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Keeping Track of Free Blocks

B Method 1: Implicit free list using length—links all blocks

B Method 2: Explicit free list among the free blocks using pointers
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B Method 3: Segregated free list
" Different free lists for different size classes

B Method 4: Blocks sorted by size

® Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key



Explicit Free Lists
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B Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

" So we need to store forward/back pointers, not just sizes
" Still need boundary tags for coalescing

" Luckily we track only free blocks, so we can use payload area



Explicit Free Lists
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Allocating From Explicit Free Lists
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Freeing With Explicit Free Lists

B /nsertion policy: Where in the free list do you put a newly
freed block?

® Unordered
" LIFO (last-in-first-out) policy

Aside: Premature Optimization!

" Insert freed block at the beginning of the free list
" FIFO (first-in-first-out) policy

" Insert freed block at the end of the free list
" Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

B Address-ordered policy

" Insert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

" Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO/FIFO



Freeing With a LIFO Policy (Case 1)
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Freeing With a LIFO Policy (Case 2)
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B Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 3)
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Freeing With a LIFO Policy (Case 4)
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B Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list
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Some Advice: An Implementation Trick

FIFO Insertion

LIFO Insertion

Point \’\

A

-

/‘/ Point

Free

Pointer

B Use circular, doubly-linked list

B Support multiple approaches with single data structure

B First-fit vs. next-fit

" Either keep free pointer fixed or move as search list

B LIFO vs. FIFO

" Insert as next block (LIFO), or previous block (FIFO)
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Explicit List Summary

B Comparison to implicit list:
® Allocate is linear time in number of free blocks instead of all blocks

" Much faster when most of the memory is full

" Slightly more complicated allocate and free because need to splice
blocks in and out of the list

" Some extra space for the links (2 extra words needed for each block)
" Does this increase internal fragmentation?

B Most common use of linked list approach is in conjunction
with segregated free lists

" Keep multiple linked lists of different size classes, or possibly for
different types of objects
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Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1-2 > > > —

5_8 > —>

9-inf —

m Often have separate classes for each small size
m For larger sizes: One class for each size [2! + 1,2!*1]
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Seglist Allocator

B Given an array of free lists, each one for some size class

B To allocate a block of size n:
® Search appropriate free list for block of size m > n (i.e., first fit)
" If an appropriate block is found:

" Split block and place fragment on appropriate list (optional)
" If no block is found, try next larger class
" Repeat until block is found

® If no block is found:
® Request additional heap memory from OS (using sbrk () )
" Allocate block of n bytes from this new memory
® Place remainder as a single free block in largest size class.
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Seglist Allocator (cont.)

B To free a block:
® Coalesce and place on appropriate list

B Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
" Higher throughput
" log time for power-of-two size classes vs. linear time
" Better memory utilization

" First-fit search of segregated free list approximates
a best-fit search of entire heap.

" Extreme case: Giving each block its own size class
is equivalent to best-fit.
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More Info on Allocators

B D. Knuth, “The Art of Computer Programming”, 2™ edition,
Addison Wesley, 1973

" The classic reference on dynamic storage allocation

B Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

® Comprehensive survey
" Available from CS:APP student site (csapp.cs.cmu.edu)
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