
Practical Data Compression for On-Chip Caches

November 26, 2019

Cache Compression



Problem: CPUs are cheap and fast.

Memories are cheap, fast, capacious (choose two out of three).
Fast CPU with slow memory doesn’t make sense.

Cache Compression



Problem: CPUs are cheap and fast.
Memories are cheap, fast, capacious

(choose two out of three).
Fast CPU with slow memory doesn’t make sense.

Cache Compression



Problem: CPUs are cheap and fast.
Memories are cheap, fast, capacious (choose two out of three).

Fast CPU with slow memory doesn’t make sense.

Cache Compression



Problem: CPUs are cheap and fast.
Memories are cheap, fast, capacious (choose two out of three).
Fast CPU with slow memory doesn’t make sense.

Cache Compression



Idea: Put fast memory between CPU and main memory.

Fast – so small.

CPU looks for data in the cache; if it finds it, it gets it from there
and continues to work; if it doesn’t find it, it looks for it in main
memory.

Cache Compression



Idea: Put fast memory between CPU and main memory.
Fast – so small.

CPU looks for data in the cache; if it finds it, it gets it from there
and continues to work; if it doesn’t find it, it looks for it in main
memory.

Cache Compression



Idea: Put fast memory between CPU and main memory.
Fast – so small.

CPU looks for data in the cache;

if it finds it, it gets it from there
and continues to work; if it doesn’t find it, it looks for it in main
memory.

Cache Compression



Idea: Put fast memory between CPU and main memory.
Fast – so small.

CPU looks for data in the cache; if it finds it, it gets it from there
and continues to work;

if it doesn’t find it, it looks for it in main
memory.

Cache Compression



Idea: Put fast memory between CPU and main memory.
Fast – so small.

CPU looks for data in the cache; if it finds it, it gets it from there
and continues to work; if it doesn’t find it, it looks for it in main
memory.

Cache Compression



Cache Compression



memory latency size

L1 4 cycles 32KiB

L2 10 cycles 256KiB

L3 40-75 cycles 8MiB

DRAM 600 cycles 8GiB

HDD ∞ ∞

Cache Compression



Cache Compression



Cache Compression



Cache Compression



Cache Compression



Cache Compression



What can we do?

Compression!

Cache Compression



Unfortunately, directly applying well-known compression algorithms
(usually implemented in software) leads to high hardware
complexity and unacceptable decompression/compression latencies,
which in turn can negatively affect performance.

Cache Compression



Compression:

takes place in background upon a cache fill.

Decompression: is on the critical path of a cache hit; we can only
consider compression of the L2 caches.

Cache Compression



Compression: takes place in background upon a cache fill.

Decompression: is on the critical path of a cache hit; we can only
consider compression of the L2 caches.

Cache Compression



Compression: takes place in background upon a cache fill.

Decompression:

is on the critical path of a cache hit; we can only
consider compression of the L2 caches.

Cache Compression



Compression: takes place in background upon a cache fill.

Decompression: is on the critical path of a cache hit

; we can only
consider compression of the L2 caches.

Cache Compression



Compression: takes place in background upon a cache fill.

Decompression: is on the critical path of a cache hit; we can only
consider compression of the L2 caches.

Cache Compression



Compression must be fast, simple, effective

, the challenge is to find
the right balance.

Cache Compression



Compression must be fast, simple, effective, the challenge is to find
the right balance.

Cache Compression



Base+Delta Encoding (B+∆)

Base-Delta-Immediate (B∆I)

Cache Compression



Base+Delta Encoding (B+∆)
Base-Delta-Immediate (B∆I)

Cache Compression



Observation:

for many cache lines, the data values stored within
the line have a low dynamic range: i.e., the relative difference
between values is small. In such cases, the cache line can be
represented in a compact form using a common base value plus an
array of relative differences.

Cache Compression



Observation: for many cache lines, the data values stored within
the line have a low dynamic range: i.e., the relative difference
between values is small.

In such cases, the cache line can be
represented in a compact form using a common base value plus an
array of relative differences.

Cache Compression



Observation: for many cache lines, the data values stored within
the line have a low dynamic range: i.e., the relative difference
between values is small. In such cases, the cache line can be
represented in a compact form using a common base value plus an
array of relative differences.

Cache Compression



Zeros: Zero is by far the most frequently seen value in
application data. For example, zero is most commonly used to
initialize data, to represent NULL pointers or false boolean
values.

Repeated Values: A large contiguous region of memory may
contain a single value repeated multiple times. This pattern is
widely present in applications that use a common initial value
for a large array, or in multimedia applications where a large
number of adjacent pixels have the same color.

Narrow Values: A narrow value is a small value stored using
a large data type: e.g., a one-byte value stored as a four-byte
integer.

Cache Compression



Zeros: Zero is by far the most frequently seen value in
application data. For example, zero is most commonly used to
initialize data, to represent NULL pointers or false boolean
values.

Repeated Values: A large contiguous region of memory may
contain a single value repeated multiple times. This pattern is
widely present in applications that use a common initial value
for a large array, or in multimedia applications where a large
number of adjacent pixels have the same color.

Narrow Values: A narrow value is a small value stored using
a large data type: e.g., a one-byte value stored as a four-byte
integer.

Cache Compression



Zeros: Zero is by far the most frequently seen value in
application data. For example, zero is most commonly used to
initialize data, to represent NULL pointers or false boolean
values.

Repeated Values: A large contiguous region of memory may
contain a single value repeated multiple times. This pattern is
widely present in applications that use a common initial value
for a large array, or in multimedia applications where a large
number of adjacent pixels have the same color.

Narrow Values: A narrow value is a small value stored using
a large data type: e.g., a one-byte value stored as a four-byte
integer.

Cache Compression



Benchmarks:

libquantum – Physics: Quantum Computing

lbm – Fluid Dynamics

mcf – Combinatorial Optimization

sjeng – Artificial Intelligence: chess

omnetpp – Discrete Event Simulation

sphinx3 – Speech recognition

xalancbmk – XML Processing

bzip2 – Compression

leslie3d – Fluid Dynamics

apache – Web server

gromacs – Biochemistry/Molecular Dynamics

Cache Compression



Benchmarks:

astar – Path-finding Algorithms

gobmk – Artificial Intelligence: go

soplex – Linear Programming, Optimization

gcc - C Compiler

hmmer – Search Gene Sequence

wrf – Weather Prediction

h264ref – Video Compression

zeusmp – Physics / CFD

cacutsADM – Physics / General Relativity

GemsFDTD – Computational Electromagnetics

Cache Compression



Cache Compression



Cache Compression



Cache Compression



Cache Compression



Decompression:

B∗ – base value
∆ = ∆1,∆2, . . . ,∆n – array of differences
S = (v1, v2, . . . , vn) – set of real values
vi = B∗ + ∆i – SIMD-style vector adder.

Cache Compression



Decompression:

B∗ – base value

∆ = ∆1,∆2, . . . ,∆n – array of differences
S = (v1, v2, . . . , vn) – set of real values
vi = B∗ + ∆i – SIMD-style vector adder.

Cache Compression



Decompression:

B∗ – base value
∆ = ∆1,∆2, . . . ,∆n – array of differences

S = (v1, v2, . . . , vn) – set of real values
vi = B∗ + ∆i – SIMD-style vector adder.

Cache Compression



Decompression:

B∗ – base value
∆ = ∆1,∆2, . . . ,∆n – array of differences
S = (v1, v2, . . . , vn) – set of real values

vi = B∗ + ∆i – SIMD-style vector adder.

Cache Compression



Decompression:

B∗ – base value
∆ = ∆1,∆2, . . . ,∆n – array of differences
S = (v1, v2, . . . , vn) – set of real values
vi = B∗ + ∆i

– SIMD-style vector adder.

Cache Compression



Decompression:

B∗ – base value
∆ = ∆1,∆2, . . . ,∆n – array of differences
S = (v1, v2, . . . , vn) – set of real values
vi = B∗ + ∆i – SIMD-style vector adder.

Cache Compression



Compression:

Algorithm views a cache line as a set of fixed-size values i.e., 8
8-byte, 16 4-byte, or 32 2-byte values for a 64-byte cache line.

Assume that the size of each value in the set is k bytes and the set
of values to be compressed is S = (v1, v2, . . . , vn).

The goal of the algorithm is to determine the value of the base, B∗

and the size of values in the set, k, that provide maximum
compressibility.

Cache Compression



Compression:

Algorithm views a cache line as a set of fixed-size values i.e., 8
8-byte, 16 4-byte, or 32 2-byte values for a 64-byte cache line.

Assume that the size of each value in the set is k bytes and the set
of values to be compressed is S = (v1, v2, . . . , vn).

The goal of the algorithm is to determine the value of the base, B∗

and the size of values in the set, k, that provide maximum
compressibility.

Cache Compression



Compression:

Algorithm views a cache line as a set of fixed-size values i.e., 8
8-byte, 16 4-byte, or 32 2-byte values for a 64-byte cache line.

Assume that the size of each value in the set is k bytes and the set
of values to be compressed is S = (v1, v2, . . . , vn).

The goal of the algorithm is to determine the value of the base, B∗

and the size of values in the set, k, that provide maximum
compressibility.

Cache Compression



Compression:

Algorithm views a cache line as a set of fixed-size values i.e., 8
8-byte, 16 4-byte, or 32 2-byte values for a 64-byte cache line.

Assume that the size of each value in the set is k bytes and the set
of values to be compressed is S = (v1, v2, . . . , vn).

The goal of the algorithm is to determine the value of the base, B∗

and the size of values in the set, k, that provide maximum
compressibility.

Cache Compression



Compression:

The cache line is compressible only if max(size(∆i )) < k .

To determine the value of B∗, either the value of min(S) or
max(S) needs to be found.

The optimum can be reached only for min(S), max(S), or exactly
in between them.

Check all possible value of k ∈ {2, 4, 8} and compute B∗.

Cache Compression



Compression:

The cache line is compressible only if max(size(∆i )) < k .

To determine the value of B∗, either the value of min(S) or
max(S) needs to be found.

The optimum can be reached only for min(S), max(S), or exactly
in between them.

Check all possible value of k ∈ {2, 4, 8} and compute B∗.

Cache Compression



Compression:

The cache line is compressible only if max(size(∆i )) < k .

To determine the value of B∗, either the value of min(S) or
max(S) needs to be found.

The optimum can be reached only for min(S), max(S), or exactly
in between them.

Check all possible value of k ∈ {2, 4, 8} and compute B∗.

Cache Compression



Compression:

The cache line is compressible only if max(size(∆i )) < k .

To determine the value of B∗, either the value of min(S) or
max(S) needs to be found.

The optimum can be reached only for min(S), max(S), or exactly
in between them.

Check all possible value of k ∈ {2, 4, 8} and compute B∗.

Cache Compression



Compression:

To avoid compression latency increase and reduce hardware
complexity use the first value from the set of values as an
approximation for the B∗.

Cache Compression



Surprise!

Choosing the first value as the base instead of computing the
optimum base value reduces the average compression ratio only by

0.4%.

Cache Compression



Surprise!

Choosing the first value as the base instead of computing the
optimum base value reduces the average compression ratio only by

0.4%.

Cache Compression



Some of applications can mix data of different types in the same
cache line.

Idea: multiple bases.

Cache Compression



Some of applications can mix data of different types in the same
cache line.

Idea: multiple bases.

Cache Compression



Cache Compression



Why not more bases?

Cache Compression



Cache Compression



One simple trick!

0

Cache Compression



One simple trick!

0

Cache Compression



Cache Compression



Cache Compression



Cache Compression



Cache Compression



Cache Compression



Is it all?

No :(

Problems: Unused space in compressed cache lines. We need to
address cache lines. Cache eviction policy.

Ideas: Put data in unused space. Change cache organisation.
Evicts multiple LRU cache lines.

Cache Compression



Is it all?

No :(

Problems: Unused space in compressed cache lines. We need to
address cache lines. Cache eviction policy.

Ideas: Put data in unused space. Change cache organisation.
Evicts multiple LRU cache lines.

Cache Compression



Is it all?

No :(

Problems:

Unused space in compressed cache lines. We need to
address cache lines. Cache eviction policy.

Ideas: Put data in unused space. Change cache organisation.
Evicts multiple LRU cache lines.

Cache Compression



Is it all?

No :(

Problems: Unused space in compressed cache lines.

We need to
address cache lines. Cache eviction policy.

Ideas: Put data in unused space. Change cache organisation.
Evicts multiple LRU cache lines.

Cache Compression



Is it all?

No :(

Problems: Unused space in compressed cache lines.

We need to
address cache lines. Cache eviction policy.

Ideas: Put data in unused space.

Change cache organisation.
Evicts multiple LRU cache lines.

Cache Compression



Is it all?

No :(

Problems: Unused space in compressed cache lines. We need to
address cache lines.

Cache eviction policy.

Ideas: Put data in unused space.

Change cache organisation.
Evicts multiple LRU cache lines.

Cache Compression



Is it all?

No :(

Problems: Unused space in compressed cache lines. We need to
address cache lines.

Cache eviction policy.

Ideas: Put data in unused space. Change cache organisation.

Evicts multiple LRU cache lines.

Cache Compression



Is it all?

No :(

Problems: Unused space in compressed cache lines. We need to
address cache lines. Cache eviction policy.

Ideas: Put data in unused space. Change cache organisation.

Evicts multiple LRU cache lines.

Cache Compression



Is it all?

No :(

Problems: Unused space in compressed cache lines. We need to
address cache lines. Cache eviction policy.

Ideas: Put data in unused space. Change cache organisation.
Evicts multiple LRU cache lines.

Cache Compression



Cache Compression



Cache Compression



Cache Compression



Conclusion:

A new Base-∆-Immediate compression mechanism

Many cache lines can be efficiently represented using
base+delta encoding

Key properties

Low latency decompression
Simple hardware implementation
High compression ratio with high coverage

Improves cache hit ratio and performance

Outperforms state-of-the-art cache compression techniques:
FVC and FPC

Cache Compression



(standing ovation)

Cache Compression


