Basic concepts
Implicit free lists
Explicit free lists
Segregated free lists



Keeping Track of Free Blocks

B Method 1: Implicit free list using length—links all blocks

B Method 2: Explicit free list among the free blocks using pointers

T A ;

B Method 3: Segregated free list
" Different free lists for different size classes

B Method 4: Blocks sorted by size

® Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key



Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

B Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

" So we need to store forward/back pointers, not just sizes
" Still need boundary tags for coalescing

" Luckily we track only free blocks, so we can use payload area



Explicit Free Lists

B | ogically:

—
L

/ Forward (next) links

6 4 4 4 4

Back (prev) links




Allocating From Explicit Free Lists

conceptual graphic

Before

2

After (with splitting)

W

= malloc(..)



Freeing With Explicit Free Lists

B /nsertion policy: Where in the free list do you put a newly
freed block?

® Unordered
" LIFO (last-in-first-out) policy

Aside: Premature Optimization!

" Insert freed block at the beginning of the free list
" FIFO (first-in-first-out) policy

" Insert freed block at the end of the free list
" Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

B Address-ordered policy

" Insert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

" Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO/FIFO



Freeing With a LIFO Policy (Case 1)

Allocated

Allocated

Before

free

Root

B |nsert the freed block at the root of the list

After

Root IV @

conceptual graphic




Freeing With a LIFO Policy (Case 2)

Allocated

Free

Before frea

)

conceptual graphic

Root

I

!

ao

B Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root Il W




Freeing With a LIFO Policy (Case 3)

Before

Root

Free

Allocated

free

]

!

conceptual graphic

Qo

B Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root I———p

° <

1’




Freeing With a LIFO Policy (Case 4)

Before

Root

Free

Free

free

)

]

!

l

I

conceptual graphic

ao

B Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

After

Root I———>

10



Some Advice: An Implementation Trick

FIFO Insertion

LIFO Insertion

Point \’\

A

-

/‘/ Point

Free

Pointer

B Use circular, doubly-linked list

B Support multiple approaches with single data structure

B First-fit vs. next-fit

" Either keep free pointer fixed or move as search list

B LIFO vs. FIFO

" Insert as next block (LIFO), or previous block (FIFO)

11



Explicit List Summary

B Comparison to implicit list:
® Allocate is linear time in number of free blocks instead of all blocks

" Much faster when most of the memory is full

" Slightly more complicated allocate and free because need to splice
blocks in and out of the list

" Some extra space for the links (2 extra words needed for each block)
" Does this increase internal fragmentation?

B Most common use of linked list approach is in conjunction
with segregated free lists

" Keep multiple linked lists of different size classes, or possibly for
different types of objects

12



Basic concepts
Implicit free lists
Explicit free lists
Segregated free lists

13



Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1-2 > > > —

5_8 > —>

9-inf —

m Often have separate classes for each small size
m For larger sizes: One class for each size [2! + 1,2!*1]

14



Seglist Allocator

B Given an array of free lists, each one for some size class

B To allocate a block of size n:
® Search appropriate free list for block of size m > n (i.e., first fit)
" If an appropriate block is found:

" Split block and place fragment on appropriate list (optional)
" If no block is found, try next larger class
" Repeat until block is found

® If no block is found:
® Request additional heap memory from OS (using sbrk () )
" Allocate block of n bytes from this new memory
® Place remainder as a single free block in largest size class.

15



Seglist Allocator (cont.)

B To free a block:
® Coalesce and place on appropriate list

B Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
" Higher throughput
" log time for power-of-two size classes vs. linear time
" Better memory utilization

" First-fit search of segregated free list approximates
a best-fit search of entire heap.

" Extreme case: Giving each block its own size class
is equivalent to best-fit.

16



More Info on Allocators

B D. Knuth, “The Art of Computer Programming”, 2™ edition,
Addison Wesley, 1973

" The classic reference on dynamic storage allocation

B Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

® Comprehensive survey
" Available from CS:APP student site (csapp.cs.cmu.edu)

17



