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The presentation plan:
● People screaming in opposition of the presentation being in German.

● Quick talk about the simpler times, AMD Athlon 64 X2 3800+

● The use of interconnects today

● Multicore processors, AMD and Intel microarchitectures

● Multicore processors with absurd number of cores

● US8531943

● Problems with internal routers

● CHIPPER



  

Quick (pre)history of processors



  

Pentium II Overdrive.
Deschutes core on the left,
512 KB of L2 cache on the right.

Please take a moment to 
appreaciate the fact that we live 
in a time when L3 is integrated 
into the die.



  

Interconnects today



  

Nvidia



  

Intel



  

AMD



  

What the heck is SMBus?



  

Multicore processors



  

AMD Infinity Fabric



  



  

Intel uuuh
● Petition for Intel to chill the fuck out and stop 

conceaving a microarchitecture every 2.3 nS
● On wikichip 69 pages of intel microarchitectures 

exist, with additional 19 for GPU’s



  

Intel uuuh
● Petition for Intel to chill the fuck out and stop 

conceaving a microarchitecture every 2.3 nS
● On wikichip 69 pages of intel microarchitectures 

exist, with additional 19 for GPU’s
● Yet no Intel GPU’s exist (at least for commercial 

sale)



  

● 19 micro architectures that are actually 
interesting

● 12 of them have any description of 
interconnects

● Falling into one of three cathegories



  

But first, a game



  

But first, a game
Airmont, Chiovano, Knights Ferry, Palm cove, Whiskey lake,

Montvale, Rocket lake, Ice Lake, Polaris,

Alder lake, Coffe lake, Lakefield, Granite rapids,

Rock creek, Willow cove, Snow ridge, Haswell,

Cannon lake, Knights hill, Sapphire Rapids,

Tiger lake, Tukwila, Saltwell, Kaby Lake, Meteor Lake



  

Intel – Agents
● System agent
● Ring agent



  

Intel – Ring interconnect



  

Intel – mesh interconnect



  

Intel – slapping cores directly to 
system agent



  

High count core processors



  

US8531943



  

Epiphany-V: A 1024 processor 64-bit 
RISC System-On-Chip

 

Andreas Olofsson
(give it a read, it’s an awesome paper about chip design)



  



  



  



  

How much do interconnects cost?



  

So, why should we go bufferless?
● Buffers take up lots of space. If you get rid of them, the routers 

are smaller.

● Interconnects consume ~40% of the chip’s power while 
contributing nothing to the computation. Power used by the 
interconnect is basicly wasted, so we should minimise it.

● Desighning IC’s is hard. Manufacturing them, even harder. So, 
since bufferless networks are simpler, we reduce the 
development costs, and reduce the chances for a mistake.



  



  

Injection and ejection

Since each router has N inputs and N outputs 
data injection to the network is non-trivial



  

Deadlock prevention



  

CHIPPER router architecture



  

But what about the livelocks?



  

Couple more words about the 
reassembly buffers



  

Solutions for deadlocks



  

Retransmit once



  

Evaluation



  



  

Locality aware data mapping



  



  



  

Further reading

en.wikichip.org ← lots of informations on 
processors, architectures and beautyfull 
pictures of dies



  

 

  

CHIPPER

Ein kurzer Vortrag über pufferlose Ablenkrouter
Zbigniew Drozd

Hallo, Ich heisse Zbyszek, und heute sprechen wir 
uber die pufferlose ablenkrouteren in eingebettete 
prozessoren.



  

 

  



  

 

  

The presentation plan:
● People screaming in opposition of the presentation being in German.

● Quick talk about the simpler times, AMD Athlon 64 X2 3800+

● The use of interconnects today

● Multicore processors, AMD and Intel microarchitectures

● Multicore processors with absurd number of cores

● US8531943

● Problems with internal routers

● CHIPPER

Alright, let’s get to the main presentation. Today we 
will try to cover the immense topic of interconnects 
and implementation of bufferless routers.

First, we will start with how people decided to ruin 
their lives by implementing multicore processors, in 
a bit of a history lesson.

Then, we will talk about how the interconnects are 
used today, to show that this is not some expensive 
server technology accesible only by chosen people 
with lots of money.

Next we will delve into microarchitectures of intel and 
amd, and see how exactly are the interconnects 
implemented. Now, disclaimer, this seminar focuses 
on low level implementations. So we will not care 
about what exactly is being sent, or why. We will 
have a sender, a receaver, and a packet containing 
data, that will travel from A to B.

Then, we will talk about how people deal with 
processors with stupid number of cores. A case 
study of epiphany V, a 1024 core risc processor.

Then we will look at a patent, where the authors of 
epiphany-5 tried to keep interconnects to 
themselves

And finally, we will talk about CHIPPER, the protocol 
that the paper focuses on.



  

 

  

Quick (pre)history of processors

<quick rant about how earlier days were simpler, as 
there were only single core processors>

But then, in 2005 AMD has introduced the first dual 
core CPU the Athlon 64 X2 3800+. This is where 
our story begins, as at this point we started to have 
problems with connecting multiple chips together.



  

 

  

Pentium II Overdrive.
Deschutes core on the left,
512 KB of L2 cache on the right.

Please take a moment to 
appreaciate the fact that we live 
in a time when L3 is integrated 
into the die.

As a fun fact, here is the bleeding edge of the 90’s. 
Notice how the L2 is outside the processor.

Also, notice how the horrible nameing schemes vere 
present even 20 years ago.



  

 

  

Interconnects today



  

 

  

Nvidia

In this case study we will go really quickly over some 
HPC companies to show that interconnects are 
present in every single area of computeing.

Here we have nvidia, with their interconnects.

First example we have NVLink. This technology is not 
for the feint of heart, as prices of servers (whoose 
diagram is on the left are as high as a new car). But 
on the right, we can see a simplified graph of a gpu, 
with the interconnect marked as a green rectangle. 
Every GPU must have such an interconnect to 
shuffle data between processing cores.



  

 

  

Intel

Next, intel. And similarly, we have two examples. On 
the right, is a four cpu motherboard, with intel’s way 
of connecting them. Same story, equivalent to a 
price of a car. But on the left side, we can see 
insides and a diagram of an ice lake processor, that 
is accesable to a mere mortal. This suprised me, as 
the processor uses a ring interconnect (so not „all 
to all” as I have thought). This is a brief slide about 
intel, we will talk later about the specific 
implementations of interconnects that they have 
conceaved during the years. 



  

 

  

AMD

Now, AMD with their Zen architecture, and Infinity 
fabric interconnect. This one is actually quite 
interesting, as it leverages chiplets (so processing 
cores on separate dies)



  

 

  

What the heck is SMBus?

Not every interconnect is as fast as we have covered 
previously. There are actually interconnects in 
embedded systems, than enable master to slave 
communication. There is even one on the 
motherboard of your computer. It’s called SMBus, 
and it derives from I2C, a two wire protocol that is 
known to everyone who had done anything with  
electronics.



  

 

  

Multicore processors

Ok, now that we have skimmed over the different 
kinds of applications of interconnects, we will focus 
on CPU’s (sorry nvidia) and solutions that are kept 
inside a single chip (we are giving AMD a pass, and 
stick with their chiplets for the next hour)



  

 

  

AMD Infinity Fabric



  

 

  



  

 

  

Intel uuuh
● Petition for Intel to chill the fuck out and stop 

conceaving a microarchitecture every 2.3 nS
● On wikichip 69 pages of intel microarchitectures 

exist, with additional 19 for GPU’s

So, intel processors.
I have a petition for Intel, to chill out and stop creating 

a new microarchitecture every 2.3 nS. On wikichip 
(that will be the source for the following slides, 
there are 69 pages talking about intel cpu 
microarchitectures)



  

 

  

Intel uuuh
● Petition for Intel to chill the fuck out and stop 

conceaving a microarchitecture every 2.3 nS
● On wikichip 69 pages of intel microarchitectures 

exist, with additional 19 for GPU’s
● Yet no Intel GPU’s exist (at least for commercial 

sale)



  

 

  

● 19 micro architectures that are actually 
interesting

● 12 of them have any description of 
interconnects

● Falling into one of three cathegories

So, we have 19 mircro architectures that are well 
documented (either because closed source, or 
people not giving a shit, as those 
microarchitectures are similar to each other)

12 of them have any description of the interconnects, 
that fall into one of three cathegories:

> ring
> mesh
> slapping cores directly to the system agent.



  

 

  

But first, a game

But first, a game. I will now display some names. Part 
of them are intel architectures, some of them are 
made up, and others are geological places from 
nature preserves in america. Try to guess what are 
they)



  

 

  

But first, a game
Airmont, Chiovano, Knights Ferry, Palm cove, Whiskey lake,

Montvale, Rocket lake, Ice Lake, Polaris,

Alder lake, Coffe lake, Lakefield, Granite rapids,

Rock creek, Willow cove, Snow ridge, Haswell,

Cannon lake, Knights hill, Sapphire Rapids,

Tiger lake, Tukwila, Saltwell, Kaby Lake, Meteor Lake

Yeah, they are all intel microarchitectures.



  

 

  

Intel – Agents
● System agent
● Ring agent

So, before we go any further, we should explain what 
system agent and ring agent is. To put it simply 
System agent contains Image Processing Unit 
(somehow different from the GPU), Display Engine 
(no clue what this is), I/O bus (pcie, memory 
controller). This is included in the seminar, as not 
many people probably know about it’s existence.

   Ring agent – possibly intel’s name for the 
networking part of the core. Not sure on this one 
tho.



  

 

  

Intel – Ring interconnect

The ring interconnect is the most popular 
interconnect in mid to high range intel CPU’s these 
days. It features a ring built up of ring agents 
(routers) that handle transmitting data around the 
ring. The interconnect also joins the GPU and 
system agent.

The interconnect is actually composed of four rings
> Data
> Request
> Acknowlegde
> Snoop



  

 

  

Intel – mesh interconnect

This interconnect is used in Cascade lake, Skylake 
and Polaris. First two are real products, the last one 
is a showcase for multicore processing. 

What is mesh architecture you might ask? Mesh is 
acheaved by placing vertical and horisontal 
bidirectional halfrings.

Here, the architecture of a skylake processor.



  

 

  

Intel – slapping cores directly to 
system agent

This is in Silvermont (and probably other 
architectures) processors. These are mobile chips, 
so such a solution makes sense, we are not doing 
heavy computing tasks on a smartphone.

These were in 1,2,4,8 core configurations



  

 

  

High count core processors

Ok. So, we have talked about commercial CPU’s with 
up to 72 cores. But what if we wanted to go bigger? 
Surely, those solutions are scalable, right? They will 
work up to, say, 1024 cores, right?



  

 

  

US8531943



  

 

  

Epiphany-V: A 1024 processor 64-bit 
RISC System-On-Chip

 

Andreas Olofsson
(give it a read, it’s an awesome paper about chip design)

Now, we will be doing a case study of Epiphany-V. 
This is a processor designed by a single person, 
funded by DARPA, that you sadly can’t buy :/



  

 

  

This is the architecture of a single chip. We can see 
the cores placed in a grid, with IO for connecting 
multiple chips together. Note the NOC (Network on 
chip) that takes around ¼ of the space



  

 

  



  

 

  



  

 

  

How much do interconnects cost?

Actually, quite a lot. If we go with the epiphany V 
figures, interconnects eat up 10% of the chip. That 
is quite a lot. That’s why we will delve into the topic 
of bufferless routers and see how they work, and 
how they can improve the design of a chip.



  

 

  

So, why should we go bufferless?
● Buffers take up lots of space. If you get rid of them, the routers 

are smaller.

● Interconnects consume ~40% of the chip’s power while 
contributing nothing to the computation. Power used by the 
interconnect is basicly wasted, so we should minimise it.

● Desighning IC’s is hard. Manufacturing them, even harder. So, 
since bufferless networks are simpler, we reduce the 
development costs, and reduce the chances for a mistake.

So, what are the arguments for swithcing to 
bufferless designs?

Since IC design and fabrication is pretty much the 
most expensive thing you can realistically do in 
electronics, the design should be compact (to 
minimise the footprint of the chip) and simple (to 
minimise chances for faliures in design, that render 
a batch of processors unusable).

Power dissapation is also a big factor, as powering 
buffers (so basically, big chunks of memory) takes 
lot’s of power, hindering the thermal performance 
and efficiency of the chip



  

 

  

Let’s look at the previous attempts of creaing a 
bufferless network. On the left, we have a typical 
buffered approach, where incoming data is stored 
in the memory if it can’t exit. On the right, we can 
see a BLESS router. In bless, we sort the packets 
by priority (for example, by their age) and choose to 
route packets with higher priority to places that they 
want to go. If a packet cannot fit, it will be pushed to 
a different port.

This assures, that the network won’t clog, however, it 
comes at a cost of slow comparator and sorting 
circuit, and big overhead for the packet, as it needs 
to store it’s age.



  

 

  

Injection and ejection

Since each router has N inputs and N outputs 
data injection to the network is non-trivial

So, let’s talk about actually sending some data via 
the network. Since each router has the same 
number of inputs as outputs, the node has to wait 
before injecting the data, to assure that there will be 
at least one free output for the injected data. 
Injection buffers are not needed, but should be 
implemented, as the core would stop working untill 
there is a free slot in the router.

Ejection is handled by the router itself (so we assume 
that the node can fit all the data that we want to 
feed it). This however is a bad assumption, as 
packets can be receaved out of order, and we need 
to take care of reordering them.



  

 

  

Deadlock prevention

Since we have no local feedback, deadlocks in the 
network can occur. Thus, we have to assume 
pesimistic circumstances. That would mean a need 
to implement a reassembly buffer capable of fitting 
data from all the network. And since the whole idea 
of this paper is to minimise the buffer size and 
numbers, this is not the way we would like to solve 
the deadlock problem



  

 

  

CHIPPER router architecture

This is the router architecture for the CHIPPER. Let’s 
analise it.

We can see, that the proposed architecture is much 
simpler, and works in a more parallel manner. This 
is acheaved because we have relaxed the 
requirements, we will only care about the most 
important packet, the rest can go anywhere.

We can also see ejectors and injectors for 
pushing/pulling data from the network. You might 
wonder why Eject/inject isn’t done with another I/O 
link. That’s because we wouldn’t have a router with 
a number of ports being a power of two (design 
simplicity). Also, you can see that the outputs are 
premutated. That’s because we want to continue 
going E→E and S→S (those are more popular 
choices for a packet) when permuter blocks are 
inactive



  

 

  

But what about the livelocks?

Livelocks are still possible in this scheme. That is 
why we will be adding a concept such as golden 
packet. We will be randomly selecting a single 
packet, and calling it „golden” giving it priority over 
any other packet. This soluton ensures that we 
don’t get livelocks (every packet will be golden at 
some point) and choosing the priviliged packet 
inside the router is very easy to implement. The 
status of being a golden packet might be held as a 
single bit inside the message. We will also need to 
have comparators for the Golden Tie case, but as 
those are used the least ofter, we will not care 
about their power consumption.

Choosing a packet to be golden is a different story. 
We are sure, that all routers must agree on it, so 
implementing a global system that tells all routers 
the golden packet is possible. But since we want to 
keep the routers as separate as possible, we will 
implement an algorithm inside all of them, that 
cycles through all possible packets, and calls them 
golden



  

 

  

Couple more words about the 
reassembly buffers

This one is actually really clever. Since at each node, 
we have L1 and L2 caches, and if we want to 
receave data we need to have space alocated for it, 
we will be using L1 or L2 directly as a reassembly 
buffer.

We can also use these as injection buffers.



  

 

  

Solutions for deadlocks

So, we have seen that golden packets are solutions 
for livelocks. But deadlocks can still occur. To 
mitigate this, we have two obvious solutions.

The first one, is to send a allocation request to the 
recepient. This is easily implemented, but now, 
every transfer is proceeded by an allocation 
request, that slows everything down considerably.

The second one, is to simply drop the incoming 
packet when the recepient has no space left. This 
forces us to implement some recovery system, 
such as the recepient sending a retransmit request. 
This causes further problems (such as senders 
keeping the data stored for prolonged amounts of 
time), so the solution that the autors went with was



  

 

  

Retransmit once

The key idea, is that we can send a allocation 
request and hope it gets through. We don’t need to 
store it, as we can generate it easily, since we have 
the data that we actually want to send.

If the recepient has receaved the allocation request, it 
will say that the buffer is free, and we can start the 
data transmission.

If the recepient has dropped the allocation request, it 
will send a retransmit message to get the allocation 
request once more. Since we are sending the 
retransmit message only when we have space, the 
allocation request will be only sent twice, in the 
worst case scenario.

This retransmit once protocol works well with the 
golden packet.



  

 

  

Evaluation

The proposed system has been simulated on a clock 
accurate simulator, across different workloads. 
Above you can see the parameters of the simulated 
machine



  

 

  

Here we can see relative performance and power 
usage of a system with different interocnnects. We 
can see that CHIPPER has the best power 
efficiency, while acheaving results that are not 
really worse from BLESS.

The tests have also shown, that the best size of the 
buffers is 16 packets big. This results in 0.0016% 
retransmit rate. Since 16 packet big buffers are a 
realistic choice, the authors conclude that the 
retransmit overhead is negligible.



  

 

  

Locality aware data mapping

While running CHIPPER on a 8x8 mesh network of 
processors, we get a 11.7% loss of performance.

If we group processors in 4x4 chunks, the 
performance degradation drops to 6.8%.

If the chunks are even smaller, the performance drop 
starts getting neglegible, down to 1.1%.

There results show that when reducing overall 
network load the performance of the chip increases



  

 

  



  

 

  

Now, CHIPPER might sound like a bad option. It’s 
slower, saturates way faster than buffered or 
BLESS networks. So now the question is „why 
should CHIPPER exist” or even „why whas this 
paper created”. The main reason is on this slide. 
35% reduction in size compared to buffered 
switches is a huge deal.



  

 

  

Further reading

en.wikichip.org ← lots of informations on 
processors, architectures and beautyfull 
pictures of dies


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44

