
Carnegie Mellon

1

Today

 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists

Carnegie Mellon

2

Keeping Track of Free Blocks
 Method 1: Implicit free list using length—links all blocks

 Method 2: Explicit free list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

Carnegie Mellon

3

Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 The “next” free block could be anywhere

 So we need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing

 Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Carnegie Mellon

4

Explicit Free Lists

 Logically:

 Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

5

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

6

Freeing With Explicit Free Lists
 Insertion policy: Where in the free list do you put a newly

freed block?
 Unordered

 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list

 FIFO (first-in-first-out) policy

 Insert freed block at the end of the free list

 Pro: simple and constant time

 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy
 Insert freed blocks so that free list blocks are always in address order:

 addr(prev) < addr(curr) < addr(next)

 Con: requires search

 Pro: studies suggest fragmentation is lower than LIFO/FIFO

Aside: Premature Optimization!

Carnegie Mellon

7

Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic
Allocated Allocated

Carnegie Mellon

8

Freeing With a LIFO Policy (Case 2)

 Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphicAllocated Free

Carnegie Mellon

9

Freeing With a LIFO Policy (Case 3)

 Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
AllocatedFree

Carnegie Mellon

10

Freeing With a LIFO Policy (Case 4)

 Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
Free Free

Carnegie Mellon

11

Some Advice: An Implementation Trick

 Use circular, doubly-linked list
 Support multiple approaches with single data structure
 First-fit vs. next-fit

 Either keep free pointer fixed or move as search list

 LIFO vs. FIFO
 Insert as next block (LIFO), or previous block (FIFO)

A B C D

Free
Pointer

FIFO Insertion
Point

LIFO Insertion
Point

Next fit

Carnegie Mellon

12

Explicit List Summary
 Comparison to implicit list:

 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full

 Slightly more complicated allocate and free because need to splice
blocks in and out of the list

 Some extra space for the links (2 extra words needed for each block)
 Does this increase internal fragmentation?

 Most common use of linked list approach is in conjunction
with segregated free lists
 Keep multiple linked lists of different size classes, or possibly for

different types of objects

Carnegie Mellon

13

Today

 Basic concepts
 Implicit free lists
 Explicit free lists
 Segregated free lists

Carnegie Mellon

14

Segregated List (Seglist) Allocators
●

●

1-2

3

4

5-8

9-inf

Carnegie Mellon

15

Seglist Allocator
 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n (i.e., first fit)
 If an appropriate block is found:

 Split block and place fragment on appropriate list (optional)
 If no block is found, try next larger class
 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from this new memory
 Place remainder as a single free block in largest size class.

Carnegie Mellon

16

Seglist Allocator (cont.)
 To free a block:

 Coalesce and place on appropriate list

 Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
 Higher throughput

 log time for power-of-two size classes vs. linear time

 Better memory utilization

 First-fit search of segregated free list approximates

a best-fit search of entire heap.

 Extreme case: Giving each block its own size class

is equivalent to best-fit.

Carnegie Mellon

17

More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd edition,
Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey

 Available from CS:APP student site (csapp.cs.cmu.edu)

