
Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

A. Boroumand et al. 2018

speaker: Julian Pszczołowski
Seminar: Advances in Computer Systems

University of Wrocław



Introduction
● This paper focuses on consumer devices
● Smartphones, tablets, wearable devices have become increasingly ubiquitous 

in recent years
● There were 2.3 billion smartphone users in 2017, and 1.2 billion tablet users 

in 2016

2



Energy consumption
● A first-class concern for consumer devices
● Devices have many power-hungry components such as powerful CPU, GPU, 

special-purpose accelerators, sensors, high-resolution screen
● Performance requirements increase every year to support things like 4K 

video, VR, AR, ...
● Lithium-ion battery capacity has only doubled in the last 20 years

3



Identifying sources of energy consumption 
The authors analysed the most popular Google consumer workloads:

● Google Chrome
● TensorFlow Mobile (used by Google Translate, Google Now, and Google 

Photos, …)
● video playback and capture using VP9 codec (used by YouTube, Skype, 

Google Hangouts, …)

4



Some results of the analysis (teaser) 
● Data movement between the main memory system and computation units is a 

major contributor to the total system energy
● While scrolling through a Google Docs web page, moving data between 

memory and computation units causes 77% of the total system energy 
consumption

● On average: 63% of the total energy is consumed by data movement
● Notice: Wi-Fi turned off, the lowest display brightness used

5



How to reduce the energy consumption
● Let’s execute data-movement-heavy portions of the application close to the 

data!
● Recent advances in 3D-stacked memory technology have enabled 

processing-in-memory (PIM), a.k.a near-data processing
● 3D-stacked architectures include a dedicated logic layer (with high-bandwidth 

low-latency connectivity to DRAM layers)
● Challenges:

○ area for PIM is limited
○ additional energy needed by PIM
○ additional cost of the device

6



Let’s switch papers for a while...
…to understand the processing-in-memory (PIM) better.

Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions. S. Ghose et al. 2018.

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware 
Processing-in-Memory Architecture. J. Ahn et al. 2015.

7



Problems with DRAM
● Performance improvements from DRAM technology scaling lag behind the 

improvements from logic technology scaling
● DRAM-based main memory is increasingly becoming a larger bottleneck in 

terms of performance and energy consumption
● Data stored within DRAM must be moved into the CPU before any 

computation can take place

8



Problems with PIM
● No low-latency access to some CPU structures:

○ translation lookaside buffer (TLB),
○ page table walker,
○ cache coherence mechanisms,
○ etc.

● Forcing PIM processing logic to send queries to the CPU is very inefficient

9



10



Possible PIM layers
● Fixed-function accelerator
● Simple in-order core
● Simple reconfigurable logic
● Out-of-order core with large cache and sophisticated instruction-level 

parallelism

The complexity is limited by the manufacturing process and thermal design (and 
cost and area for consumer devices)!

11



Examples of 3D-stacked DRAM in 2018
● Hybrid Memory Cube (HMC), first CPU using HMC was Fujitsu SPARC64 XIfx 

in 2015
● High Bandwidth Memory (HBM), first GPU using HBM was AMD Fiji in 2015

They make limited use of the logic layer!

● HMC implements command scheduling logic there

12



Using PIM logic in applications
● PIM architecture exposes an interface to the CPU
● No standardization of this interface, PIM typically treated as a coprocessor
● PIM used to execute:

a. entire application
b. single function
c. single instruction

Different ideas in different papers! Let’s look at an example of (c), and then (b).

13



PIM-Enabled Instructions
● PIM-Enabled Instructions (PEI) added to CPU’s ISA

○ memory accessible by PEI is limited to a single LLC block

● PEI Computation Unit (PCU) - executes PEIs
● PEI Management Unit (PMU) - coordinates all PCUs in terms of:

○ atomicity management (e.g. PEI atomic add)
○ cache coherence (so that all operations access the latest data)
○ data locality profiling for locality-aware execution

14



15



16



17



PIM-Enabled Instructions: evaluation
● Simulation using an in-house x86-64 simulator that models:

○ out-of-order cores,
○ caches,
○ DRAM controllers inside HMC,
○ MESI cache coherence protocol,
○ etc.

● Benchmarking using i.a.:
○ graph: Breadth-First Search (BFS), Single-Source Shortest Path (SP),
○ data analytics: Hash Join (HJ), Histogram (HG),
○ ML/DM: Streamcluster (SC), Support Vector Machine Recursive Feature Elimination (SVM)

● Three input set sizes

18



19



20



Another PIM example: pointer chasing
● Memory access pattern where previous memory access is required to 

determine the address of next memory access
● Used heavily in: databases and file systems, graph processing, garbage 

collectors, video games (binary space-partitioning trees for rendering), routing 
tables

● Very inefficient in general-purpose CPU

21



Solution: In-Memory PoInter Chasing Accelerator

22



Solution: In-Memory PoInter Chasing Accelerator
● Not that easy:

○ how to handle parallel chasing for multiple CPU cores?
○ how to handle virtual-physical address translation?
○ …

● We could spend another seminar discussing IMPICA!
● It’s also only a proof of concept (as PIM-Enabled Instructions), evaluated 

using a simulation

23



Let’s come back to the original paper
● Now we have some background in processing-in-memory (PIM)
● The authors of Google Workloads for Consumer Devices: Mitigating Data 

Movement Bottlenecks analysed most popular Google consumer workloads
● 63% of the total energy is consumed by data movement, so let’s move some 

parts of the applications (PIM targets) to PIM logic!
● Is it feasible and reasonable, given the limited area and power constraints of a 

consumer device?

24



But wait…
● How can we measure energy consumed by data movement? Or even by 

basic components such as CPU / L1 / interconnect / memory controller / …
● The authors used a memory model of a different processor created in a prior 

work, and scaled it to fit their Intel Celeron
● The model is driven by hardware performance counters 

25



A fragment of the original memory model created for Samsung Galaxy S3 (Exynos SMDK 4412 Quad 
with 4 ARM Cortex A9 cores). Source: Quantifying the Energy Cost of Data Movement for Emerging 
Smartphone Workloads on Mobile Platforms. D. Pandiyan et al. 2014.

26



Identifying ideal PIM target
A function is a good candidate if:

● it consumes the most energy out of the all functions in the workload,
● its data movement consumes a significant fraction of the total workload 

energy,
● its LLC misses per kilo instruction (MPKI) is greater than 10,
● it doesn’t require more area than available in the logic layer,
● etc.

27



Google Chrome: case study
● One of the most commonly-used applications by consumer device users with 

over a billion active users
● What happens while using the browser?
● Which functions in the browser use most energy due to data movement?
● Which functions in the browser are good PIM targets?
● Would it be better to implement them using a PIM-Core or PIM-Accelerator?

28



User perception of the browser
Based on three main factors:

1. page load time,
2. smooth page scrolling,
3. quick switching between browser tabs.

We’ll focus on (2) and (3). 

29



What happens when a web page is downloaded?
● The rendering engine, Blink, parses HTML and produces DOM tree; it also 

parses CSS
● render tree = DOM tree + style rules, a visual representation of the page
● render object = node of the render tree
● layout = the process of calculating the position and size of each render object
● rasterization = the process of creating a bitmap per each render object
● texture upload = the process of sending the rasterized bitmap (also known as 

a texture) to the GPU
● compositing = the process of painting the pixels onto the screen (by GPU)

30



What happens while we scroll a page?
Scrolling triggers:

● layout,
● rasterization,
● compositing.

All three operations must happen within the mobile screen refresh time (e.g.
60 FPS / 16.7 ms) to avoid frame dropping.

31



32



33



The most data-intensive components
● Texture tiling:

○ Rasterization generates a bitmap, which is written using a linear access pattern to memory
○ Compositing accesses each texture in both the horizontal and vertical directions
○ To minimize cache misses during compositing, the graphics driver converts the bitmap into a 

tiled layout, e.g. Intel HD Graphics driver breaks down each rasterized bitmap into multiple
4 kB texture tiles

○ Notice: GPU’s highly-parallel architecture is not a good fit for rasterizing fonts and other small 
shapes, so by default rasterization is CPU-based

● Color blitting:
○ Chrome draws basic primitives (lines, text, …) for each render object
○ The browser users color blitter, which converts the primitives into the bitmaps
○ Blitting is mainly copying a block of pixels from one location to another

34



35



Texture tiling and color blitting: PIM effectiveness
● Only require bitwise operations, arithmetic operations, memcpy and memset
● These operations can be performed at high performance on PIM core or PIM 

accelerator
● Little area needed, so they’re feasible to implement in a consumer device

36



Tab switching
● Each tab has its own process
● Switching between tabs triggers:

○ a context switch,
○ a load operation for the new page

● Fast tab loading is important, but the memory consumption is a major 
concern:

○ average memory footprint of a web page increases on a yearly basis,
○ users tend to open multiple tabs at a time,
○ consumer devices have lower memory capacity than server / desktop systems

● Chrome compresses inactive tabs and places them into a DRAM-based 
memory pool, called ZRAM

37



Tab switching energy analysis
● An experiment was made:

○ user opens 50 tabs,
○ scrolls through each tab for a few seconds,
○ switches to the next tab

● In total 12 GB of data swapped out to ZRAM, 8 GB of data swapped in
● Compression and decompression contributed to 18% of the total system 

energy

38



39



40



Tab switching: PIM effectiveness
● Good fit for PIM execution
● Compression can be handled in the background
● ZRAM uses LZO algorithm, which uses simple operations and favors speed 

over compression ratio
● LZO can be efficiently implemented as a PIM core or a PIM accelerator
● In-memory compression/decompression can benefit other use cases:

○ e.g. BTRFS or ZFS, not yet widely supported in mobile OSes

41



Other workloads
● In the paper you can find similar analyses for:

○ TensorFlow Mobile
○ Video playback using VP9 decoder
○ Video capture using VP9 encoder

● They’re not really related to our seminar
● We’re fine with just Google Chrome

42



Evaluation
● Done using gem5 full-system simulator
● Many methodology details described in the paper, if you are interested

43



44



Conclusions
● Data movement contributes to a significant portion (62.7%) of widely-used 

Google consumer workloads
● Majority of this data movement comes from a number of simple functions
● Offloading these functions to PIM logic reduces (in all workloads, on average):

○ energy consumption by 55%
○ execution time by 54%

● Very promising results!

45



Bibliography
● Enabling the Adoption of Processing-in-Memory: Challenges, 

Mechanisms, Future Research Directions. S. Ghose et al. 2018.
● Google Workloads for Consumer Devices: Mitigating Data Movement 

Bottlenecks. A. Boroumand et al. 2018.
● PIM-Enabled Instructions: A Low-Overhead, Locality-Aware 

Processing-in-Memory Architecture. J. Ahn et al. 2015.
● Quantifying the Energy Cost of Data Movement for Emerging 

Smartphone Workloads on Mobile Platforms. D. Pandiyan et al. 2014.
● https://en.wikipedia.org/wiki/Hybrid_Memory_Cube
● https://en.wikipedia.org/wiki/High_Bandwidth_Memory
● https://en.wikichip.org/wiki/pointer_chasing

46

https://en.wikipedia.org/wiki/Hybrid_Memory_Cube
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://en.wikichip.org/wiki/pointer_chasing

