Concurrent Programming is Hard!

® The human mind tends to be sequential
® The notion of time is often misleading

® Thinking about all possible sequences of events
in a computer system is at least error prone and
frequently impossible

Concurrent Programming is Hard!

B Classical problem classes of concurrent programs:

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

" Example: who gets the last seat on the airplane?

" Deadlock: improper resource allocation prevents forward progress
" Example: traffic gridlock

" Starvation / Fairness: external events and/or system scheduling
decisions can prevent sub-task progress

" Example: people always jump in front of you in line
B Many aspects of concurrent programming are beyond the
scope of our course..
" but, not all 44
" We’'ll cover some of these aspects in the next few lectures.

Deadlock

B Example from signal handlers.

B Why don’t we use printf in handlers?

void catch child(int signo) ({
printf ("Child exited!'\n") ; // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

} Acquire Receive
B Pprintf code: 1| lock signal . (Try to)
m Acquire lock et l acquire
" Dosomething T Y lock
" Release lock v

B What if signal handler interrupts call to printf?

Testing Printf Deadlock

void catch child(int signo) ({
printf ("Child exited!'\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

}

int main(int argc, char** argv) ({

Child #0 started

for (i = 0; i < 1000000; i++) { Child #1 started

lf/}f?rk(;'iz °) ?t ; diatel Child #2 started
'ln Shise, eit dmmectately Child #3 started
exit (0);

Child exited!
} Child #4 started

// in parent ' i
_ o . W Child exited!
sprintf (buf, "Child #%d started\n", i); Child #5 started

printf ("%s", buf);
}

return 0;

} Child #5888 started
Child #5889 started

Why Does Printf require Locks?

B printf (and fprintf, sprintf) implement buffered 1/0O

Buffered Portion

no longer in buffer already read unread unseen

J

Current File Position

B Require locks to access to shared buffers

Starvation

B Yellow must

yield to green

Continuous stream
of green cars

Overall system
makes progress,
but some
individuals wait
indefinitely

Reminder: Iterative Echo Server

Client Server
[3\
socket socket
bind > open listenfd
open_clientfd < v
listen
Connection l /
request
\ connect accept <
v v
Client / » rio writen * rio_readlinely*
Server . .
Sessi y v Await connection
ession rio readlineb[* rio writen request from
next client
v v
close EOF > rio_readlineb

4

close

Iterative Servers

B |terative servers process one connection at a time

Client 1 Server
connect [—————, R
accept
Write [fﬁ?é

call read

ret read|" nrase
read
close | close

Iterative Servers

B |terative servers process one request at a time

Client 1 Server Client 2
connect [—...., >
accept| connect
DR
i te |, read .
WELL [ttt o [— write
call ready . R
PR call read
ret read write -,
read
close [, close Wait for server
......... > . . .
accept >— to finish with
Client 1
read
Mrite »
""""""""""""""" | ret read

Where Does Second Client Block?

B Second client attempts to B Call to connect returns
connect to iterative server " Even though connection not
Client] yet acce.pted
Server side TCP manager
socket queues request
® Feature known as “TCP
listen backlog”
°Pen_01ientfdﬂ B Call to rio_writen returns
Connection " Server side TCP manager
request buffers input data
°°n1‘e°t " B Call to rio_readlineb
blocks

rio writen

v

rio readlineb

" Server hasn’t written
anything for it to read yet.

A

10

Fundamental Flaw of Iterative Servers

Clie

connect

write
call read
ret read

User goes
out to lunch

Client 1 blocks

nt 1 Server Client 2
__ »
accept| e connect
................... call read g i
S write

call read
Server blocks
waiting for
data from

waiting for user |}

to type in data

Client 1§

B Solution: use concurrent servers instead

® Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

call read

Client 2 blocks
waiting to read
from server

11

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
" Kernel automatically interleaves multiple logical flows
" Each flow has its own private address space

2. Event-based
® Programmer manually interleaves multiple logical flows
" All flows share the same address space
" Uses technique called I/0 multiplexing.

3. Thread-based
" Kernel automatically interleaves multiple logical flows
" Each flow shares the same address space
" Hybrid of of process-based and event-based.

12

Approach #1: Process-based Servers

B Spawn separate process for each client

client 1

call connect

call fgets

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

server

child 1_—1
call read

Child blocks
waiting for
data from

Client 1

call accept

ret accept

fork

call accept

13

Approach #1: Process-based Servers

B Spawn separate process for each client

client 1 server client 2
11
call connecCtf s ca accept
"""""" | ret accept] call connect
I
call fgets
CNELL/,// fork
User goes call read call accept
out to lunch ret accept
Child blocks call fgets
Client 1 waiting for . .
fork rite
blocks data from W‘z/ e
. i 11
waiting for Client 1 v call call read
user to type ' read
in data write \
close ret read
lclose

14

Iterative Echo Server

int main(int argc, char **argv) {
int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open_ listenfd(argv[1l]);

while (1) {
clientlen = sizeof (struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr,
echo (connfd) ;
Close (connfd) ;

}

return O;

" Accept a connection request

&clientlen) ;

"Handle echo requests until client terminates

echoserverp.c

15

Making a Concurrent Echo Server

int main(int argc, char **argv) ({
int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open_ listenfd(argv[1l]);
while (1) {
clientlen = sizeof (struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

echoserverp.c

Making a Concurrent Echo Server

int main(int argc, char **argv) ({
int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open_listenfd(argv[l]) ;
while (1) {

clientlen = sizeof (struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close (connfd); /* Parent closes connected socket (important!)*/

Why?

echoserverp.c

17

Making a Concurrent Echo Server

int main(int argc, char **argv) ({
int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open_ listenfd(argv[1l]);
while (1) {
clientlen = sizeof (struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close(connfd); /* Parent closes connected socket (important!)*/

echoserverp.c

18

Process-Based Concurrent Echo Server

int main(int argc, char **argv) ({
int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

Signal (SIGCHLD, sigchld handler);
listenfd = Open listenfd(argv[1l]);
while (1) {
clientlen = sizeof(struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit(0) ; /* Child exits */

}

Close(connfd); /* Parent closes connected socket (important!)*/

echoserverp.c

19

Process-Based Concurrent Echo Server (cont)

void sigchld handler (int sig) ({
while (waitpid(-1, 0, WNOHANG) > 0)
continue;
} echoserverp.c

" Reap all zombie children

20

Process-based Server Execution Model

Connection requests

Listening
server
process
Client 1 data | Clientl Client2 | client 2 data
< »| server server « >
process process

" Each client handled by independent child process
" No shared state between them

" Both parent & child have copies of 1istenfdand connfd
" Parent must close connfd
" Child should close 1istenfd

21

Issues with Process-based Servers

B Listening server process must reap zombie children
" to avoid fatal memory leak

B parent process must close its copy of connfd
" Kernel keeps reference count for each socket/open file
" After fork, refcnt (connfd) = 2
" Connection will not be closed until refcnt (connfd) =

0

22

Pros and Cons of Process-based Servers

+ Handle multiple connections concurrently
+ Clean sharing model

® descriptors (no)

" file tables (yes)

® global variables (no)

+ Simple and straightforward
— Additional overhead for process control

— Nontrivial to share data between processes
" (This example too simple to demonstrate)

23

Approach #2: Event-based Servers

B Server maintains set of active connections
® Array of connfd’s

B Repeat:
" Determine which descriptors (connfd’s or listenfd) have pending inputs
" e.g.,using select orpoll function
" arrival of pending input is an event
" If listenfd has input, then accept connection
" and add new connfd to array
" Service all connfd’s with pending inputs

B Details for select-based server in book

24

/0O Multiplexed Event Processing

Active Descriptors

O 0 N O U1 o W N = O

listenfd = 3

connfd’s

10

N
> Active Anything

< happened?
> Inactive

<
> Active

-’

Never Used

Read and service

Pending Inputs
listenfd =3 €

connfd’s

10

25

Pros and Cons of Event-based Servers

+ One logical control flow and address space.
+ Can single-step with a debugger.
+ No process or thread control overhead.

® Design of choice for high-performance Web servers and search engines.

e.g., Node.js, nginx, Tornado

— Significantly more complex to code than process- or thread-
based designs.

— Hard to provide fine-grained concurrency
" E.g., how to deal with partial HTTP request headers

— Cannot take advantage of multi-core
" Single thread of control

26

Approach #3: Thread-based Servers

B Very similar to approach #1 (process-based)

..but using threads instead of processes

27

Traditional View of a Process

B Process = process context + code, data, and stack

......... Processcontext ______. Code, data, and stack

Program context: sp — Stack
Data registers
Condition codes Shared libraries
Stack pointer (SP)
brk

Program counter (PC) Run-time heap

Read/write data
PC — Read-only code/data

VM structures
Descriptor table
brk pointer

1
1
1
1
1
1
1
1
1
1
1
1
1
1
! Kernel context:
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Alternate View of a Process

B Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

brk —

Run-time heap
Read/write data
PC —> Read-only code/data

Thread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

A Process With Multiple Threads

B Multiple threads can be associated with a process
® Each thread has its own logical control flow
® Each thread shares the same code, data, and kernel context
® Each thread has its own stack for local variables
" but not protected from other threads
® Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time hean
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer

Logical View of Threads

B Threads associated with process form a pool of peers
® Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

PN NN EN MR N NN EE EE NN NN R NN NN NN R BN EN EE BN SN NN R M RN R BN RN Em o
:
- .@
-
-
- o
- R
: : @

) () ()
S SR , (1
(b3

“a | shared code, data
and kernel context

31

Concurrent Threads

B Two threads are concurrent
if their flows overlap in time

B Otherwise, they are sequential

® Examples: Thread A

Thread B

Thread C

" Concurrent: A& B,A&C |

" Sequential: B& C

Time

32

Concurrent Thread Execution

B Single Core Processor ® Multi-Core Processor

" Simulate parallelism by " Can have true
time slicing parallelism
Thread A Thread B Thread C Thread A Thread B Thread C

I Time

I y I

Run 3 threads on 2 cores

33

Threads vs. Processes

B How threads and processes are similar
® Each has its own logical control flow
® Each can run concurrently with others (possibly on different cores)
" Each is context switched

B How threads and processes are different

" Threads share all code and data (except local stacks)
" Processes (typically) do not

" Threads are somewhat less expensive than processes

" Process control (creating and reaping)
twice as expensive as thread control

" Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

34

Threads vs. Signals

Receive
signal

» Handler

!

curr L

next %

v

B Signal handler shares state with regular program
® Including stack

B Signal handler interrupts normal program execution
" Unexpected procedure call
" Returns to regular execution stream
" Not a peer

B |imited forms of synchronization
Yy
® Main program can block / unblock signals
® Main program can pause for signal

35

Posix Threads (Pthreads) Interface

® Ppthreads: Standard interface for ~60 functions that

manipulate threads from C programs
" Creating and reaping threads

" pthread create()

" pthread join()
" Determining your thread ID

" pthread self ()
® Terminating threads

" pthread cancel ()

" pthread exit()

" exit () [terminates all threads]

" return [terminates current thread]
" Synchronizing access to shared variables

" pthread mutex init

" pthread mutex [un]lock

36

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program

*/

#include "csapp.h" Thread ID

void *thread(void *vargp) ;

int main(int argc, char** zfgv)

{

Pthread create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL) ;

return 0;

Thread attributes
(usually NULL)

hello.c

Thread routine

Thread arguments
(void *p)

void *thread(void *vargp) /* thread routine

{
printf ("Hello, world!'\n");
return NULL;

Return value
(void **p)

hello.c

37

Execution of Threaded “hello, world”

Main thread

call Pthread create()

Pthread create() | .. Peer thread
returns | e
call Pth d join() e
read join() printf ()
Main thread waits for return NULL;

peer thread to terminate Peer thread

------------------------- terminates

Pthread join() “
returns

exit ()
Terminates

main thread and
any peer threads

38

Thread-Based Concurrent Echo Server

int main(int argc, char **argv) {
int listenfd, *connfdp;
socklen t clientlen;
struct sockaddr storage clientaddr;
pthread t tid;

listenfd = Open listenfd(argv[1l]);

while (1) {
clientlen = sizeof(struct sockaddr storage) ;
connfdp = Malloc(sizeof (int));
*connfdp = Accept(listenfd, (SA *) &clientaddr,
Pthread create(&tid, NULL, thread, connfdp);

}

return 0;

&clientlen) ;

echoservert.c

" Spawn new thread for each client
" Pass it copy of connection file descriptor
® Note use ofMalloc () ! [but not Free ()]

39

Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp) ({
int connfd = *((int ¥*)vargp):
Pthread detach(pthread self())
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;

return NULL;
} echoservert.c

" Run thread in “detached” mode.
" Runs independently of other threads
" Reaped automatically (by kernel) when it terminates

" Free storage allocated to hold connfd.
" Close connfd (important!)

40

Thread-based Server Execution Model

Connection requests

Listening
server
main thread
] Client 1 Client 2 .
Clientl1data | ¢epyer server | Client 2 data
)] peer peer)]
thread thread

" Each client handled by individual peer thread
" Threads share all process state except TID
" Each thread has a separate stack for local variables

41

Issues With Thread-Based Servers

B Must run “detached” to avoid memory leak
" At any point in time, a thread is either joinable or detached
" Joinable thread can be reaped and killed by other threads
" must be reaped (with pthread join)to free memory resources
" Detached thread cannot be reaped or killed by other threads
" resources are automatically reaped on termination
" Default state is joinable
" use pthread detach (pthread self ()) to make detached

B Must be careful to avoid unintended sharing
" For example, passing pointer to main thread’s stack

" Pthread create(&tid, NULL, thread, (void *)&connfd);

B All functions called by a thread must be thread-safe
® (next lecture)

42

Potential Form of Unintended Sharing

while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen);
Pthread create(&tid, NULL, thread, &connfd);

}

main thread

Main thread stack

connfd = connfd, connfd

Peer, stack

“vargp
G | coninfd = *vargp

paa
ay
ay
ay
Yay
taa,
LI
Teny
taa,
"
..........
LITH
Tany
"y
"y
LT
ey,
YTy
LT
.

............................... - Peer, stack
\connfd = *vargp

O vargp

v Why would both copies of vargp point to same location?

43

Could this race occur?

Main Thread
int 1i; void *thread(void *vargp) ({
for (1 = 0; i < 100; i++) { int 1 = *((int *)wvargp):
Pthread create(&tid, NULL, Pthread detach(pthread self());
thread, &i); save value (i) ;
} return NULL;
}
B Race Test

" If norace, then each thread would get different value of i
" Set of saved values would consist of one copy each of 0 through 99

44

Experimental Results

No Race
2

g ———

O 2 06 9N @R DDA P DPDYP RPN RERAA AP PP PP

Ssingle core laptop

N
|

R [T CLRTTLRTTLL L TL LR TRTTL L ET L EE L RETLLL
0 -

© % 0 9N RN AR DD PR D PRSP Q@O AR YD PP PP

1I}/Iulticore server

12

10

O 09N VRN PP PR N0 RYPNPPERAAN D PSP P PP

B The race can really happen!

Correct passing of thread arguments

/* Main routine */
int *connfdp;
connfdp = Malloc(sizeof (int));
*connfdp = Accept(. . .);
Pthread create(&tid, NULL, thread, connfdp);

/* Thread routine */
void *thread(void *vargp) {
int connfd = *((int *)vargp):

Free (vargp) ;

return NULL;
}

B Producer-Consumer Model
" Allocate in main

Free in thread routine

46

Pros and Cons of Thread-Based Designs

B + Easy to share data structures between threads
" e.g., logging information, file cache

B + Threads are more efficient than processes

B _ Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

® Hard to know which data shared & which private

" Hard to detect by testing

" Probability of bad race outcome very low
" But nonzero!

" Future lectures

47

