
Carnegie Mellon

1

Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data
 structs (ptables,

task and mm structs,
kernel stack)

Kernel
virtual
memory

0x00400000

Different for
each process

Carnegie Mellon

2

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

 pgd:
 Page global directory address
 Points to L1 page table

 vm_prot:
 Read/write permissions for

this area

 vm_flags
 Pages shared with other

processes or private to this
process

vm_flags

vm_flags

vm_flags

Each process has own task_struct, etc

Carnegie Mellon

3

Linux Page Fault Handling

read
1

write

2

read

3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries

vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

Carnegie Mellon

4

Memory Mapping
 VM areas initialized by associating them with disk objects.

 Called memory mapping

 Area can be backed by (i.e., get its initial values from) :
 Regular file on disk (e.g., an executable object file)

 Initial page bytes come from a section of a file

 Anonymous file (e.g., nothing)
 First fault will allocate a physical page full of 0's (demand-zero page)
 Once the page is written to (dirtied), it is like any other page

 Dirty pages are copied back and forth between memory and a
special swap file.

Carnegie Mellon

5

Review: Memory Management & Protection
 Code and data can be isolated or shared among processes

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

6

Sharing Revisited: Shared Objects

 Process 1 maps
the shared
object (on disk).

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Carnegie Mellon

7

Sharing Revisited: Shared Objects

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Process 2 maps
the same shared
object.

 Notice how the
virtual
addresses can
be different.

 But, difference
must be
multiple of page
size

Carnegie Mellon

8

Sharing Revisited:
Private Copy-on-write (COW) Objects

 Two processes
mapping a private
copy-on-write
(COW) object

 Area flagged as
private copy-on-
write

 PTEs in private
areas are flagged
as read-only

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Private
copy-on-write
area

Carnegie Mellon

9

Sharing Revisited:
Private Copy-on-write (COW) Objects

 Instruction writing
to private page
triggers
protection fault.

 Handler creates
new R/W page.

 Instruction
restarts upon
handler return.

 Copying deferred
as long as
possible!

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to private
copy-on-write

page

Carnegie Mellon

10

The fork Function Revisited

 VM and memory mapping explain how fork provides private
address space for each process.

 To create virtual address for new process:
 Create exact copies of current mm_struct,
vm_area_struct, and page tables.

 Flag each page in both processes as read-only

 Flag each vm_area_struct in both processes as private COW

 On return, each process has exact copy of virtual memory.

 Subsequent writes create new pages using COW mechanism.

Carnegie Mellon

11

The execve Function Revisited

 To load and run a new program
a.out in the current process
using execve:

 Free vm_area_struct’s and
page tables for old areas

 Create vm_area_struct’s
and page tables for new areas
 Programs and initialized data

backed by object files.

 .bss and stack backed by
anonymous files.

 Set PC to entry point in .text
 Linux will fault in code and data

pages as needed.

Memory mapped region
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so

.data

.text
Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out

.data

.text

Carnegie Mellon

12

Finding More Shareable Pages

 Easy places to identify shareable pages
 Child create via fork
 Processes loading the same binary file

 E.g., bash or python interpreters, web browsers, ...

 Processes loading the same library file

 What about others?
 Kernel Same-Page Merging

 OS scans through all of physical memory,
looking for duplicate pages

 When found, merge into single copy, marked as copy-on-write

 Implemented in Linux kernel in 2009

 Limited to pages marked as likely candidates

 Especially useful when processor running many virtual machines

Carnegie Mellon

13

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

 Map len bytes starting at offset offset of the file specified
by file description fd, preferably at address start
 start: may be 0 for “pick an address”

 prot: PROT_READ, PROT_WRITE, PROT_EXEC, ...

 flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

 Return a pointer to start of mapped area (may not be start)

Carnegie Mellon

14

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

len bytes

start
(or address

chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset
(bytes)

0 0

Carnegie Mellon

15

Example: Using mmap to Copy Files

/* mmapcopy driver */
int main(int argc, char **argv)
{
 struct stat stat;
 int fd;

 /* Check for required cmd line arg */
 if (argc != 2) {
 printf("usage: %s <filename>\n",
 argv[0]);
 exit(0);
 }

 /* Copy input file to stdout */
 fd = Open(argv[1], O_RDONLY, 0);
 fstat(fd, &stat);
 mmapcopy(fd, stat.st_size);
 exit(0);
}

 Copying a file to stdout without transferring data to user space
 This code does not meet our coding standards.

#include "csapp.h"

void mmapcopy(int fd, int size)
{

 /* Ptr to memory mapped area */
 char *bufp;

 bufp = mmap(NULL, size,
 PROT_READ,
 MAP_PRIVATE,
 fd, 0);
 write(STDOUT_FILENO,
 bufp, size);
 return;
}

mmapcopy.c mmapcopy.c

Carnegie Mellon

16

Some Uses of mmap

 Reading big files
 Uses paging mechanism to bring files into memory

 Shared data structures
 When call with MAP_SHARED flag

 Multiple processes have access to same region of memory
 Risky!

 File-based data structures
 E.g., database

 Give prot argument PROT_READ | PROT_WRITE
 When unmap region, file will be updated via write-back

 Can implement load from file / update / write back to file

Carnegie Mellon

17

Summary

 VM requires hardware support
 Exception handling mechanism

 TLB

 Various control registers

 VM requires OS support
 Managing page tables

 Implementing page replacement policies

 Managing file system

 VM enables many capabilities
 Loading programs from memory

 Forking processes

 Providing memory protection

