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Cache policies

During this seminar so far, we talked about cache organization, or how things
are structured within the cache, e.g. the number of sets and lines, block size.

Today, we’ll focus on cache policies which describe how a cache should work, e.g.
write-back vs write-through; write-allocate vs no-write-allocate; inclusive, exclusive
or neither; line replacement, etc.
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A quick look at cache organization again
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Cache eviction

The need for eviction is obvious: the cache is smaller than the storage below it in
the memory hierarchy.

Requested data isn’t in cache and the set is full → a line needs to be evicted
to make room for the new data.
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Cache replacement policy

Which line to pick for eviction is a matter of replacement policy. The strategy
used can have a profound impact on performance.

The choice is a matter of balancing out metadata size overhead, implementation
complexity and resulting performance.
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Cache replacement policy

(Pseudo-)Random
Round-Robin
FIFO (first in first out)
LRU (least recently used)
Pseudo-LRU
...
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Random

The victim line is choosen randomly, for a good enough definition of random.

Figure: Not a good PRNG
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Random

The victim line is choosen randomly, for a good enough definition of random.

Figure: Not a good PRNG
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Round-Robin

A counter global for the entire cache determines which line is going to be evicted
Metadata overhead is minimal, and complexity is low, though behavior might not
be optimal for code with good locality.
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FIFO

Lines are evicted on a per-set basis. Additional metadata in every set, simple
implementation.



Adaptive
cache

insertion
policies

Patrycja
Balik

Introduction
to cache
policies

The problem:
thrashing

Adaptive
insertion
policies

Conclusions

References

LRU

Pick the least recently used line for eviction. Good idea, but metadata overhead
is high. (Store line age in each line? Encode permutation in set?).
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Pseudo-LRU

LRU is good, but complicated—we can try to approximate it.
Some approaches, for an n-way cache:

A variation of random: just store the half in which the LRU is (1 bit)
Bit-PLRU (n bits)
Tree-PLRU (n-1 bits)
...



Adaptive
cache

insertion
policies

Patrycja
Balik

Introduction
to cache
policies

The problem:
thrashing

Adaptive
insertion
policies

Conclusions

References

Bit-PLRU

For each line, an additional bit is stored. At the beginning, they’re all 0. When a
line is accessed, its bit gets set to 1. If this were to give us 1s in every line in the
set, the other lines are reset to 0.

A victim is choosen among the lines with this bit set to 0.
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Tree-PLRU

For each set store a sequence representation of a path in a binary search tree, where
0 means "go left" and 1 means "go right".

Leaves represent cache lines, and the path indentifies the victim.

On access to line n, flip bits on the path to n in the sequence.
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Tree-PLRU

0

0 0
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Fun as that was, it’s easy to show that this is not "true" LRU.
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Thrashing

When the working set is too large for the cache, the cache will thrash by constantly
attempting to catch up with the working set, only to need the previously evicted
data brought in again.
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Adaptive insertion policies
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Simulated cache configuration

Cache Size Block size Ways
L1-I 16kB 64B 2-way
L1-D 16kB 64B 2-way
L2 (LLC) 1MB 64B 16-way

Non-inclusive, non-exclusive.
Unless said otherwise, traditional LRU replacement is assumed.
We’ll analyze access patterns to the L2 cache.



Adaptive
cache

insertion
policies

Patrycja
Balik

Introduction
to cache
policies

The problem:
thrashing

Adaptive
insertion
policies

Conclusions

References

Dissecting cache replacement

A replacement policy contains two distinct parts: an eviction (victim selection)
policy and an insertion policy.

The eviction policy is responsible for choosing a victim when space needs to be
freed up in a set, e.g. picking LRU in the LRU replacement policy.

The insertion policy is responsible for where a new line is ordered among the rest at
the point it’s added, e.g. at the most recently used (MRU) position in traditional
LRU replacement.
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MRU insertion policy

In principle, MRU insertion seems like a good idea; it gives blocks a chance to be
used before they get evicted from the cache.

However, MRU insertion contributes to the effect of thrashing: a block can be
inserted, pass through all the positions and get evicted, without ever being accessed.

For a working set exceeding the cache size, most blocks will just pass through the
cache in this manner, leading to a cache miss ratio of 100%.
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MRU insertion policy: Zero Reuse Lines

Figure: Zero Reuse Lines for 1MB 16-way L2 cache
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MRU insertion policy: Cache misses I

Name FFWD MPKI Compulsory Misses
art 18.25B 38.7 0.5%
mcf 14.75B 136 1.8%
twolf 30.75B 3.48 2.9%
vpr 60B 2.16 4.3%
facerec 111.75B 3.66 4.8%
ammp 4.75B 2.83 5.0%
galgel 14B 5.34 5.9%
equake 26.25B 18.4 14.2%

Figure: FFWD - fast-forward interval, MPKI - misses/kiloinstruction, B - billion
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MRU insertion policy: Cache misses II

Name FFWD MPKI Compulsory Misses
bzip2 2.25B 2.4 14.8%
parser 66.25B 1.57 20.0%
sixtrack 8.5B 0.42 20.7%
apsi 3.25B 0.32 21.4%
lucas 2.5B 16.2 41.6%
mgrid 3.5B 7.73 46.6%
swim 3.5B 23.0 50.4%
health 0B 61.7 0.73%

Figure: FFWD - fast-forward interval, MPKI - misses/kiloinstruction, B - billion
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LRU insertion policy (LIP)

Idea: modify the insertion policy so that some blocks may be retained and reused in
the 100% MR scenario from earlier.

Attempt #1: insert in the LRU position instead of the MRU.

Sounds too simple? Well, it actually helps! Somewhat.
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LRU insertion policy (LIP)

Attempt #1: insert in the LRU position instead of the MRU.

The implementation is almost identical to LRU, or any PLRU variant—the only
change is skipping the recency update on insertion, no additional overhead required.
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LRU insertion policy (LIP)

Problem: LIP doesn’t respond well to changes in working set; old blocks will linger
in cache despite not being needed anymore, because there’s no block "aging".

Attempt #2: modify LIP so that occasionally, a block is inserted in MRU position.
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Bimodal insertion policy (BIP)

Attempt #2: modify LIP so that occasionally, a block is inserted in MRU position.

Come bimodal insertion policy (BIP), which has a probability ε of using MRU
insertion, or LIP otherwise, for a small value of ε. For the purpose of data displayed
later in this presentation ε = 1/32 = 0.03125.

This combines the best of both worlds; adapting to working set changes and
thrashing protection.
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Case studies: thrashing workloads

First, we’ll analyze benchmarks where LIP and BIP provide a significant
improvement over traditional LRU.

These benchmarks are:
mcf (single-depot vehicle scheduling in public mass transportation)
art (neural network recognizing objects in a thermal image)
health (health care system simulation—working set increases with time)
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Case study: mcf

while (arcin) {
tail = arcin->tail;

if (tail->time + arcin->org_cost > latest) {
arcin = (arc_t *)tail->mark;
continue;

}
...
arcin = (arc_t *)tail->mark;

}
Listing 1: Bold instructions cause 84% of all cache misses in mcf.

mcf’s behavior can be approximated by a linked list traversal of about 3.5MB of
data.
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Case study: mcf

Figure: MPKI with the LRU replacement policy for mcf for various L2 sizes.
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Case study: mcf

Policy MPKI Reduction over LRU
LRU 136 -
LIP/BIP 115 17%
Optimal 101 26%

Figure: Results for the 1MB L2 cache. LIP/BIP retain around 1MB of the working set.
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Case study: art

numf1s = lwidth*lheight; // = 100*100 for ref input set
numf2s = numObjects + 1; // = 10 + 1 for ref input set
...
for (tj = spot; tj < numf2s; ++tj) {
Y[tj].y = 0;

if (!Y[tj].reset) {
for (ti = 0; ti < numf1s; ++ti) {

Y[tj].y += f1_layer[ti].P * bus[ti][tj];
}

}
}

Listing 2: Bold instructions cause 39% and 41% of L2 misses, respectively.
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Case study: art

Figure: MPKI with the LRU replacement policy for art for various L2 sizes.



Adaptive
cache

insertion
policies

Patrycja
Balik

Introduction
to cache
policies

The problem:
thrashing

Adaptive
insertion
policies

Conclusions

References

Case study: art

Policy MPKI Reduction over LRU
LRU 38.7 -
LIP 23.6 39%
BIP 18.0 54%
Optimal 12.8 67%

Figure: Results for the 1MB L2 cache. Note the differences for LIP and BIP.
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Case study: health

while (list != NULL) {
...
p = list->patient;
...
list = list->forward;

}
Listing 3: Bold is responsible for 71% of all L2 misses.

The health benchmark performs a linked list traversal with frequent insertions and
deletions. The size of the working set increases with time.
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Case study: health

To display these changes, the program can be split into a few phases, around 50M
instructions each.

Figure: MPKI with the LRU replacement policy for health with various L2 sizes.
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Case study: health

Policy MPKI Reduction over LRU
LRU 61.7 -
LIP 38.0 38.5%
BIP 39.5 36.0%
Optimal 34.0 45.0%

Figure: Results for the 1MB L2 cache.
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LIP and BIP vs LRU
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Case study: swim

swim - performs weather prediction. Heavy on matrix multiplication (but it’s in
Fortran, so I haven’t checked).
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Case study: swim

Figure: MPKI for swim with LRU. (log scale size axis)
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Case study: swim

Policy MPKI Reduction over LRU
LRU 23.0 -
LIP 46.5 -102.0%
BIP 44.3 -92.5%
Optimal 22.8 0.9%

Figure: Results for the 1MB L2 cache.
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Dynamic insertion policy (DIP)

Problem: BIP performs very poorly for workloads which benefit from MRU insertion.

Attempt #3: a hybrid solution which picks between traditional LRU, with MRU
insertion, and BIP, depending on which causes fewer misses.

Problem: how do we determine which is better at runtime?

Attempt #3.1: For every set analyze misses caused by either policy, modifying a
counter global for all sets, and pick a single best policy to use for all sets.
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DIP-Global

Figure: DIP-Global with 8 sets
MTD - Main Tag Directory
ATD - Auxiliary Tag Directory
PSEL - Policy Selector
(saturating counter)
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DIP-Global

Problem: the overhead of two extra tag directories isn’t acceptable.

Attempt #3.2: Sample just a select few sets to reduce the size of ATDs.
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Set Dueling

Problem: while the storage overhead is smaller, major changes still need to be made
to the cache organization. Can we avoid this?

Attempt #3.3: for each of the two policies select a few sets that will use them, and
use the best policy for the remaining sets. We’ll call this Set Dueling.
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Set Dueling
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Set Dueling

Selecting the dedicated sets for DIP-SD...
...statically at design time?
...dynamically at runtime?
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Set Dueling

Authors propose the following scheme:
N - total number of sets.
K - number of sets dedicated to each policy.
The cache is logically divided into K constituencies, each containing N/K sets.
From each constituency, dedicate one set to each of the competing policies.
Generally assume that K is a power of 2 for the purpose of the study.
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Complement-select policy

Out of log2(N) set index bits, let the most significant log2(K ) bits identify the
constituency and the remaining log2(N/K ) the offset from the first set in the
constituency.
(Yes, at this point "constituency" stops looking like a real word.)
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Complement-select policy

{ {log2(K) log2(N/K)

C O
constituency 

identifier
offset from first in 

constituency

Figure: I made this atrocity in Inkscape myself, so now you have to look at it.
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Complement-select policy

The paper authors only provided examples where log2(K ) = log2(N/K ), but the
method works for mismatched lengths of C and O if we treat the comparison
appropriately.

C = O → dedicate the set to LRU.
C = O → dedicate the set to BIP.
The remaining sets are follower sets.
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Complement-select policy: example I

N = 26, K = 8 → log2(K ) = log2(N/K ) = 3.

LRU sets BIP sets
C O
000 000
001 001
010 010
... ...
111 111

C O
000 111
001 110
010 101
... ...
111 000



Adaptive
cache

insertion
policies

Patrycja
Balik

Introduction
to cache
policies

The problem:
thrashing

Adaptive
insertion
policies

Conclusions

References

Complement-select policy: example II

N = 25, K = 4 → log2(K ) = 2, log2(N/K ) = 3.

LRU sets BIP sets
C O
00 000
01 001
10 010
11 011

C O
00 011
01 010
10 001
11 000

Alternatively the MSB in O could be changed in either of those, as long as there is
one per constituency.
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Complement-select policy: example III

N = 25, K = 8 → log2(K ) = 3, log2(N/K ) = 2.

LRU sets BIP sets
C O
000 00
001 01
010 10
011 11
100 00
101 01
110 10
111 11

C O
000 11
001 10
010 01
011 00
100 11
101 10
110 01
111 00
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DIP-SD

We’ll consider two DIP-SD variants for the 1MB L1 cache from earlier.

N = 1024
K = 32
10-bit PSEL

N = 1024
K = 64
11-bit PSEL

Where not specified, DIP is assumed to mean DIP-SD with K = 32.
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DIP vs LRU

Figure: amean: reduction in arithmetic mean of MPKI of all the benchmarks.
n: K from previous slides about SD.
DIP-Global: initial concept with complete ATDs for every set.
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Analyzing PSEL changes

For 10-bit PSEL:
PSEL ≥ 512 → BIP
PSEL < 512 → LRU

DIP can adapt to changes during a program’s runtime. We can observe this effect
by tracking the PSEL value.
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Analyzing PSEL changes: mcf

Figure: Vertical: PSEL value, horizontal: instructions in millions
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Analyzing PSEL changes: health

Figure: Vertical: PSEL value, horizontal: instructions in millions
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Analyzing PSEL changes: swim

Figure: Vertical: PSEL value, horizontal: instructions in millions
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Analyzing PSEL changes: ammp

Figure: Vertical: PSEL value, horizontal: instructions in millions
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Analyzing the effects of policy change and cache size change

Figure: avg: Arithmetic mean MPKI for all the benchmarks, avgNomcf: Same as avg, but
without mcf



Adaptive
cache

insertion
policies

Patrycja
Balik

Introduction
to cache
policies

The problem:
thrashing

Adaptive
insertion
policies

Conclusions

References

Additional consideration: bypassing instead of LIP

In BIP as proposed so far, lines were inserted in either the MRU or LRU position.
What if in the latter case we skipped inserting the line at all?
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Additional consideration: bypassing instead of LIP

Figure: (n) means n% bypassed misses in DIP-Bypass.
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Effect on instructions per cycle

Simulated system configuration
Machine width 4 instructions/cycle, 4 functional units
Inst. window size 32 instructions
Branch predictor Hybrid 64k-entry gshare, 64k-entry PAs

misprediction penalty is 10 cycles min.
L1-I cache 16kB, 64B block, 2-way with LRU repl.
L1-D cache 16kB, 64B block, 2-way, 2 cycle hit
L2 unified cache 1MB, 64B block, 16-way, 6 cycle hit
Main memory 32 banks, 270 cycle bank access
Off-chip bus Proc. to bus speed ratio 4:1, 8B/bus-cycle
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Effect on instructions per cycle

Figure: IPC improvement with DIP over LRU. gmean: geometric mean.
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Hardware considerations
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Conclusions

The commonly used (Pseudo-)LRU cache policy performs well for working sets
that are no larger than the cache, but suffers from thrashing otherwise.
BIP solves the thrashing cases, but at the cost of severe performance loss with
workloads that benefit from traditional LRU.
DIP, a hybrid policy which adapts to the workload, performs better than either
of the two policies it’s made up of with minimal hardware changes.
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