

CHIPPER

Ein kurzer Vortrag über pufferlose Ablenkrouter
Zbigniew Drozd

The presentation plan:
● People screaming in opposition of the presentation being in German.

● Quick talk about the simpler times, AMD Athlon 64 X2 3800+

● The use of interconnects today

● Multicore processors, AMD and Intel microarchitectures

● Multicore processors with absurd number of cores

● US8531943

● Problems with internal routers

● CHIPPER

Quick (pre)history of processors

Pentium II Overdrive.
Deschutes core on the left,
512 KB of L2 cache on the right.

Please take a moment to
appreaciate the fact that we live
in a time when L3 is integrated
into the die.

Interconnects today

Nvidia

Intel

AMD

What the heck is SMBus?

Multicore processors

AMD Infinity Fabric

Intel uuuh
● Petition for Intel to chill the fuck out and stop

conceaving a microarchitecture every 2.3 nS
● On wikichip 69 pages of intel microarchitectures

exist, with additional 19 for GPU’s

Intel uuuh
● Petition for Intel to chill the fuck out and stop

conceaving a microarchitecture every 2.3 nS
● On wikichip 69 pages of intel microarchitectures

exist, with additional 19 for GPU’s
● Yet no Intel GPU’s exist (at least for commercial

sale)

● 19 micro architectures that are actually
interesting

● 12 of them have any description of
interconnects

● Falling into one of three cathegories

But first, a game

But first, a game
Airmont, Chiovano, Knights Ferry, Palm cove, Whiskey lake,

Montvale, Rocket lake, Ice Lake, Polaris,

Alder lake, Coffe lake, Lakefield, Granite rapids,

Rock creek, Willow cove, Snow ridge, Haswell,

Cannon lake, Knights hill, Sapphire Rapids,

Tiger lake, Tukwila, Saltwell, Kaby Lake, Meteor Lake

Intel – Agents
● System agent
● Ring agent

Intel – Ring interconnect

Intel – mesh interconnect

Intel – slapping cores directly to
system agent

High count core processors

US8531943

Epiphany-V: A 1024 processor 64-bit
RISC System-On-Chip

Andreas Olofsson
(give it a read, it’s an awesome paper about chip design)

How much do interconnects cost?

So, why should we go bufferless?
● Buffers take up lots of space. If you get rid of them, the routers

are smaller.

● Interconnects consume ~40% of the chip’s power while
contributing nothing to the computation. Power used by the
interconnect is basicly wasted, so we should minimise it.

● Desighning IC’s is hard. Manufacturing them, even harder. So,
since bufferless networks are simpler, we reduce the
development costs, and reduce the chances for a mistake.

Injection and ejection

Since each router has N inputs and N outputs
data injection to the network is non-trivial

Deadlock prevention

CHIPPER router architecture

But what about the livelocks?

Couple more words about the
reassembly buffers

Solutions for deadlocks

Retransmit once

Evaluation

Locality aware data mapping

Further reading

en.wikichip.org ← lots of informations on
processors, architectures and beautyfull
pictures of dies

CHIPPER

Ein kurzer Vortrag über pufferlose Ablenkrouter
Zbigniew Drozd

Hallo, Ich heisse Zbyszek, und heute sprechen wir
uber die pufferlose ablenkrouteren in eingebettete
prozessoren.

The presentation plan:
● People screaming in opposition of the presentation being in German.

● Quick talk about the simpler times, AMD Athlon 64 X2 3800+

● The use of interconnects today

● Multicore processors, AMD and Intel microarchitectures

● Multicore processors with absurd number of cores

● US8531943

● Problems with internal routers

● CHIPPER

Alright, let’s get to the main presentation. Today we
will try to cover the immense topic of interconnects
and implementation of bufferless routers.

First, we will start with how people decided to ruin
their lives by implementing multicore processors, in
a bit of a history lesson.

Then, we will talk about how the interconnects are
used today, to show that this is not some expensive
server technology accesible only by chosen people
with lots of money.

Next we will delve into microarchitectures of intel and
amd, and see how exactly are the interconnects
implemented. Now, disclaimer, this seminar focuses
on low level implementations. So we will not care
about what exactly is being sent, or why. We will
have a sender, a receaver, and a packet containing
data, that will travel from A to B.

Then, we will talk about how people deal with
processors with stupid number of cores. A case
study of epiphany V, a 1024 core risc processor.

Then we will look at a patent, where the authors of
epiphany-5 tried to keep interconnects to
themselves

And finally, we will talk about CHIPPER, the protocol
that the paper focuses on.

Quick (pre)history of processors

<quick rant about how earlier days were simpler, as
there were only single core processors>

But then, in 2005 AMD has introduced the first dual
core CPU the Athlon 64 X2 3800+. This is where
our story begins, as at this point we started to have
problems with connecting multiple chips together.

Pentium II Overdrive.
Deschutes core on the left,
512 KB of L2 cache on the right.

Please take a moment to
appreaciate the fact that we live
in a time when L3 is integrated
into the die.

As a fun fact, here is the bleeding edge of the 90’s.
Notice how the L2 is outside the processor.

Also, notice how the horrible nameing schemes vere
present even 20 years ago.

Interconnects today

Nvidia

In this case study we will go really quickly over some
HPC companies to show that interconnects are
present in every single area of computeing.

Here we have nvidia, with their interconnects.

First example we have NVLink. This technology is not
for the feint of heart, as prices of servers (whoose
diagram is on the left are as high as a new car). But
on the right, we can see a simplified graph of a gpu,
with the interconnect marked as a green rectangle.
Every GPU must have such an interconnect to
shuffle data between processing cores.

Intel

Next, intel. And similarly, we have two examples. On
the right, is a four cpu motherboard, with intel’s way
of connecting them. Same story, equivalent to a
price of a car. But on the left side, we can see
insides and a diagram of an ice lake processor, that
is accesable to a mere mortal. This suprised me, as
the processor uses a ring interconnect (so not „all
to all” as I have thought). This is a brief slide about
intel, we will talk later about the specific
implementations of interconnects that they have
conceaved during the years.

AMD

Now, AMD with their Zen architecture, and Infinity
fabric interconnect. This one is actually quite
interesting, as it leverages chiplets (so processing
cores on separate dies)

What the heck is SMBus?

Not every interconnect is as fast as we have covered
previously. There are actually interconnects in
embedded systems, than enable master to slave
communication. There is even one on the
motherboard of your computer. It’s called SMBus,
and it derives from I2C, a two wire protocol that is
known to everyone who had done anything with
electronics.

Multicore processors

Ok, now that we have skimmed over the different
kinds of applications of interconnects, we will focus
on CPU’s (sorry nvidia) and solutions that are kept
inside a single chip (we are giving AMD a pass, and
stick with their chiplets for the next hour)

AMD Infinity Fabric

Intel uuuh
● Petition for Intel to chill the fuck out and stop

conceaving a microarchitecture every 2.3 nS
● On wikichip 69 pages of intel microarchitectures

exist, with additional 19 for GPU’s

So, intel processors.
I have a petition for Intel, to chill out and stop creating

a new microarchitecture every 2.3 nS. On wikichip
(that will be the source for the following slides,
there are 69 pages talking about intel cpu
microarchitectures)

Intel uuuh
● Petition for Intel to chill the fuck out and stop

conceaving a microarchitecture every 2.3 nS
● On wikichip 69 pages of intel microarchitectures

exist, with additional 19 for GPU’s
● Yet no Intel GPU’s exist (at least for commercial

sale)

● 19 micro architectures that are actually
interesting

● 12 of them have any description of
interconnects

● Falling into one of three cathegories

So, we have 19 mircro architectures that are well
documented (either because closed source, or
people not giving a shit, as those
microarchitectures are similar to each other)

12 of them have any description of the interconnects,
that fall into one of three cathegories:

> ring
> mesh
> slapping cores directly to the system agent.

But first, a game

But first, a game. I will now display some names. Part
of them are intel architectures, some of them are
made up, and others are geological places from
nature preserves in america. Try to guess what are
they)

But first, a game
Airmont, Chiovano, Knights Ferry, Palm cove, Whiskey lake,

Montvale, Rocket lake, Ice Lake, Polaris,

Alder lake, Coffe lake, Lakefield, Granite rapids,

Rock creek, Willow cove, Snow ridge, Haswell,

Cannon lake, Knights hill, Sapphire Rapids,

Tiger lake, Tukwila, Saltwell, Kaby Lake, Meteor Lake

Yeah, they are all intel microarchitectures.

Intel – Agents
● System agent
● Ring agent

So, before we go any further, we should explain what
system agent and ring agent is. To put it simply
System agent contains Image Processing Unit
(somehow different from the GPU), Display Engine
(no clue what this is), I/O bus (pcie, memory
controller). This is included in the seminar, as not
many people probably know about it’s existence.

 Ring agent – possibly intel’s name for the
networking part of the core. Not sure on this one
tho.

Intel – Ring interconnect

The ring interconnect is the most popular
interconnect in mid to high range intel CPU’s these
days. It features a ring built up of ring agents
(routers) that handle transmitting data around the
ring. The interconnect also joins the GPU and
system agent.

The interconnect is actually composed of four rings
> Data
> Request
> Acknowlegde
> Snoop

Intel – mesh interconnect

This interconnect is used in Cascade lake, Skylake
and Polaris. First two are real products, the last one
is a showcase for multicore processing.

What is mesh architecture you might ask? Mesh is
acheaved by placing vertical and horisontal
bidirectional halfrings.

Here, the architecture of a skylake processor.

Intel – slapping cores directly to
system agent

This is in Silvermont (and probably other
architectures) processors. These are mobile chips,
so such a solution makes sense, we are not doing
heavy computing tasks on a smartphone.

These were in 1,2,4,8 core configurations

High count core processors

Ok. So, we have talked about commercial CPU’s with
up to 72 cores. But what if we wanted to go bigger?
Surely, those solutions are scalable, right? They will
work up to, say, 1024 cores, right?

US8531943

Epiphany-V: A 1024 processor 64-bit
RISC System-On-Chip

Andreas Olofsson
(give it a read, it’s an awesome paper about chip design)

Now, we will be doing a case study of Epiphany-V.
This is a processor designed by a single person,
funded by DARPA, that you sadly can’t buy :/

This is the architecture of a single chip. We can see
the cores placed in a grid, with IO for connecting
multiple chips together. Note the NOC (Network on
chip) that takes around ¼ of the space

How much do interconnects cost?

Actually, quite a lot. If we go with the epiphany V
figures, interconnects eat up 10% of the chip. That
is quite a lot. That’s why we will delve into the topic
of bufferless routers and see how they work, and
how they can improve the design of a chip.

So, why should we go bufferless?
● Buffers take up lots of space. If you get rid of them, the routers

are smaller.

● Interconnects consume ~40% of the chip’s power while
contributing nothing to the computation. Power used by the
interconnect is basicly wasted, so we should minimise it.

● Desighning IC’s is hard. Manufacturing them, even harder. So,
since bufferless networks are simpler, we reduce the
development costs, and reduce the chances for a mistake.

So, what are the arguments for swithcing to
bufferless designs?

Since IC design and fabrication is pretty much the
most expensive thing you can realistically do in
electronics, the design should be compact (to
minimise the footprint of the chip) and simple (to
minimise chances for faliures in design, that render
a batch of processors unusable).

Power dissapation is also a big factor, as powering
buffers (so basically, big chunks of memory) takes
lot’s of power, hindering the thermal performance
and efficiency of the chip

Let’s look at the previous attempts of creaing a
bufferless network. On the left, we have a typical
buffered approach, where incoming data is stored
in the memory if it can’t exit. On the right, we can
see a BLESS router. In bless, we sort the packets
by priority (for example, by their age) and choose to
route packets with higher priority to places that they
want to go. If a packet cannot fit, it will be pushed to
a different port.

This assures, that the network won’t clog, however, it
comes at a cost of slow comparator and sorting
circuit, and big overhead for the packet, as it needs
to store it’s age.

Injection and ejection

Since each router has N inputs and N outputs
data injection to the network is non-trivial

So, let’s talk about actually sending some data via
the network. Since each router has the same
number of inputs as outputs, the node has to wait
before injecting the data, to assure that there will be
at least one free output for the injected data.
Injection buffers are not needed, but should be
implemented, as the core would stop working untill
there is a free slot in the router.

Ejection is handled by the router itself (so we assume
that the node can fit all the data that we want to
feed it). This however is a bad assumption, as
packets can be receaved out of order, and we need
to take care of reordering them.

Deadlock prevention

Since we have no local feedback, deadlocks in the
network can occur. Thus, we have to assume
pesimistic circumstances. That would mean a need
to implement a reassembly buffer capable of fitting
data from all the network. And since the whole idea
of this paper is to minimise the buffer size and
numbers, this is not the way we would like to solve
the deadlock problem

CHIPPER router architecture

This is the router architecture for the CHIPPER. Let’s
analise it.

We can see, that the proposed architecture is much
simpler, and works in a more parallel manner. This
is acheaved because we have relaxed the
requirements, we will only care about the most
important packet, the rest can go anywhere.

We can also see ejectors and injectors for
pushing/pulling data from the network. You might
wonder why Eject/inject isn’t done with another I/O
link. That’s because we wouldn’t have a router with
a number of ports being a power of two (design
simplicity). Also, you can see that the outputs are
premutated. That’s because we want to continue
going E→E and S→S (those are more popular
choices for a packet) when permuter blocks are
inactive

But what about the livelocks?

Livelocks are still possible in this scheme. That is
why we will be adding a concept such as golden
packet. We will be randomly selecting a single
packet, and calling it „golden” giving it priority over
any other packet. This soluton ensures that we
don’t get livelocks (every packet will be golden at
some point) and choosing the priviliged packet
inside the router is very easy to implement. The
status of being a golden packet might be held as a
single bit inside the message. We will also need to
have comparators for the Golden Tie case, but as
those are used the least ofter, we will not care
about their power consumption.

Choosing a packet to be golden is a different story.
We are sure, that all routers must agree on it, so
implementing a global system that tells all routers
the golden packet is possible. But since we want to
keep the routers as separate as possible, we will
implement an algorithm inside all of them, that
cycles through all possible packets, and calls them
golden

Couple more words about the
reassembly buffers

This one is actually really clever. Since at each node,
we have L1 and L2 caches, and if we want to
receave data we need to have space alocated for it,
we will be using L1 or L2 directly as a reassembly
buffer.

We can also use these as injection buffers.

Solutions for deadlocks

So, we have seen that golden packets are solutions
for livelocks. But deadlocks can still occur. To
mitigate this, we have two obvious solutions.

The first one, is to send a allocation request to the
recepient. This is easily implemented, but now,
every transfer is proceeded by an allocation
request, that slows everything down considerably.

The second one, is to simply drop the incoming
packet when the recepient has no space left. This
forces us to implement some recovery system,
such as the recepient sending a retransmit request.
This causes further problems (such as senders
keeping the data stored for prolonged amounts of
time), so the solution that the autors went with was

Retransmit once

The key idea, is that we can send a allocation
request and hope it gets through. We don’t need to
store it, as we can generate it easily, since we have
the data that we actually want to send.

If the recepient has receaved the allocation request, it
will say that the buffer is free, and we can start the
data transmission.

If the recepient has dropped the allocation request, it
will send a retransmit message to get the allocation
request once more. Since we are sending the
retransmit message only when we have space, the
allocation request will be only sent twice, in the
worst case scenario.

This retransmit once protocol works well with the
golden packet.

Evaluation

The proposed system has been simulated on a clock
accurate simulator, across different workloads.
Above you can see the parameters of the simulated
machine

Here we can see relative performance and power
usage of a system with different interocnnects. We
can see that CHIPPER has the best power
efficiency, while acheaving results that are not
really worse from BLESS.

The tests have also shown, that the best size of the
buffers is 16 packets big. This results in 0.0016%
retransmit rate. Since 16 packet big buffers are a
realistic choice, the authors conclude that the
retransmit overhead is negligible.

Locality aware data mapping

While running CHIPPER on a 8x8 mesh network of
processors, we get a 11.7% loss of performance.

If we group processors in 4x4 chunks, the
performance degradation drops to 6.8%.

If the chunks are even smaller, the performance drop
starts getting neglegible, down to 1.1%.

There results show that when reducing overall
network load the performance of the chip increases

Now, CHIPPER might sound like a bad option. It’s
slower, saturates way faster than buffered or
BLESS networks. So now the question is „why
should CHIPPER exist” or even „why whas this
paper created”. The main reason is on this slide.
35% reduction in size compared to buffered
switches is a huge deal.

Further reading

en.wikichip.org ← lots of informations on
processors, architectures and beautyfull
pictures of dies

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44

