Today

Unix I/0O

Metadata

Sharing and redirection
Standard I/O

RIO (robust 1/0) package
Closing remarks

Today: Unix I/0 and C Standard 1/0O

B Two sets: system-level and C level

B Robust I/0 (RIO): special wrappers, good coding practice:
handles error checking, signals, and “short counts”

fopen fdopen
fread fwrite
fscanf fprintf

sscanf
sprintf fgets | C application program
fputs fflush ~, rio readn
fseek *, rio writen
fclose { Standard 1/O RIO rio readinitb
functions functions . = .
rio readlineb
open read Unix 1/0 functions 220 e

write lseek |[¢-
stat close

(accessed via system calls)

Unix 1/O Overview

B A Linux file is a sequence of m bytes:
" B,B,,..,B,..,B

m-1

B Cool fact: All 1/0 devices are represented as files:
" /dev/sda2 (/usr disk partition, block device)
" /dev/tty2 (terminal, character device)

B Even the kernel is represented as a file:
" /boot/vmlinuz-4.19.0-6-amd64 (kernelimage)
" /proc (kernel data structures)

Unix I/O Overview

B Elegant mapping of files to devices allows kernel
to export simple interface called Unix 1/0:
® Opening and closing files
" open()and close()

" Reading and writing a file

" read () and write ()
" Changing the current file position (seek)

" indicates next offset into file to read or write

" lseek ()

B

B, |oee Bii| Bx |Bia|®®e

Current file position = k

0

File Types

B Each file has a type indicating its role in the system
" Regular file: Contains arbitrary data
" Directory: Index for a related group of files
® Pipe: Simple unidirectional IPC facility
" Socket: For communicating with a process on another machine

B Other file types beyond our scope
" Named pipes (FIFOs)
" Symbolic links
" Character and block devices

Regular Files

A regular file contains arbitrary data

Applications often distinguish between text files and binary files
" Text files are regular files with only ASCIl or Unicode characters

" Binary files are everything else
" e.g., object files, JPEG images
® Kernel doesn’t know the difference!

Text file is sequence of text lines

" Text line is sequence of chars terminated by newline char (‘\n’)

" Newline is 0xa, same as ASCII line feed character (LF)

End of line (EOL) indicators in other systems
® Linux and Mac OS: ‘\n’ (Oxa)
" line feed (LF)
® Windows and Internet protocols: ‘\r\n’ (0xd Oxa)
" Carriage return (CR) followed by line feed (LF)

carriage return

Directories

B Directory consists of an array of links
® Each link maps a filename to a file

® Each directory contains at least two entries
" . (dot)is alink to itself

" .. (dotdot)is alink to the parent directory in the directory

hierarchy (next slide)

B Commands for manipulating directories

® mkdir: create empty directory

" 1s:view directory contents

* rmdir: delete empty directory

Directory Hierarchy

B Al files are organized as a hierarchy anchored by root directory
named / (slash)

/
bin/ dev/ etc/ home/ usr/
bash ttyl group passwd twi/ cahir/ include/ bin/
secure.cC stdio.h sys/ vim
unistd.h

B Kernel maintains current working directory (cwd) for each process
® Modified using the ¢d command

Pathnames

B Locations of files in the hierarchy denoted by pathnames
" Absolute pathname starts with ‘/’ and denotes path from root
" /home/twi/secure.c
" Relative pathname denotes path from current working directory
" ../home/twi/secure.c

/ cwd: /home/cahir
bin/ dev/ etc/ home/ usr/
bash ttyl group passwd twi/ cahir/ include/ bin/
secure.c stdio.h sys/ vim

unistd.h

Opening Files

B Opening a file informs the kernel that you are getting ready to
access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open") ;
exit(1l);

}

B Returns a small identifying integer file descriptor
" fd == -1 indicates that an error occurred

B Each process created by a Linux shell begins life with three open
files associated with a terminal:
® 0:standard input (stdin)
" 1:standard output (stdout)
® 2:standard error (stderr)

10

Closing Files

® Closing a file informs the kernel that you are finished
accessing that file

int £d; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror ("close") ;
exit(1l);

}

B Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

B Moral: Always check return codes, even for seemingly
benign functions such as close ()

11

Reading Files

B Reading a file copies bytes from the current file position to
memory, and then updates file position

char buf[512];

int fd; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit (1) ;

B Returns number of bytes read from file £d into buf
* Return type ssize_ tissigned integer
" nbytes < O indicates that an error occurred

" Short counts (nbytes < sizeof (buf))are possible and are not
errors!

Writing Files

B Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];

int £d; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open the file fd */

/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write") ;
exit(1l);

B Returns number of bytes written from buf to file £d

" nbytes < 0indicates that an error occurred

" As with reads, short counts are possible and are not errors!

13

Simple Unix I/O example

B Copying stdin to stdout, one byte at a time

#include "csapp.h"

int main(void) {
char c;

while(Read(STDIN_FILENO, &, 1) '= 0)
Write(STDOUT_FILENO, &, 1);
exit (0) ;
}

14

On Short Counts

B Short counts can occur in these situations:
" Encountering (end-of-file) EOF on reads
® Reading text lines from a terminal
® Reading and writing network sockets

® Short counts never occur in these situations:
" Reading from disk files (except for EOF)
® Writing to disk files

B Best practice is to always allow for short counts.

15

Seeking

B Regular files and block devices are seekable
— You can move cursor associated with open file
~ SEEK_SET, SEEK_CUR, SEEK_END
— Iseek returns a position from the beginning of file
— Seeking past end of file is possible and create holes

B Check file size:

#include '"csapp.h"
int main(void) {

int £fd = Open("file.txt", O RDONLY, 0);
off t pos = lseek(fd, 0, SEEK END) ;

exit (0) ;

}

printf("file size is %1d bytes\n", pos);

16

Truncate

B By writing at the end of file we can increase its size
® What if we decided shorten a file?

® Truncate file to given size:

#include "csapp.h"

int main(int argc, char *argv[]) {

off t newend = atoi(argv[l]);

int fd = Open("file.txt", O RDONLY, 0);
Ftruncate (fd, newend) ;

exit (0) ;

17

More on open

B int open(const char *pathname,
int flags, mode t mode);

® For fLags, you can pass a bitwise-OR of one or more flags

® Three kinds of flags (we only discuss the important ones)
® Access modes (one of them must be included):
" O_RDONLY, O_WRONLY, O_RDWR
" File creation flags:
" 0_CREAT, 0_TRUNC, etc.
" File status flags

18

Access mode flags and file creation flags

® O_RDONLY / O_WRONLY / O_RDWR

" Open the file read-only / write-only / read-write.

B O CREAT

" If the provided pathname does not exist, create it as a regular file.

® O TRUNC

" If the file already exists and if the access mode allows writing (i.e. is
O_RDWR or O_WRONLY), then the file will be truncated to length 0.

B O APPEND

" Each time file is written to, atomically move cursor
to the end of file and write contents.

B O_DIRECTORY

® Fail if user attempted to open a file that is not a directory.

19

More on open

int open(const char *pathname,
int flags, mode_t mode);

For mode, you can pass a bitwise-OR of one or more
constants

Specifies, when creating a file, what permission the file will
be created with

Only useful when fLags contain O_CREAT (or O_TMPFILE)

20

Linux permissions

® Every file and directory has permission information

B You’ve seen it before

" 1s -1 prints the permissions for each file/directory like:
-PW-r--r-- .. drwxr-xr-x...

chmod changes the permissions for files/directories
" $ chmod -R 777 /

B There are read (R), write (W) and executable (X)
permissions for user (USR), group (GRP) and other (OTH)

21

Specify permissions in open()

Read (R) Write (W) Executable (X) All (RWX)
User (USR) S_IRUSR S_IWUSR S_IXUSR S_IRWXU
Group (GRP) S_IRGRP S_IWGRP S_IXGRP S_IRWXG
Other (OTH) | S_IROTH S_IWOTH S_IXOTH S_IRWXO

B These constants can be bitwise-OR’d and passed to the
third argument of open()

B WhatdoesS IRWXG | S _IXUSR | S_IXOTH mean?

B How to create a file which everyone can read from but
only the user can write to it or execute it?

22

Unix I/O

Metadata

Sharing and redirection
Standard I/O

RIO (robust 1/0) package
Closing remarks

23

File Metadata

¥ Metadata is data about data, in this case file data
B Pper-file metadata maintained by kernel

accessed by users with the stat and £stat functions

struct stat {

dev_t

ino_t

mode_ t
nlink t

uid t

gid t

dev_t

off t
unsigned long
unsigned long
time t

time t

time t

st _dev;

st _ino;

st _mode;
st nlink;
st _uid;

st _gid;

st _rdev;
st _size;
st blksize;
st blocks;
st _atime;
st mtime;
st _ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/* Metadata returned by the stat and fstat functions */

Device */

inode */

Protection and file type */
Number of hard links */

User ID of owner */

Group ID of owner */

Device type (if inode device) */
Total size, in bytes */
Blocksize for filesystem I/O */
Number of blocks allocated */
Time of last access */

Time of last modification */
Time of last change */

24

Example of Accessing File Metadata

int main (int argc, char **argv) {
struct stat stat;
char *type, *readok;

Stat(argv[l], &stat);
/* Determine file type */
if (S_ISREG(stat.st mode))

type = '"regular";

else if (S_ISDIR(stat.st mode))
type = "directory";

else

type = "other";
/* Check read access */
if ((stat.st mode & S IRUSR))

readok = '"yes";
else
readok = "no";

printf ("type: %s, read: %$s\n", type, readok):;

exit (0) ;

linux> ./statcheck statcheck.c

type: regular, read: yes
linux> chmod 000 statcheck.c

linux> ./statcheck statcheck.c

type: regular, read: no
linux> ./statcheck
type: directory, read: yes

statcheck.c

25

Where file names are stored?

B Metadata is stored in i-node’s (for ext4 and ufs)

" File exists within file system mounted from block device st _dev.

" It’s unique identifier there is st _ino (aka 1-node number).

B Yes, files do not have names by themselves!
" No st name fieldin struct stat.

B Fjle name is stored in directory file.

® When a directory references a file it bumps its st _nlink.

B Very elegant solution with interesting consequences...

struct stat {
dev_t st _dev; /* Device */
ino_t st _ino; /* inode */
nlink t st nlink; /* Number of hard links */

26

Directories

B The only file type in Unix that is record-oriented.

— You cannot use read or write onit!

— System call to read dirent records is getdirentries,
but not portable — it’s better to use readdir.

B When an association between a name and i-node
is created st _nlink value is bumped up.

B Several system calls devoted to operations on directories.

struct dirent {

ino_t d ino; /* Inode number */

off t d off; /* Not an offset; see below */
unsigned short d reclen; /* Length of this record */
unsigned char d type; /* Type of file */

char d name[256]; /* Null-terminated filename */

Accessing Directories

B Reading directory entries
" dirent structure contains information about a directory entry

DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;

struct dirent *de;

if (! (directory = opendir (dir name)))
error ("Failed to open directory");

while (0 !'= (de = readdir (directory))) {
printf ("Found file: %s\n", de->d name);

}

closedir (directory) ;

Unix I/O

Metadata

Sharing and redirection
Standard I/O

RIO (robust 1/0) package
Closing remarks

29

How the Unix Kernel Represents Open Files

B Two descriptors referencing two distinct open files.

Descriptor 1 (stdout) points to terminal, and descriptor 4

points to open disk file

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File A (terminal) o
stdin fdO / File access
stdout fd1 = . e
File size
stderr fd2 File pos :
fd 3 refcnt=1 File type
fd4 ~—
i File size
File pos
refcnt=1 File type

File pos is maintained per open file

Info in
stat
struct

30

File Sharing

B Two distinct descriptors sharing the same disk file through
two distinct open file table entries

" E.g., Calling open twice with the same filename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (disk) -
stdin fdO File access
stdout fd1 . TP
File size
stderr fd2 File pos ;
fd 3 refcnt=1 File type
fd 4 :
\ File B (disk)
il /
File pos
refcnt=1
Different logical but same physical file

31

How Processes Share Files: fork

B A child process inherits its parent’s open files
" Note: situation unchanged by exec functions (use £ecntl to change)

B Before fork call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdO / File access
stdout fd1 —] o e
File size
stderr fd2 File pos :
fd 3 refcnt=1 File type
. File size
File pos
refcnt=1 File type

32

How Processes Share Files: fork

B A child process inherits its parent’s open files

B After fork:
® Child’s table same as parent’s, and +1 to each refcnt

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

Parent File A (terminal) -
fd 0 /’ File access
fd1 = . File si
fd2 File pos ile size
fd 3 refcnt=2 File type
fd 4 S~ c

child File B (disk) >

,/ File access

fd 0 / —=
fd 1 7 File pos File size
:: ; refcnt=2 File type
fda

File is shared between processes

/0O Redirection

B Question: How does a shell implement 1/O redirection?
linux> 1ls > foo.txt

® Answer: By calling the dup2 (o1ldfd, newfd) function
" Copies (per-process) descriptor table entry old£fd to entry newfd

Descriptor table Descriptor table
before dup2 (4,1) after dup2 (4,1)
fd O fdo

fdi| a fdi| b

fd 2 fd 2

fd 3 fd 3

fd 4 b fd 4 b

34

/O Redirection Example

B Step #1: open file to which stdout should be redirected

" Happens in child executing shell code, before exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A o
stdin fdO / File access
stdout fd1 —] o e
File size
stderr fd2 File pos :
fd 3 refcnt=1 File type
. File size
File pos
refcnt=1 File type

I/O Redirection Example (cont.)

B Step #2:calldup2(4,1)
" cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Descriptor table
[one table per process]

stdin fdO
stdout fd1 N
stderr fd2 N
fd3
fd4 ~~

Two descriptors point to the same file

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File A .
File access
File pos File size
refcnt=0 File type
File B >
,/ File access
File pos File size
refcnt=2 File type

36

Warm-Up: I/0 and Redirection Example

#include "csapp.h"

int main(int argc, char *argv([])

{
int £d4d1, £d4d2, £d3;
char cl, c2, c3;
char *fname = argv[1l];

fdl = Open(fname, O RDONLY, O);
fd2 = Open(fname, O RDONLY, O);
fd3 = Open(fname, O RDONLY, O0);

Dup2 (fd2, £d3);

Read (£fdl, &cl, 1);

Read (fd2, &c2, 1);

Read (£d3, &c3, 1);

printf("cl = %c, ¢2 = %c, c¢3 = %c\n", cl, c2, c3);
return O;

} ffilesl.c

B What would this program print for file containing “abcde”?

37

Warm-Up: I/0 and Redirection Example

{

int f£d1,

#include "csapp.h"
int main(int argc, char *argv([])

fd2, £d43;

char cl, c2, c3;

char *fname =

argv([l];

cl

c3

I
o

a, c2 =

fdl = Open(fname, O RDONLY, O0);
fd2 = Open(fname, O RDONLY, O);
fd3 = Open(fname, O RDONLY, O);
Dup2 (fd2, £d3) ;<

Read (fdl, &cl, 1);

Read (fd2, &c2, 1);

Read (£d3, &c3, 1);

printf ("cl = %¢c, ¢c2 = %c, c3 =

return 0;

dup2 (oldfd, newfd)

%$c\n", cl, c2, c3);

ffilesl.c

B What would this program print for file containing “abcde”?

38

Master Class: Process Control and 1/0

#include "csapp.h"
int main(int argc, char *argv][])

{

int £dil;
int s = getpid() & O0x1;
char cl, c2;
char *fname = argv[l];
fdl = Open(fname, O RDONLY, O);
Read (fdl, &cl, 1);
if (fork()) { /* Parent */
sleep(s) ;
Read (£fdl, &c2, 1);
printf ("Parent: cl = %c, c2 = %c\n", cl, c2);
} else { /* Child */
sleep(1-s) ;
Read (£fdl, &c2, 1);
printf ("Child: cl = %c, c2 = %c\n", cl, c2);
}

return O;
} ffiles2.c

B What would this program print for file containing “abcde”?

Master Class: Process Control and 1/0

{

}

#include "csapp.h"
int main(int argc, char *argv][])

int £di;
int s = getpid() & Ox1;
char cl, c2;

char *fname = argv[1l];
fdl = Open(fname, O RDONLY, O);
Read (fdl, &cl, 1);
if (fork()) { /* Parent */
sleep(s) ;
Read (fdl, &c2, 1);
printf ("Parent: cl = %c, c2 =
} else { /* Child */
sleep(1l-s);
Read (fdl, &c2, 1);
printf ("Child: cl = %c, c2 =

}

return 0;

Child: cl = a, c2 =D
Parent: cl = a, c2 = ¢
Parent: cl = a, c2 = Db
Child: cl = a, c2 = ¢

%$c\n", cl, c2);

%$c\n", cl, c2);

ffiles2.c

B What would this program print for file containing “abcde”?

40

Unix I/O

Metadata, sharing, and redirection
Standard I/O

RIO (robust 1/0) package

Closing remarks

41

Standard 1/0 Functions

B The C standard library (1ibc . so) contains
a collection of higher-level standard I/0 functions

B Examples of standard 1/0 functions:
® Opening and closing files (fopen and fclose)
® Reading and writing bytes (fEread and fwrite)
® Reading and writing text lines (Egets and fputs)
" Formatted reading and writing (Escanf and fprintf)

42

Standard 1/O Streams

B Standard I/0O models open files as streams
" Abstraction for a file descriptor and a buffer in memory

B C programs begin life with three open streams
(defined in stdio.h)

stdin (standard input)
" stdout (standard output)

" stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf (stdout, "Hello, world\n");

}

43

Buffered 1/0: Motivation

B Applications often read/write one character at a time

" getc, putc, ungetc

gets, fgets
" Read line of text one character at a time, stopping at newline

B Implementing as Unix 1/O calls expensive
" readand write require Unix kernel calls

" >10,000 clock cycles

B Solution: Buffered read

" Use Unix read to grab block of bytes
" User input functions take one byte at a time from buffer
" Refill buffer when empty

Buffer | already read unread

Buffering in Standard 1/O

B Standard I/0O functions use buffered 1/0

printf ("h") ;

printf ("e") ;

printf ("1") ;

printf ("1");
printf("o") ;

buf | printf ("\n") ;

hlelllllol\n

fflush (stdout) ;

write(l, buf, 6);

B Buffer flushed to output fd on “\n”, call to ££1ush
or exit, or return frommain.

Standard 1/0O Buffering in Action

® You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

{

#include <stdio.h>

int main()

printf ("h") ;
printf ("e") ;
printf ("1") ;
printf ("1") ;
printf ("o") ;
printf ("\n") ;
fflush (stdout) ;
exit (0) ;

linux> strace ./hello

execve ("./hello", ["hello"], [/* ...

write(l, "hello\n", 6)

exit group (0)

46

Unix I/O

Metadata, sharing, and redirection
Standard 1/0

RIO (robust 1/0) package

Closing remarks

47

Today: Unix 1/0O, C Standard 1/0O, and RIO

® Two incompatible libraries building on Unix I/O

B Robust I/0 (RIO): special wrappers, good coding practice:

handles error checking, signals, and “short counts”

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek

fclose
open read
write 1lseek
stat close

C application program

*| standard /O

functions

RIO
functions

Unix 1/0 functions
(accessed via system calls)

rio_readn
rio writen
rio readinitb
rio readlineb
rio readnb

48

Unix I/O Recap

/* Read at most max count bytes from file into buffer.
Return number bytes read, or error value */
ssize t read(int fd, void *buffer, size t max count);

/* Write at most max count bytes from buffer to file.
Return number bytes written, or error value */
ssize t write(int fd, void *buffer, size t max count);

B Short counts can occur in these situations:
" Encountering (end-of-file) EOF on reads
" Reading text lines from a terminal

® Reading and writing network sockets

B Short counts never occur in these situations:
" Reading from disk files (except for EOF)
® Writing to disk files
B Best practice is to always allow for short counts.

49

The RIO Package

B RIO is a set of wrappers that provide efficient and robust 1/0 in
apps, such as network programs that are subject to short counts

B RIO provides two different kinds of functions
" Unbuffered input and output of binary data

rio readnandrio writen
® Buffered input of text lines and binary data

rio readlineb and rio readnb

" Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

50

Unbuffered RIO Input and Output

B Same interface as Unix read and write
B Especially useful for transferring data on network sockets

#include "csapp.h"

ssize t rio_readn(int fd, void *usrbuf, size t n);
ssize t rio_writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_ readn only), -1 on error

rio readn returnsshort count only if it encounters EOF
" Only use it when you know how many bytes to read
rio writen never returns ashort count

" Callstorio readnand rio writen can be interleaved
arbitrarily on 1 the same descrlptor

51

Implementation of rio readn

ssize_t rio readn(int
size t nleft = n;
ssize_ t nread;
char *bufp = usrbuf;

while (nleft > 0) {

nread = 0;
else
return -1;

}

else if (nread ==
break;
nleft -= nread;

bufp += nread;
}

return (n - nleft);

if (errno == EINTR)

/* rio readn - Robustly read n bytes (unbuffered) */

fd, void *usrbuf, size t n) {

if ((nread = read(fd, bufp, nleft)) < 0) {
/* Interrupted by sig handler return */

/* and call read() again */
/* errno set by read() */

0)
/* EOF */

/* Return >= 0 */

csapp.c

52

Buffered RIO Input Functions

B Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

#include "csapp.h"
void rio_readinitb(rio_t *rp, int £d);

ssize t rio_readlineb(rio t *rp, void *usrbuf, size t maxlen);
ssize_ t rio_readnb(rio_t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readlineb reads a text line of up to maxlen bytes from file

fd and stores the line in usrbuf
" Especially useful for reading text lines from network sockets
" Stopping conditions
" maxlen bytesread
" EOF encountered
" Newline (‘\n’) encountered

53

Buffered RIO Input Functions (cont)

#include "csapp.h"

void rio readinitb(rio_t *rp, int £d);

ssize t rio readlineb(rio t *rp, void *usrbuf, size t maxlen);
ssize t rio_readnb(rio_t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

Stopping conditions
" maxlen bytes read
" EOF encountered

rio readnb reads up to n bytes from file £d

Callstorio _readlineband rio readnb can be interleaved

arbitrarily on the same descriptor

" Warning: Don’t interleave with calls to rio readn

54

Buffered I/0: Implementation

® For reading from file

B Fjle has associated buffer to hold bytes that have been read
from file but not yet read by user code

-— rio_cnt —

Buffer

already read

unread

S

rio_buf

¥ Layered on Unixl:ﬁle:

rio bufptr

)

Buffered Portion

no longer in buffer

already read

unread

unseen

Current File Position

/‘

55

Buffered 1/O: Declaration

B All information contained in struct

-— rio_cnt —

Buffer

already read

unread

S

rio_buf

rio bufptr

J

typedef struct {
int rio fd4d;
int rio_cnt;

char *rio bufptr;

char rio buf[RIO BUFSIZE];

} rio t;

/*
/*
/*
/*

descriptor for this internal buf */
unread bytes in internal buf */
next unread byte in internal buf */
internal buffer */

56

RIO Example

B Copying the lines of a text file from standard input to
standard output

{

#include "csapp.h"

int main(int argc, char **argv)

int n;
rio_t rio;
char buf[MAXLINE] ;

Rio readinitb (&rio, STDIN FILENO) ;

while((n = Rio readlineb(&rio, buf, MAXLINE)) != 0)

Rio writen (STDOUT FILENO, buf, n);
exit (0) ;

cpfile.c

57

Unix I/O

Metadata, sharing, and redirection
Standard 1/0

RIO (robust 1/0) package

Closing remarks

58

Unix 1/0 vs. Standard 1/0 vs. RIO

B Standard I/0 and RIO are implemented using low-level Unix 1/0

fopen fdopen
fread fwrite
fscanf fprintf

sscanf . .
sprintf fgets ™ C application program
fputs fflush *, rio readn
f k ‘....‘. - It
see | Standard I/O RIO rro_writen
fclose . . rio readinitb
functions functions .)
rlo_readllneb
d o
open rea Unix I/O functions rio_readnb

write lseek |[¢-
stat close

(accessed via system calls)

B Which ones should you use in your programs?

59

Pros and Cons of Unix 1/O

® Pros

Unix 1/O is the most general and lowest overhead form of I/O
" All other I/O packages are implemented using Unix 1/O functions
Unix /O provides functions for accessing file metadata

Unix I/O functions are async-signal-safe and can be used safely in signal
handlers

® Cons

Dealing with short counts is tricky and error prone

Efficient reading of text lines requires some form of buffering, also tricky
and error prone

Both of these issues are addressed by the standard I/O and RIO packages

60

Pros and Cons of Standard 1/0

B Pros:
" Buffering increases efficiency by decreasing the number of read and
write system calls
" Short counts are handled automatically

® Cons:
" Provides no function for accessing file metadata
" Standard I/O functions are not async-signal-safe, and not appropriate for
signal handlers
® Standard I/O is not appropriate for input and output on network sockets

" There are poorly documented restrictions on streams that interact
badly with restrictions on sockets (CS:APP3e, Sec 10.11)

61

Choosing I/O Functions

General rule: use the highest-level 1/0 functions you can

" Many C programmers are able to do all of their work using the standard
|/0 functions
" But, be sure to understand the functions you use!

When to use standard 1/0
" When working with disk or terminal files

When to use raw Unix 1/0
" Inside signal handlers, because Unix I/0 is async-signal-safe
" In rare cases when you need absolute highest performance

When to use RIO
" When you are reading and writing network sockets
" Avoid using standard |/O on sockets

62

