
Carnegie Mellon

1

Today

 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists

Carnegie Mellon

2

Keeping Track of Free Blocks
 Method 1: Implicit free list using length—links all blocks

 Method 2: Explicit free list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

Carnegie Mellon

3

Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 The “next” free block could be anywhere

 So we need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing

 Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Carnegie Mellon

4

Explicit Free Lists

 Logically:

 Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

5

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

6

Freeing With Explicit Free Lists
 Insertion policy: Where in the free list do you put a newly

freed block?
 Unordered

 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list

 FIFO (first-in-first-out) policy

 Insert freed block at the end of the free list

 Pro: simple and constant time

 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy
 Insert freed blocks so that free list blocks are always in address order:

 addr(prev) < addr(curr) < addr(next)

 Con: requires search

 Pro: studies suggest fragmentation is lower than LIFO/FIFO

Aside: Premature Optimization!

Carnegie Mellon

7

Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic
Allocated Allocated

Carnegie Mellon

8

Freeing With a LIFO Policy (Case 2)

 Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphicAllocated Free

Carnegie Mellon

9

Freeing With a LIFO Policy (Case 3)

 Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
AllocatedFree

Carnegie Mellon

10

Freeing With a LIFO Policy (Case 4)

 Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
Free Free

Carnegie Mellon

11

Some Advice: An Implementation Trick

 Use circular, doubly-linked list
 Support multiple approaches with single data structure
 First-fit vs. next-fit

 Either keep free pointer fixed or move as search list

 LIFO vs. FIFO
 Insert as next block (LIFO), or previous block (FIFO)

A B C D

Free
Pointer

FIFO Insertion
Point

LIFO Insertion
Point

Next fit

Carnegie Mellon

12

Explicit List Summary
 Comparison to implicit list:

 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full

 Slightly more complicated allocate and free because need to splice
blocks in and out of the list

 Some extra space for the links (2 extra words needed for each block)
 Does this increase internal fragmentation?

 Most common use of linked list approach is in conjunction
with segregated free lists
 Keep multiple linked lists of different size classes, or possibly for

different types of objects

Carnegie Mellon

13

Today

 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists

Carnegie Mellon

14

Segregated List (Seglist) Allocators
●

●

1-2

3

4

5-8

9-inf

Carnegie Mellon

15

Seglist Allocator
 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n (i.e., first fit)
 If an appropriate block is found:

 Split block and place fragment on appropriate list (optional)
 If no block is found, try next larger class
 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from this new memory
 Place remainder as a single free block in largest size class.

Carnegie Mellon

16

Seglist Allocator (cont.)
 To free a block:

 Coalesce and place on appropriate list

 Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
 Higher throughput

 log time for power-of-two size classes vs. linear time

 Better memory utilization

 First-fit search of segregated free list approximates

a best-fit search of entire heap.

 Extreme case: Giving each block its own size class

is equivalent to best-fit.

Carnegie Mellon

17

More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd edition,
Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey

 Available from CS:APP student site (csapp.cs.cmu.edu)

