unix I/O
 Metadata, sharing, and redirection
 Standard I/O
 RIO (robust I/O) package
 Closing remarks

Carnegie Mellon

42

Standard I/O Functions

 The C standard library (libc.so) contains
a collection of higher-level standard I/O functions

 Examples of standard I/O functions:
 Opening and closing files (fopen and fclose)

 Reading and writing bytes (fread and fwrite)

 Reading and writing text lines (fgets and fputs)

 Formatted reading and writing (fscanf and fprintf)

Carnegie Mellon

43

Standard I/O Streams
 Standard I/O models open files as streams

 Abstraction for a file descriptor and a buffer in memory

 C programs begin life with three open streams
(defined in stdio.h)
 stdin (standard input)

 stdout (standard output)

 stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
 fprintf(stdout, "Hello, world\n");
}

Carnegie Mellon

44

Buffered I/O: Motivation
 Applications often read/write one character at a time

 getc, putc, ungetc
 gets, fgets

 Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
 read and write require Unix kernel calls

 > 10,000 clock cycles

 Solution: Buffered read
 Use Unix read to grab block of bytes

 User input functions take one byte at a time from buffer
 Refill buffer when empty

unreadalready readBuffer

Carnegie Mellon

45

Buffering in Standard I/O

 Standard I/O functions use buffered I/O

 Buffer flushed to output fd on “\n”, call to fflush
or exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Carnegie Mellon

46

Standard I/O Buffering in Action
 You can see this buffering in action for yourself, using the

always fascinating Linux strace program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6) = 6
...
exit_group(0) = ?

#include <stdio.h>

int main()
{
 printf("h");
 printf("e");
 printf("l");
 printf("l");
 printf("o");
 printf("\n");
 fflush(stdout);
 exit(0);
}

Carnegie Mellon

47

Today

 Unix I/O
 Metadata, sharing, and redirection
 Standard I/O
 RIO (robust I/O) package
 Closing remarks

Carnegie Mellon

48

Today: Unix I/O, C Standard I/O, and RIO
 Two incompatible libraries building on Unix I/O
 Robust I/O (RIO): special wrappers, good coding practice:

handles error checking, signals, and “short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

Carnegie Mellon

49

Unix I/O Recap

 Short counts can occur in these situations:
 Encountering (end-of-file) EOF on reads

 Reading text lines from a terminal

 Reading and writing network sockets

 Short counts never occur in these situations:
 Reading from disk files (except for EOF)

 Writing to disk files

 Best practice is to always allow for short counts.

/* Read at most max_count bytes from file into buffer.
 Return number bytes read, or error value */
ssize_t read(int fd, void *buffer, size_t max_count);

/* Write at most max_count bytes from buffer to file.
 Return number bytes written, or error value */
ssize_t write(int fd, void *buffer, size_t max_count);

Carnegie Mellon

50

The RIO Package

 RIO is a set of wrappers that provide efficient and robust I/O in
apps, such as network programs that are subject to short counts

 RIO provides two different kinds of functions
 Unbuffered input and output of binary data

 rio_readn and rio_writen
 Buffered input of text lines and binary data

 rio_readlineb and rio_readnb
 Buffered RIO routines are thread-safe and can be interleaved

arbitrarily on the same descriptor

Carnegie Mellon

51

Unbuffered RIO Input and Output
 Same interface as Unix read and write
 Especially useful for transferring data on network sockets

 rio_readn returns short count only if it encounters EOF
 Only use it when you know how many bytes to read

 rio_writen never returns a short count

 Calls to rio_readn and rio_writen can be interleaved
arbitrarily on the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

 Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

52

Implementation of rio_readn
/* rio_readn - Robustly read n bytes (unbuffered) */
ssize_t rio_readn(int fd, void *usrbuf, size_t n) {
 size_t nleft = n;
 ssize_t nread;
 char *bufp = usrbuf;

 while (nleft > 0) {
 if ((nread = read(fd, bufp, nleft)) < 0) {
 if (errno == EINTR) /* Interrupted by sig handler return */
 nread = 0; /* and call read() again */
 else
 return -1; /* errno set by read() */
 }
 else if (nread == 0)

 break; /* EOF */
 nleft -= nread;
 bufp += nread;
 }
 return (n - nleft); /* Return >= 0 */
} csapp.c

Carnegie Mellon

53

Buffered RIO Input Functions
 Efficiently read text lines and binary data from a file partially

cached in an internal memory buffer

 rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf

 Especially useful for reading text lines from network sockets
 Stopping conditions

 maxlen bytes read
 EOF encountered
 Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

54

Buffered RIO Input Functions (cont)

 rio_readnb reads up to n bytes from file fd
 Stopping conditions

 maxlen bytes read
 EOF encountered

 Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor

 Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

55

unread

Buffered I/O: Implementation
 For reading from file
 File has associated buffer to hold bytes that have been read

from file but not yet read by user code

 Layered on Unix file:

already readBuffer

rio_buf
rio_bufptr

rio_cnt

unreadalready readno longer in buffer unseen

Current File Position

Buffered Portion

Carnegie Mellon

56

Buffered I/O: Declaration
 All information contained in struct

typedef struct {
 int rio_fd; /* descriptor for this internal buf */
 int rio_cnt; /* unread bytes in internal buf */
 char *rio_bufptr; /* next unread byte in internal buf */
 char rio_buf[RIO_BUFSIZE]; /* internal buffer */
} rio_t;

unreadalready readBuffer

rio_buf
rio_bufptr

rio_cnt

Carnegie Mellon

57

RIO Example
 Copying the lines of a text file from standard input to

standard output

#include "csapp.h"

int main(int argc, char **argv)
{
 int n;
 rio_t rio;
 char buf[MAXLINE];

 Rio_readinitb(&rio, STDIN_FILENO);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)

Rio_writen(STDOUT_FILENO, buf, n);
 exit(0);
} cpfile.c

Carnegie Mellon

58

Today

 Unix I/O
 Metadata, sharing, and redirection
 Standard I/O
 RIO (robust I/O) package
 Closing remarks

Carnegie Mellon

59

Unix I/O vs. Standard I/O vs. RIO

 Standard I/O and RIO are implemented using low-level Unix I/O

 Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

 Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
 sscanf
sprintf fgets
fputs fflush
fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

 RIO
functions

Carnegie Mellon

60

Pros and Cons of Unix I/O

 Pros
 Unix I/O is the most general and lowest overhead form of I/O

 All other I/O packages are implemented using Unix I/O functions

 Unix I/O provides functions for accessing file metadata

 Unix I/O functions are async-signal-safe and can be used safely in signal
handlers

 Cons
 Dealing with short counts is tricky and error prone

 Efficient reading of text lines requires some form of buffering, also tricky
and error prone

 Both of these issues are addressed by the standard I/O and RIO packages

Carnegie Mellon

61

Pros and Cons of Standard I/O

 Pros:
 Buffering increases efficiency by decreasing the number of read and
write system calls

 Short counts are handled automatically

 Cons:
 Provides no function for accessing file metadata

 Standard I/O functions are not async-signal-safe, and not appropriate for
signal handlers

 Standard I/O is not appropriate for input and output on network sockets
 There are poorly documented restrictions on streams that interact

badly with restrictions on sockets (CS:APP3e, Sec 10.11)

Carnegie Mellon

62

Choosing I/O Functions
 General rule: use the highest-level I/O functions you can

 Many C programmers are able to do all of their work using the standard
I/O functions

 But, be sure to understand the functions you use!

 When to use standard I/O
 When working with disk or terminal files

 When to use raw Unix I/O
 Inside signal handlers, because Unix I/O is async-signal-safe

 In rare cases when you need absolute highest performance

 When to use RIO
 When you are reading and writing network sockets

 Avoid using standard I/O on sockets

