Virtual Address Space of a Linux Process

7~

Different for <
each process

-

Identical for
each process

Process-specific data
structs (ptables,
task and mm structs,
kernel stack)

Physical memory

Kernel code and data

User stack

%rsSp —

brk —

v

Memory mapped region
for shared libraries

t

0x00400000

v

Runtime heap (malloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

\

U\

‘

Kernel
virtual
memory

Process
virtual
memory

Linux Organizes VM as Collection of “Areas”

task_struct

mm struct

»

mm —

pgd

vm_area_s truct

B

mmap

" pgd:
® Page global directory address
" Points to L1 page table

® vm_prot:

" Read/write permissions for
this area

B vm_flags
" Pages shared with other

processes or private to this
process

»

vm_end

vm_start

vm_prot

vm_flags

A 4

vm_end

vm_start

vm_prot

vm_flags

A 4

vm_end

vm_start

Process virtual memory

Shared libraries

Data

Text

vm_prot

vm_flags

vm_next

A 4

0
Each process has own task struct, etc
- 2

Linux Page Fault Handling

vm_area_struct Process virtual memory

vm_end
vm_start
vm_prot
vm_flags
shared libraries
rg Segmentation fault:

> accessing a non-existing page
vm_end
vm_start >
vm_prot d ed
vm_flags sz T€a0 Normal page fault

text 0 Protection exception:

o a0 o Write e.g., violating permission by
vm_start —— writing to a read-only page (Linux
vm_prot reports as Segmentation fault)
vm_flags
vm_next

Memory Mapping

B VM areas initialized by associating them with disk objects.
" Called memory mapping

B Area can be backed by (i.e., get its initial values from) :
" Regular file on disk (e.g., an executable object file)
" Initial page bytes come from a section of a file
® Anonymous file (e.g., nothing)
" First fault will allocate a physical page full of 0's (demand-zero page)
" Once the page is written to (dirtied), it is like any other page

® Dirty pages are copied back and forth between memory and a
special swap file.

Review: Memory Management & Protection

B Code and data can be isolated or shared among processes

0 Address 0

Virtual lati Physical
Address VP 1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only

PP 6 library code)
Virtual 0 o pps
Address VP 1
Space for VP 2
Process 2:

N-1 M-1

Sharing Revisited: Shared Objects

Process 1 Physical Process 2 B Process 1 maps
virtual memory memory virtual memory
the shared

___ object (on disk).

Shared
object

Sharing Revisited: Shared Objects

Process 1 Physical . Process 2 B process 2 maps
virtual memory memory virtual memory the same shared
_______________________________________ object.
L N ¥ Notice how the
"""""""" e virtual

e
.

addresses can
be different.

B But, difference
must be
multiple of page
size

Shared
object

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2

, B Two processes
virtual memory memory virtual memory

..... mapping a private
___________________________________ copy-on-write
(COW) object

} Private B Area flagged as

....

....

2 copy-on-write .

write

B PTEs in private
areas are flagged
as read-only

Private
copy-on-write object

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2 ® |nstruction writing
virtual memory memory virtual memory to private page
______________________________ . triggers
______________________ gp“"wme protection fault.
--------------- d Write to private " Handler creates
T ; “—Ccopy-on-write new R/W page.
page ® Instruction
restarts upon
handler return.
® Copying deferred
Private as Iong as
copy-on-write object possible!

The £ork Function Revisited

® VM and memory mapping explain how fork provides private
address space for each process.

B To create virtual address for new process:

" Create exact copies of current mm struct,
vm_area struct, and page tables.

" Flag each page in both processes as read-only
" Flag eachvin_area struct in both processes as private COW

B On return, each process has exact copy of virtual memory.

B Subsequent writes create new pages using COW mechanism.

10

The execve Function Revisited

User stack
libc.so
.data [Memory mapped region
text | — for shared libraries
Runtime heap (via malloc)
Uninitialized data (.bss)

a.out

data —— [Initialized data (.data)
ext | ——» program text (.text)

0

} Private, demand-zero @ To load and run a new program

]
} Shared, file-backed

} Private, demand-zero

} Private, demand-zero

Private, file-backed

a.out in the current process
using execve:

Free vihn_area struct’sand
page tables for old areas

Create vin_area struct’s
and page tables for new areas

® Programs and initialized data
backed by object files.

® .bss and stack backed by
anonymous files.

Set PC to entry pointin . text

" Linux will fault in code and data

pages as needed.

11

Finding More Shareable Pages

B Easy places to identify shareable pages

Child create via fork
Processes loading the same binary file

" E.g., bash or python interpreters, web browsers, ...
Processes loading the same library file

® What about others?

Kernel Same-Page Merging

OS scans through all of physical memory,
looking for duplicate pages

When found, merge into single copy, marked as copy-on-write
Implemented in Linux kernel in 2009

Limited to pages marked as likely candidates

Especially useful when processor running many virtual machines

12

User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

® Map len bytes starting at offset of£set of the file specified
by file description £d, preferably at address start

" start: may be 0 for “pick an address”
" prot: PROT_READ, PROT_WRITE, PROT_EXEC, ...
" flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

® Return a pointer to start of mapped area (may not be start)

13

User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int f£d, int offset)

\
.
y ‘ I)
\

14

Example: Using mmap to Copy Files

B Copying a file to stdout without transferring data to user space

® This code does not meet our coding standards.

#include "csapp.h"

void mmapcopy(int fd, int size)

{

/* Ptr to memory mapped area */
char *bufp;

bufp = mmap (NULL, size,
PROT READ,
MAP PRIVATE,
£d, 0);
Write(STDOUT_FILENO,
bufp, size);
return;

mmapcopy.c

/* mmapcopy driver */
int main(int argc, char **argv)

{

struct stat stat;
int £d;

/* Check for required cmd line arg */
if (argc !'= 2) {
printf ("usage: %s <filename>\n",
argv([0]);
exit (0) ;
}

/* Copy input file to stdout */
fd = Open(argv[1l], O RDONLY, O0);
fstat (£fd, &stat);
mmapcopy (£d, stat.st size);
exit (0) ;
mmMmapcopy.c

15

Some Uses of mmap

B Reading big files
" Uses paging mechanism to bring files into memory
® Shared data structures
® When call with MAP SHARED flag
" Multiple processes have access to same region of memory
" Risky!
® File-based data structures
" E.g., database

“ Give prot argument PROT READ | PROT WRITE
" When unmap region, file will be updated via write-back
" Can implement load from file / update / write back to file

16

Summary

B VM requires hardware support

" Exception handling mechanism
" TLB
® Various control registers

B VM requires OS support
" Managing page tables
" Implementing page replacement policies
® Managing file system
B VM enables many capabilities
" Loading programs from memory
" Forking processes
® Providing memory protection

17

