Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

A. Boroumand et al. 2018

speaker: Julian Pszczotowski
Seminar: Advances in Computer Systems
University of Wroctaw

Introduction

e This paper focuses on consumer devices
e Smartphones, tablets, wearable devices have become increasingly ubiquitous
in recent years

e There were 2.3 billion smartphone users in 2017, and 1.2 billion tablet users
in 2016

Energy consumption

e Afirst-class concern for consumer devices

e Devices have many power-hungry components such as powerful CPU, GPU,
special-purpose accelerators, sensors, high-resolution screen

e Performance requirements increase every year to support things like 4K
video, VR, AR, ...

e Lithium-ion battery capacity has only doubled in the last 20 years

|dentifying sources of energy consumption

The authors analysed the most popular Google consumer workloads:

Google Chrome

TensorFlow Mobile (used by Google Translate, Google Now, and Google
Photos, ...)

video playback and capture using VP9 codec (used by YouTube, Skype,
Google Hangouits, ...)

Some results of the analysis (teaser)

Data movement between the main memory system and computation units is a
major contributor to the total system energy

While scrolling through a Google Docs web page, moving data between
memory and computation units causes 77% of the total system energy
consumption

On average: 63% of the total energy is consumed by data movement

Notice: Wi-Fi turned off, the lowest display brightness used

How to reduce the energy consumption

e Let's execute data-movement-heavy portions of the application close to the
data!

e Recent advances in 3D-stacked memory technology have enabled
processing-in-memory (PIM), a.k.a near-data processing

e 3D-stacked architectures include a dedicated logic layer (with high-bandwidth
low-latency connectivity to DRAM layers)

e Challenges:
o area for PIM is limited
o additional energy needed by PIM
o additional cost of the device

Let’'s switch papers for a while...

...to understand the processing-in-memory (PIM) better.

Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions. S. Ghose et al. 2018.

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture. J. Ahn et al. 2015.

Problems with DRAM

e Performance improvements from DRAM technology scaling lag behind the
improvements from logic technology scaling

e DRAM-based main memory is increasingly becoming a larger bottleneck in
terms of performance and energy consumption

e Data stored within DRAM must be moved into the CPU before any

computation can take place

Problems with PIM

e No low-latency access to some CPU structures:
o translation lookaside buffer (TLB),
o page table walker,
o cache coherence mechanisms,
o efc.

e Forcing PIM processing logic to send queries to the CPU is very inefficient

/ : wide channel with

PR, - Through-Silicon
Vias (TSVs)

' I = = = = = = = = ‘

Uz CPU

DRAM Layers
_ A

AS IV A S A N S LV AN VR S I AL TS T Vel
- - = - - =23 = = -

- narrow
Logic Layer | Memory Channel)

Fig. 1. High-level overview of a 3D-stacked DRAM based architecture.

10

Possible PIM layers

e Fixed-function accelerator
e Simple in-order core
e Simple reconfigurable logic

. ord " I I hist ¥ ordevel
paratehsm

The complexity is limited by the manufacturing process and thermal design (and

cost and area for consumer devices)!

11

Examples of 3D-stacked DRAM in 2018

e Hybrid Memory Cube (HMC), first CPU using HMC was Fujitsu SPARC64 Xlfx
in 2015
e High Bandwidth Memory (HBM), first GPU using HBM was AMD Fiji in 2015

They make limited use of the logic layer!

e HMC implements command scheduling logic there

12

Using PIM logic in applications

e PIM architecture exposes an interface to the CPU
e No standardization of this interface, PIM typically treated as a coprocessor

e PIM used to execute:

a. entire application
b. single function
c. single instruction

Different ideas in different papers! Let's look at an example of (c), and then (b).

13

PIM-Enabled Instructions

e PIM-Enabled Instructions (PEI) added to CPU’s ISA

o memory accessible by PEIl is limited to a single LLC block
e PEI Computation Unit (PCU) - executes PEls
e PEI Management Unit (PMU) - coordinates all PCUs in terms of:

o atomicity management (e.g. PEI atomic add)
o cache coherence (so that all operations access the latest data)
o data locality profiling for locality-aware execution

14

Host Processor I HMC
|
— |
Out-of-Order | | o | | @ S : > { DrAM
Core & = D& ' «| PCU |« Controller
: ool =8 =] ' |[=
5 ()| 8BS | |5 |13 —
PCU i = = =T DRAM
. ‘g —L’l Z || PCU |«{ Controller
PMU Soam)
PIM O : ?
Directory % ; o
B l s "| DRAM
Locali |
Monitéyr I <! PCU |« Controller
|

Figure 3: Overview of the proposed architecture.

Out-of-Order |

HMC Controller

Core
A
@ Send the input | | @ Read the | o & =
operands and output operands S S > 2
issue the PEI SHS =9
y @ Loadtheblock | — | | & 3O
PCU [e -
(®) Store the block
(@) Execute : #:
if modified PMU —
® Notify completion Directory
>
>
@ Check for atomicity Locality
Monitor

and data locality

Figure 4: Host-side PEI execution.

16

Out-of-Order |__

Core
(1 Send the input Read the
operands and output
issue the PEI ’ operands
PCU

Last-Level
Cache

@ Send back the
output operands

.

' ®

Flush or clean
the block if necessary

2 Check for atomicity

and data locality ML

@ Send the input operands

PIM
Directory

®) Issue the
PIM operation

L.
-

Locality
Monitor

<
® Retrieve the

output operands

Figure 5: Memory-side PEI execution.

HMC Controller

PIM-Enabled Instructions: evaluation

e Simulation using an in-house x86-64 simulator that models:
o out-of-order cores,
o caches,
o DRAM controllers inside HMC,
o MESI cache coherence protocol,
o efc.
e Benchmarking using i.a.:
o graph: Breadth-First Search (BFS), Single-Source Shortest Path (SP),
o data analytics: Hash Join (HJ), Histogram (HG),
o ML/DM: Streamcluster (SC), Support Vector Machine Recursive Feature Elimination (SVM)

e Three input set sizes

18

[Host-Only &3 PIM-Only B Locality-Aware

Normalized IPC

ATF BFS PR SP WCC HJ HG RP SC SVM GM
(a) Small inputs
1.8

T
|

1.6
1.4 .

1.2 -

Normalized IPC

ATF BFS PR SP WCC HJ HG RP SC SVM GM
(b) Medium inputs

1.8

1.6

1.4

T
1

Normalized IPC

1.0 |-

ATF BFS PR SP WCC HJ HG RP SC SVM GM
(c) Large inputs
Figure 6: Speedup comparison under different input sizes.

19

Normalized Transfer

Normalized Transfer

8.0

6.0

4.0

2.0 |-

0.0

1.2

1O F

0.8
0.6

04 |-

0.2
0.0

Figure 7: Normalized amount of off-chip transfer.

1 Request (Host to HMC)

3 Response (HMC to Host)

——Host-Only
PIM-Only
Locality-Aware

16.1

ATF BFS PR SP WCC HJ HG RP SC SVM
(a) Small inputs
ATF BFS PR SP WCC HJ HG RP SC SWM

(b) Large inputs

20

Another PIM example: pointer chasing

e Memory access pattern where previous memory access is required to
determine the address of next memory access

e Used heavily in: databases and file systems, graph processing, garbage
collectors, video games (binary space-partitioning trees for rendering), routing
tables

e \ery inefficient in general-purpose CPU

21

Solution: In-Memory Polnter Chasing Accelerator

find (A, root)

A

Logic in DRAM

(a) Binary tree (b) Traditional architecture (c) IMPICA architecture

Fig. 3. Pointer chasing (a) in a traditional architecture (b) and in IMPICA with 3D-stacked memory (c). Figure adapted from
[67].

22

Solution: In-Memory Polnter Chasing Accelerator

e Not that easy:
o how to handle parallel chasing for multiple CPU cores?

o how to handle virtual-physical address translation?
O

e \We could spend another seminar discussing IMPICA!
e It's also only a proof of concept (as PIM-Enabled Instructions), evaluated
using a simulation

23

Let's come back to the original paper

e Now we have some background in processing-in-memory (PIM)

e The authors of Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks analysed most popular Google consumer workloads

e 63% of the total energy is consumed by data movement, so let's move some
parts of the applications (PIM targets) to PIM logic!

e |s it feasible and reasonable, given the limited area and power constraints of a
consumer device?

24

But wait...

e How can we measure energy consumed by data movement? Or even by
basic components such as CPU / L1/ interconnect / memory controller / ...

e The authors used a memory model of a different processor created in a prior
work, and scaled it to fit their Intel Celeron

e The model is driven by hardware performance counters

25

Operation Energy cost(n]) AEnergy(n])
NOP 0.105 -

ADD 0.105 -

LOAD L1—Reg 0.192 0.192

LOAD L2—Reg 0.803 0.611

LOAD RAM—Reg | 12.032 11.228

Stall cycle 0.068 -

A fragment of the original memory model created for Samsung Galaxy S3 (Exynos SMDK 4412 Quad
with 4 ARM Cortex A9 cores). Source: Quantifying the Energy Cost of Data Movement for Emerging
Smartphone Workloads on Mobile Platforms. D. Pandiyan et al. 2014.

|dentifying ideal PIM target

A function is a good candidate if:

it consumes the most energy out of the all functions in the workload,

its data movement consumes a significant fraction of the total workload
energy,

its LLC misses per kilo instruction (MPKI) is greater than 10,

it doesn’t require more area than available in the logic layer,

etc.

27

Google Chrome: case study

e One of the most commonly-used applications by consumer device users with
over a billion active users

What happens while using the browser?

Which functions in the browser use most energy due to data movement?
Which functions in the browser are good PIM targets?

Would it be better to implement them using a PIM-Core or PIM-Accelerator?

28

User perception of the browser

Based on three main factors:

1. page load time,
2. smooth page scrolling,
3. quick switching between browser tabs.

We’'ll focus on (2) and (3).

29

What happens when a web page is downloaded?

The rendering engine, Blink, parses HTML and produces DOM tree; it also
parses CSS

render tree = DOM tree + style rules, a visual representation of the page
render object = node of the render tree

layout = the process of calculating the position and size of each render object
rasterization = the process of creating a bitmap per each render object
texture upload = the process of sending the rasterized bitmap (also known as
a texture) to the GPU

compositing = the process of painting the pixels onto the screen (by GPU)

30

What happens while we scroll a page?

Scrolling triggers:

e layout,
e rasterization,
e compositing.

All three operations must happen within the mobile screen refresh time (e.g.
60 FPS / 16.7 ms) to avoid frame dropping.

31

_ lTexture—TiIing [Color Blitting = Other

“65\0100% = X N N N "B
PN N NN NN
%% 284‘: :::Q::::&:::&:::&::::&:::Q:E: N
SRR i e e m.
= ° 'Google Gmail Google Word- Twitter Ani- |, A

Docs Calendar Press mation i
Figure 1. Energy breakdown for page scrolling.

B Texture Tiling @ Color Blitting Other Data Movement & Compute

3 18x1012 o > 40%

| | S 5 680

- e N | 25 30%

20 12x10 \ g =

T T R N 20 20%

S 602 N R 1 8% o

© 3x10121 B ... N O E— =8 °

el I EE B ol =

- CPU L1 LLC Inter- Mem DRAM Texture Color
connect Ctrl Tiling Blitting

Figure 2. Energy breakdown when scrolling through a Google
Docs web page.

33

The most data-intensive components

e Texture tiling:

o Rasterization generates a bitmap, which is written using a linear access pattern to memory

o Compositing accesses each texture in both the horizontal and vertical directions

o To minimize cache misses during compositing, the graphics driver converts the bitmap into a
tiled layout, e.g. Intel HD Graphics driver breaks down each rasterized bitmap into multiple
4 kB texture tiles

o Notice: GPU’s highly-parallel architecture is not a good fit for rasterizing fonts and other small
shapes, so by default rasterization is CPU-based

e Color blitting:
o Chrome draws basic primitives (lines, text, ...) for each render object
o The browser users color blitter, which converts the primitives into the bitmaps
o Blitting is mainly copying a block of pixels from one location to another

34

e

texture tiling

(a) CPU-Only time (b) CPU + PIM
CI?U Merpory C!?U PIM

rasterization 0 rasterization
generates f..3 generates
p "o - linear bitmap o\

| driver invokes |
| compositing |

_linear bitma
g é _.{ linear bitmap : linear bitmap
read bitmap 4" w . : -
from memory S : convert bitmap
. 3 - o to tiled texture
convert bitmap| % -
to tiled texture| = S - . texture tiles
- S - [driver invokesJ -
write tiles | :g' : compositing :
to memory A - - "
; texture tiles

\ 4
Figure 3. Texture tiling on (a) CPU vs. (b) PIM. 3

Texture tiling and color blitting: PIM effectiveness

e Only require bitwise operations, arithmetic operations, memcpy and memset

e These operations can be performed at high performance on PIM core or PIM
accelerator

e Little area needed, so they’re feasible to implement in a consumer device

36

Tab switching

e Each tab has its own process

e Switching between tabs triggers:
o a context switch,
o aload operation for the new page

e Fast tab loading is important, but the memory consumption is a major
concern:
o average memory footprint of a web page increases on a yearly basis,

o users tend to open multiple tabs at a time,
o consumer devices have lower memory capacity than server / desktop systems

e Chrome compresses inactive tabs and places them into a DRAM-based
memory pool, called ZRAM

37

Tab switching energy analysis

e An experiment was made:
o user opens 50 tabs,
o scrolls through each tab for a few seconds,
o switches to the next tab

e In total 12 GB of data swapped out to ZRAM, 8 GB of data swapped in
e Compression and decompression contributed to 18% of the total system
energy

38

= = NN
U & UL & 'UN
2 D) Q G
n

s)

Data Swapped Out
to ZRAM (MB/s)
Data Swapped |

from ZRAM (MB/

S—

Time (seconds

S—

Time (seconds

Figure 4. Number of bytes per second swapped out to ZRAM (left)
and in from ZRAM (right), while switching between 50 tabs.

39

compression

(a) CPU-Only

CPU

swap out
N inactive pages

read N pages
from memory

©

compress
N pages

write back
N compressed

ghigh

pages

 other tasks for

L]
L]
e

| active pages |

-
*

ta movement

Memory

|

uncompressed
pages

time

|

5@
-5 | compressed
pages (ZRAM)

Figure 5. Compression

v

(b) CPU + PIM
CPU PIM
swa;; out :
N inactive pages uncompressed
: pages
other te.asks for com;)ress
active pages N pages
comp?essed
pages (ZRAM)

on (a) CPU vs. (b) PIM.

Tab switching: PIM effectiveness

e Good fit for PIM execution

e Compression can be handled in the background

e ZRAM uses LZO algorithm, which uses simple operations and favors speed
over compression ratio

e LZO can be efficiently implemented as a PIM core or a PIM accelerator

e |n-memory compression/decompression can benefit other use cases:
o e.g. BTRFS or ZFS, not yet widely supported in mobile OSes

41

Other workloads

e In the paper you can find similar analyses for:

o TensorFlow Mobile
o Video playback using VP9 decoder
o Video capture using VP9 encoder

e They're not really related to our seminar
e \We're fine with just Google Chrome

42

Evaluation

e Done using gem5 full-system simulator
e Many methodology details described in the paper, if you are interested

43

CPU HLl ELC

£ CPU-Only O PIM-Core @ PIM-Acc
Interconnect W MemCtrl & DRAM

8o Q

o 10 - £ 1D

£0.8 €08 - .

- 0.6 - é 06

804 - 0.4 -

0.2 Eﬁ E EE 802 -

£ 0.0 - T 0.0 L,

S =|e|8[=|2|812(e|8|=le|8| E W W <
[o= -

= 19813321858 £ = £ 7 B
=2 ER2ERZERRZE v @m ¢ 9
QO |a Q |Qa Q Qa Q|a i B Q. Q.

2 9 g E

Texture| Color | Com- |Decom- 5 o o o
Tiling | Blitting |pression|pression = © © g

Figure 18. Energy (left) and runtime (right) for all browser kernels,
normalized to CPU-Only, for kernel inputs listed in Section 9. "

Conclusions

e Data movement contributes to a significant portion (62.7%) of widely-used
Google consumer workloads
e Majority of this data movement comes from a number of simple functions

e Offloading these functions to PIM logic reduces (in all workloads, on average):

o energy consumption by 55%
o execution time by 54%

e \ery promising results!

45

Bibliography

Enabling the Adoption of Processing-in-Memory: Challenges,
Mechanisms, Future Research Directions. S. Ghose et al. 2018.
Google Workloads for Consumer Devices: Mitigating Data Movement
Bottlenecks. A. Boroumand et al. 2018.

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture. J. Ahn et al. 2015.

Quantifying the Energy Cost of Data Movement for Emerging
Smartphone Workloads on Mobile Platforms. D. Pandiyan et al. 2014.
https://en.wikipedia.org/wiki/Hybrid _Memory Cube

https://en.wikipedia.org/wiki/High Bandwidth Memory

https://en.wikichip.org/wiki/pointer chasing

46

https://en.wikipedia.org/wiki/Hybrid_Memory_Cube
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://en.wikichip.org/wiki/pointer_chasing

