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Ein kurzer Vortrag uber pufferlose Ablenkrouter



Huh, moze faktycznie po niemiecku walnaé catosE?

nie ¢y



The presentation plan:

People screaming in opposition of the presentation being in German.
Quick talk about the simpler times, AMD Athlon 64 X2 3800+

The use of interconnects today

Multicore processors, AMD and Intel microarchitectures

Multicore processors with absurd number of cores

US8531943

Problems with internal routers

CHIPPER



Quick (pre)history of processors




Pentium Il Overdrive.
Deschutes core on the left,
512 KB of L2 cache on the right.
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Please take a moment to
appreaciate the fact that we live
in a time when L3 is integrated
into the die.
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Interconnects today
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What the heck iIs SMBus?



Multicore processors
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Intel uuuh
* Petition for Intel to chill the fuck out and stop
conceaving a microarchitecture every 2.3 nS

* On wikichip 69 pages of intel microarchitectures
exist, with additional 19 for GPU’s



Intel uuuh
* Petition for Intel to chill the fuck out and stop
conceaving a microarchitecture every 2.3 nS

* On wikichip 69 pages of intel microarchitectures
exist, with additional 19 for GPU’s

* Yet no Intel GPU'’s exist (at least for commercial
sale)




* 19 micro architectures that are actually
Interesting

* 12 of them have any description of
Interconnects

* Falling into one of three cathegories



But first, a game



But first, a game

Airmont, Chiovano, Knights Ferry, Palm cove, Whiskey lake,
Montvale, Rocket lake, Ice Lake, Polaris,
Alder lake, Coffe lake, Lakefield, Granite rapids,
Rock creek, Willow cove, Snow ridge, Haswell,
Cannon lake, Knights hill, Sapphire Rapids,

Tiger lake, Tukwila, Saltwell, Kaby Lake, Meteor Lake



Intel — Agents
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Intel — Ring Interconnect
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Intel — mesh interconnect
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Intel — slapping cores directly to
system agent
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High count core processors
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Epiphany-V: A 1024 processor 64-bit
RISC System-On-Chip

Andreas Olofsson

(give it a read, it's an awesome paper about chip design)
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Figure 1: Epiphany-V Overview



III.LB Memory Architecture

The Epiphany 64-bit memory map is split into 1 Billion 1MB memory regions, with 30 bits dedicated to
x,¥,2 addressing. The complete Epiphany memory map is flat, distributed. and shared by all processors in
the system. Each individual memory region can be used by a single processor or ageresated as part of a
shared memory pool. The Epiphany architecture uses multi-banked software-managed scratch-pad memory
at each processor node. On every clock cyele, a processor node can:

= Fetch 5 bytes of instructions
s Load/store 8 bytes of data

» Receive § bytes from another processor in the system
+ Send # bytes to another processor in the system



IT1.C Network-On-Chip

The Epiphany-V mesh Network-on-Chip (“emesh”) consists of three independent 136-bit wide mesh networks.
Each one of the three NOCs serve different purposes:

» rmesh: Read request packets
» cmesh: On-chip write packets
+ xmesh: Off-chip write packets

Epiphany NOC packets are 136 bits wide and transferred between neighboring nodes in one and a half clock
cycles. Packets consist of 64 bits of data, 64 bits of address, and 8 bits of control. Read requests puts a
second 64-bit address in place of the data to indicate destination address for the returned read data.

Network-On-Chip routing follows a few simple, static rules. At every hop, the router compares its own
coordinate address with the packet’s destination address. If the column addresses are not equal, the packet
gets immediately routed to the south or north; otherwise, if the row addresses are not equal, the packet gets
routed to the east or west; otherwise the packet gets routed into the hub node.

Each routing node consists of a round robin five direction arbiter and a single stage FIFO. Single cycle
transaction push-back enables network stalling without packet loss.



How much do interconnects cost?



So, why should we go bufferless?

* Buffers take up lots of space. If you get rid of them, the routers
are smaller.

* Interconnects consume ~40% of the chip’s power while
contributing nothing to the computation. Power used by the
iInterconnect is basicly wasted, so we should minimise it.

* Desighning IC’s is hard. Manufacturing them, even harder. So,
since bufferless networks are simpler, we reduce the
development costs, and reduce the chances for a mistake.



Flits request Arbiters make Priority sort Sequential

output ports local decisions over all inputs assignment
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(a) Buffered router port allocator (b) Bufferless deflection router port allocator

Figure 1: Port allocator structures: deflection routing requires more complex logic with a longer critical path.



Injection and ejection

Since each router has N inputs and N outputs
data injection to the network is non-trivial



Deadlock prevention

. All nodes send
packets to Node 0

. Partial packets occupy
all reassembly buffers
in Node O

. Other packets cannot
eject into Node 0, and
fill the network by
continuously deflecting

. Remaining flits of
partially-received
packets (e.q.. A)
cannot inject

All reassembly
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Figure 2: Deadlock due to reassembly-buffer overflow.
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CHIPPER router architecture
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Figure 3: CHIPPER architecture: a permutation network replaces the traditional arbitration logic and crossbar.



But what about the livelocks?

Ruleset 1 Golden Packet Prioritization Rules

Golden Tie: If two flits are golden, the lower-numbered flit
(first 1n the golden packet) wins.

Golden Dominance: If one flit is golden, it wins over any
non-golden flit.

Common Case: Contests between two non-golden flits are
decided pseudo-randomly.




Couple more words about the
reassembly buffers



Solutions for deadlocks



Retransmit once
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Evaluation

Parameter || Setting
System topology 8x8 mesh, dense configuration (core + shared cache at every node); 4x4 for multithreaded
Core model Out-of-order x86, 128-entry instruction window, 16 MSHRs

Private L1 cache

64 KB, 4-way associative, 64-byte block size

Shared L2 cache

perfect (always hits), distributed (S-NUCA [24]), 16 request buffers (reassembly/inject buffers) per slice

Coherence protocol

Simple directory-based, based on SGI Origin [30], perfect directory

Interconnect Links

I-cycle latency, 128-bit flit width (4 flits per cache block)

Baseline buttered router

2-cycle latency, 4 VCs/channel, 8 tlits/VC

Baseline BLESS router

2-cycle latency, FLI'T-BLESS [38]

Table 1: System parameters used in our evaluation.
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Locality aware data mapping
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Buffered BLESS CHIPPER || % A Buffered —+ CHIPPER | % A BLESS — CHIPPER
Area 480174 um* | 311059 um?* | 306165 pwm* 36.2% reduction 1.6% reduction
Timing (crit path) 1.88ns 2.68 ns 1.90 ns 1.1% increase 29.1% reduction

Table 2: Hardware cost comparisons for a single router in a 65nm process.




Further reading

en.wikichip.org  lots of informations on
processors, architectures and beautyfull
pictures of dies



CHIPPER

Ein kurzer Vortrag Uber pufferlose Ablenkrouter

Hallo, Ich heisse Zbyszek, und heute sprechen wir
uber die pufferlose ablenkrouteren in eingebettete
prozessoren.
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The presentation plan:

* People screaming in opposition of the presentation being in German.
* Quick talk about the simpler times, AMD Athlon 64 X2 3800+

* The use of interconnects today

* Multicore processors, AMD and Intel microarchitectures

* Multicore processors with absurd number of cores

« US8531943

* Problems with internal routers

* CHIPPER

Alright, let’s get to the main presentation. Today we
will try to cover the immense topic of interconnects
and implementation of bufferless routers.

First, we will start with how people decided to ruin
their lives by implementing multicore processors, in
a bit of a history lesson.

Then, we will talk about how the interconnects are
used today, to show that this is not some expensive
server technology accesible only by chosen people
with lots of money.

Next we will delve into microarchitectures of intel and
amd, and see how exactly are the interconnects
Implemented. Now, disclaimer, this seminar focuses
on low level implementations. So we will not care
about what exactly is being sent, or why. We will
have a sender, a receaver, and a packet containing
data, that will travel from A to B.

Then, we will talk about how people deal with
processors with stupid number of cores. A case
studv of eninhanv V. a 1024 core risc processor



Quick (pre)history of processors

<quick rant about how earlier days were simpler, as
there were only single core processors>

But then, in 2005 AMD has introduced the first dual
core CPU the Athlon 64 X2 3800+. This is where
our story begins, as at this point we started to have
problems with connecting multiple chips together.



Pentium Il Overdrive.
Deschutes core on the left,
512 KB of L2 cache on the right.
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| AT : appreaciate the fact that we live
i ‘ in a time when L3 is integrated
into the die.

As a fun fact, here is the bleeding edge of the 90’s.
Notice how the L2 is outside the processor.

Also, notice how the horrible nameing schemes vere
present even 20 years ago.



Interconnects today
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In this case study we will go really quickly over some
HPC companies to show that interconnects are
present in every single area of computeing.

Here we have nvidia, with their interconnects.

First example we have NVLink. This technology is not
for the feint of heart, as prices of servers (whoose
diagram is on the left are as high as a new car). But
on the right, we can see a simplified graph of a gpu,
with the interconnect marked as a green rectangle.
Every GPU must have such an interconnect to
shuffle data between processing cores.
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Next, intel. And similarly, we have two examples. On
the right, is a four cpu motherboard, with intel’'s way
of connecting them. Same story, equivalent to a
price of a car. But on the left side, we can see
Insides and a diagram of an ice lake processor, that
IS accesable to a mere mortal. This suprised me, as
the processor uses a ring interconnect (so not ,all
to all” as | have thought). This is a brief slide about
intel, we will talk later about the specific
Implementations of interconnects that they have
conceaved during the years.



DRAM Channel

Unified Memory Controller
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Now, AMD with their Zen architecture, and Infinity
fabric interconnect. This one is actually quite
Interesting, as it leverages chiplets (so processing
cores on separate dies)



What the heck is SMBus?

Not every interconnect is as fast as we have covered
previously. There are actually interconnects in
embedded systems, than enable master to slave
communication. There is even one on the
motherboard of your computer. It's called SMBus,
and it derives from 12C, a two wire protocol that is
known to everyone who had done anything with
electronics.



Multicore processors

Ok, now that we have skimmed over the different
kinds of applications of interconnects, we will focus
on CPU’s (sorry nvidia) and solutions that are kept
Inside a single chip (we are giving AMD a pass, and
stick with their chiplets for the next hour)



AMD Infinity Fabric

DRAM Channel

1

Unified Memory Controller 10 Hubﬁ:trnllor
3 3
. Infinity Fabric .
o -
E iE BN N
& & & B
Core [ ] ore Core z 2z
g B 8 8
w26 =
o -
L b L b
& & & &
Core o 0 ore Core o o
g 8 8 8




v g

sale3 anv o

s/a0 76

Infinity Fbric

42GB/s

jouuR> v %, &
10 b comroller
1z2Gels

s g

oAAM Channsl

ied Memon omroller
s

sy ey
-8
sl osi > Bo waw pagun

Aot
U=y v

s/ zy

10 rub Cartraler

Infiniy Fbric




Intel uuuh

 Petition for Intel to chill the fuck out and stop
conceaving a microarchitecture every 2.3 nS

* On wikichip 69 pages of intel microarchitectures
exist, with additional 19 for GPU’s

So, intel processors.

| have a petition for Intel, to chill out and stop creating
a new microarchitecture every 2.3 nS. On wikichip
(that will be the source for the following slides,
there are 69 pages talking about intel cpu
microarchitectures)



Intel uuuh
 Petition for Intel to chill the fuck out and stop
conceaving a microarchitecture every 2.3 nS

* On wikichip 69 pages of intel microarchitectures
exist, with additional 19 for GPU’s

* Yet no Intel GPU’s exist (at least for commercial
sale)



* 19 micro architectures that are actually
Interesting

e 12 of them have any description of
Interconnects

 Falling into one of three cathegories

So, we have 19 mircro architectures that are well
documented (either because closed source, or
people not giving a shit, as those
microarchitectures are similar to each other)

12 of them have any description of the interconnects,
that fall into one of three cathegories:
> ring
> mesh
> slapping cores directly to the system agent.



But first, a game

But first, a game. | will now display some names. Part
of them are intel architectures, some of them are
made up, and others are geological places from
nature preserves in america. Try to guess what are
they)



But first, a game

Airmont, Chiovano, Knights Ferry, Palm cove, Whiskey lake,
Montvale, Rocket lake, Ice Lake, Polaris,
Alder lake, Coffe lake, Lakefield, Granite rapids,
Rock creek, Willow cove, Snow ridge, Haswell,
Cannon lake, Knights hill, Sapphire Rapids,
Tiger lake, Tukwila, Saltwell, Kaby Lake, Meteor Lake

Yeah, they are all intel microarchitectures.



Intel — Agents

* System agent

* Ring agent

So, before we go any further, we should explain what
system agent and ring agent is. To put it simply
System agent contains Image Processing Unit
(somehow different from the GPU), Display Engine
(no clue what this is), I1/O bus (pcie, memory
controller). This is included in the seminar, as not
many people probably know about it's existence.
Ring agent — possibly intel's name for the
networking part of the core. Not sure on this one
tho.



Intel — Ring interconnect

Memory Controller

» Ring 2l
' Interconnect |

= Display Ctrl
/O Ctrl

The ring interconnect is the most popular
interconnect in mid to high range intel CPU’s these
days. It features a ring built up of ring agents
(routers) that handle transmitting data around the
ring. The interconnect also joins the GPU and
system agent.

The interconnect is actually composed of four rings
> Data

> Request

> Acknowlegde

> Snoop



Intel — mesh interconnect
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This interconnect is used in Cascade lake, Skylake
and Polaris. First two are real products, the last one
IS a showcase for multicore processing.

What is mesh architecture you might ask? Mesh is
acheaved by placing vertical and horisontal
bidirectional halfrings.

Here, the architecture of a skylake processor.



Intel — slapping cores directly to
system agent

1 1

System Agent ﬁ Cpgﬁ:::ﬁzr

This is in Silvermont (and probably other
architectures) processors. These are mobile chips,
so such a solution makes sense, we are not doing
heavy computing tasks on a smartphone.

These were in 1,2,4,8 core configurations



High count core processors

Ok. So, we have talked about commercial CPU’s with
up to 72 cores. But what if we wanted to go bigger?
Surely, those solutions are scalable, right? They will
work up to, say, 1024 cores, right?
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Epiphany-V: A 1024 processor 64-bit
RISC System-On-Chip

Andreas Olofsson

(give it aread, it's an awesome paper about chip design)

Now, we will be doing a case study of Epiphany-V.
This is a processor designed by a single person,
funded by DARPA, that you sadly can’t buy :/
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Figure 1: Epiphany-V Overview

This is the architecture of a single chip. We can see
the cores placed in a grid, with 1O for connecting
multiple chips together. Note the NOC (Network on
chip) that takes around % of the space



III.LB Memory Architecture

The Epiphany 64-bit memory map is split into 1 Billion 1MB memory regions, with 30 bits dedicated to
x.y.2 addressing. The complete Epiphany memory map is flat, distributed, and shared by all processors in
the svstem. Each individual memory region can be used by a single processor or ageregated as part of a
shared memory pool. The Epiphany architecture uses multi-banked software-managed scratch-pad memory
at each proceszor node. On every clock cycle, a processor node can:

« Fetch 8 bytes of instructions

s Load/store 8 bytes of data

s Receive 8 bytes from another processor in the system
+ Send & bytes to another processor in the system



II1.C Network-On-Chip

The Epiphany-V mesh Network-on-Chip (“emesh”) consists of three independent 136-bit wide mesh networks.
Each one of the three NOCs serve different purposes:

o rmesh: Read request packets
o cmesh: On-chip write packets
o xmesh: Off-chip write packets

Epiphany NOC packets are 136 bits wide and transferred between neighboring nodes in one and a half clock
cycles. Packets consist of 64 bits of data, 64 bits of address, and 8 bits of control. Read requests puts a
second 64-bit address in place of the data to indicate destination address for the returned read data.

Network-On-Chip routing follows a few simple, static rules. At every hop, the router compares its own
coordinate address with the packet’s destination address. If the column addresses are not equal, the packet
gets immediately routed to the south or north; otherwise, if the row addresses are not equal, the packet gets
routed to the east or west; otherwise the packet gets routed into the hub node.

Each routing node consists of a round robin five direction arbiter and a single stage FIFO. Single cycle
transaction push-back enables network stalling without packet loss.



How much do interconnects cost?

Actually, quite a lot. If we go with the epiphany V
figures, interconnects eat up 10% of the chip. That
IS quite a lot. That's why we will delve into the topic
of bufferless routers and see how they work, and
how they can improve the design of a chip.



So, why should we go bufferless?

« Buffers take up lots of space. If you get rid of them, the routers
are smaller.

* Interconnects consume ~40% of the chip’s power while
contributing nothing to the computation. Power used by the
interconnect is basicly wasted, so we should minimise it.

* Desighning IC’s is hard. Manufacturing them, even harder. So,
since bufferless networks are simpler, we reduce the
development costs, and reduce the chances for a mistake.

So, what are the arguments for swithcing to
bufferless designs?

Since IC design and fabrication is pretty much the
most expensive thing you can realistically do in
electronics, the design should be compact (to
minimise the footprint of the chip) and simple (to
minimise chances for faliures in design, that render
a batch of processors unusable).

Power dissapation is also a big factor, as powering
buffers (so basically, big chunks of memory) takes
lot’s of power, hindering the thermal performance
and efficiency of the chip



Flits request Arbiters make Priority sort Sequential

output ports local decisions over all inputs assignment
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(a) Buffered router port allocator (b) Bufferless deflection router port allocator

Figure 1: Port allocator structures: deflection routing requires more complex logic with a longer critical path.

Let’s look at the previous attempts of creaing a
bufferless network. On the left, we have a typical
buffered approach, where incoming data is stored
In the memory if it can’t exit. On the right, we can
see a BLESS router. In bless, we sort the packets
by priority (for example, by their age) and choose to
route packets with higher priority to places that they
want to go. If a packet cannot fit, it will be pushed to
a different port.

This assures, that the network won’t clog, however, it
comes at a cost of slow comparator and sorting
circuit, and big overhead for the packet, as it needs
to store it’s age.



Injection and ejection

Since each router has N inputs and N outputs
data injection to the network is non-trivial

So, let’s talk about actually sending some data via
the network. Since each router has the same
number of inputs as outputs, the node has to wait
before injecting the data, to assure that there will be
at least one free output for the injected data.
Injection buffers are not needed, but should be
Implemented, as the core would stop working untill
there is a free slot in the router.

Ejection is handled by the router itself (so we assume
that the node can fit all the data that we want to
feed it). This however is a bad assumption, as
packets can be receaved out of order, and we need
to take care of reordering them.



Deadlock prevention

1. All nodes send Node 0 Mode 1 Node 2 Node 2

packets to Nede 0 Reassembly Buffer

i A Ao Ao b

2 Partial packets occupy |, (4] s] . B I I I

all reassembly buffers slots allocated | B| Be | B: le . N

in Node 0 cles i Injection Injection Injection

+ sl QUEUE | Queue A1 must inject

3. Other packets cannot D Deo: D1 D!l Fs 1 to reach Mode 0

eject into Node 0, and nd fr

fill the network by Packets EF l l annot inject: l assembly slot

continuously deflecting refused ejection: > networ X

remain in network
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cannot inject

All network links filled with flits

Figure 2: Deadlock due to reassembly-buffer overflow.

Since we have no local feedback, deadlocks in the
network can occur. Thus, we have to assume
pesimistic circumstances. That would mean a need
to implement a reassembly buffer capable of fitting
data from all the network. And since the whole idea
of this paper is to minimise the buffer size and
numbers, this is not the way we would like to solve
the deadlock problem



CHIPPER router architecture

Arbiter Block
Eject Inject Permute |
:_'-I'E;I: E . Tl -y S Output | 7 pick winner by
E UL 1} - E Links priority (GP)
W 1} - W
Ejector |Ejector |Injector Permuter 2. Send winner to
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(a) {b) (c) (d)
. . 3. Send loser to
Eject Inject remaining port

Figure 3: CHIPPER architecture: a permutation network replaces the traditional arbitration logic and crossbar.

This is the router architecture for the CHIPPER. Let’s
analise it.

We can see, that the proposed architecture is much
simpler, and works in a more parallel manner. This
IS acheaved because we have relaxed the
requirements, we will only care about the most
Important packet, the rest can go anywhere.

We can also see ejectors and injectors for
pushing/pulling data from the network. You might
wonder why Eject/inject isn’t done with another 1/O
link. That’s because we wouldn’t have a router with
a number of ports being a power of two (design
simplicity). Also, you can see that the outputs are
premutated. That's because we want to continue
going E- E and S-S (those are more popular
choices for a packet) when permuter blocks are
inactive



But what about the livelocks?

Ruleset 1 Golden Packet Prioritization Rules

Golden Tie: If two flits are golden, the lower-numbered flit
(first in the golden packet) wins.

Golden Dominance: If one flit is golden, it wins over any
non-golden flit.

Common Case: Contests between two non-golden flits are
decided pseudo-randomly.

Livelocks are still possible in this scheme. That is
why we will be adding a concept such as golden
packet. We will be randomly selecting a single
packet, and calling it ,golden” giving it priority over
any other packet. This soluton ensures that we
don’t get livelocks (every packet will be golden at
some point) and choosing the priviliged packet
Inside the router is very easy to implement. The
status of being a golden packet might be held as a
single bit inside the message. We will also need to
have comparators for the Golden Tie case, but as
those are used the least ofter, we will not care
about their power consumption.

Choosing a packet to be golden is a different story.
We are sure, that all routers must agree on it, so
implementing a global system that tells all routers
the golden packet is possible. But since we want to
keep the routers as separate as possible, we will
Implement an algorithm inside all of them, that
cvcles throuah all nossible nackets and calls them



Couple more words about the
reassembly buffers

This one is actually really clever. Since at each node,
we have L1 and L2 caches, and if we want to
receave data we need to have space alocated for it,
we will be using L1 or L2 directly as a reassembly
buffer.

We can also use these as injection buffers.



Solutions for deadlocks

So, we have seen that golden packets are solutions
for livelocks. But deadlocks can still occur. To
mitigate this, we have two obvious solutions.

The first one, is to send a allocation request to the
recepient. This is easily implemented, but now,
every transfer is proceeded by an allocation
request, that slows everything down considerably.

The second one, is to simply drop the incoming
packet when the recepient has no space left. This
forces us to implement some recovery system,
such as the recepient sending a retransmit request.
This causes further problems (such as senders
keeping the data stored for prolonged amounts of
time), so the solution that the autors went with was



Retransmit once

Requester Receiver

@ | e
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Free writeback for this request

data immediately
@ (no retransmit is
ever necessary)

Figure 4: Retransmit-Once flow control scheme.

The key idea, is that we can send a allocation
request and hope it gets through. We don’t need to
store it, as we can generate it easily, since we have
the data that we actually want to send.

If the recepient has receaved the allocation request, it
will say that the buffer is free, and we can start the
data transmission.

If the recepient has dropped the allocation request, it
will send a retransmit message to get the allocation
request once more. Since we are sending the
retransmit message only when we have space, the
allocation request will be only sent twice, in the
worst case scenario.

This retransmit once protocol works well with the
golden packet.



Evaluation

Parameter || Setting

System topology 8x8 mesh, dense configuration (core + shared cache at every node); 4x4 for multithreaded

Core model Out-of-order x86, 128-entry instruction window, 16 MSHRs

Private L1 cache 64 KB, 4-way associative, 64-byte block size

Shared L2 cache perfect (always hits), distributed (S-NUCA [24]), 16 request buffers (reassembly/inject buffers) per slice
Coherence protocol Simple directory-based, based on SGI Origin [30], perfect directory

Interconnect Links I-cycle latency, 128-bit flit width (4 flits per cache block)

Baseline buffered router 2-cycle latency, 4 VCs/channel, 8 flits/VC

Baseline BLESS router 2-cycle Tatency, FLIT-BLESS [38]

Table 1: System parameters used in our evaluation.

The proposed system has been simulated on a clock
accurate simulator, across different workloads.
Above you can see the parameters of the simulated
machine
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Here we can see relative performance and power
usage of a system with different interocnnects. We
can see that CHIPPER has the best power
efficiency, while acheaving results that are not
really worse from BLESS.

The tests have also shown, that the best size of the
buffers is 16 packets big. This results in 0.0016%
retransmit rate. Since 16 packet big buffers are a
realistic choice, the authors conclude that the
retransmit overhead is negligible.
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Locality aware data mapping

While running CHIPPER on a 8x8 mesh network of
processors, we get a 11.7% loss of performance.

If we group processors in 4x4 chunks, the
performance degradation drops to 6.8%.

If the chunks are even smaller, the performance drop
starts getting neglegible, down to 1.1%.

There results show that when reducing overall
network load the performance of the chip increases
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Buffered BLESS CHIPPER || % A Buffered — CHIPPER | % A BLESS — CHIPPER
Area 480174 um* | 311059 um? | 306165 um? 36.2% reduction 1.6% reduction
Timing (crit path) 1.88ns 2.68 ns 1.90 ns 1.1% increase 29.1% reduction

Table 2: Hardware cost comparisons for a single router in a 65nm process.

Now, CHIPPER might sound like a bad option. It's
slower, saturates way faster than buffered or
BLESS networks. So now the question is ,why
should CHIPPER exist” or even ,why whas this
paper created”. The main reason is on this slide.
35% reduction in size compared to buffered
switches is a huge deal.




Further reading

en.wikichip.org  lots of informations on
processors, architectures and beautyfull
pictures of dies
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