Today

B Using semaphores to schedule shared resources
® Producer-consumer problem
" Readers-writers problem

B Other concurrency issues
" Thread safety

" Races
" Deadlocks

Using Semaphores to Coordinate
Access to Shared Resources

B Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
" Use counting semaphores to keep track of resource state.
" Use binary semaphores to notify other threads.

B Two classic examples:
" The Producer-Consumer Problem
" The Readers-Writers Problem

Producer-Consumer Problem

| shared ,»{ consumer
buffer thread

producer
thread

® Common synchronization pattern:
® Producer waits for empty slot, inserts item in buffer, and notifies consumer
® Consumer waits for item, removes it from buffer, and notifies producer

B Examples
® Multimedia processing:
" Producer creates video frames, consumer renders them
" Event-driven graphical user interfaces

" Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

" Consumer retrieves events from buffer and paints the display

Producer-Consumer on 1l-element
Buffer

® Maintain two semaphores: full + empty

full
0
-> empty ->
empty buffer
1
full

[fun .
empty buffer

Producer-Consumer on 1-element Buffer

#include "csapp.h"
#define NITERS 5

void *producer (void *argqg) ;
void *consumer (void *argqg) ;

struct {
int buf; /* shared var */
sem t full; /* sems */
sem t empty;

} shared;

int main(int argc, char** argv) {
pthread t tid producer;
pthread t tid consumer;

/* Initialize the semaphores */
Sem init(&shared.empty, 0, 1);
Sem init (&shared.full, 0, 0);

/* Create threads and wait */
Pthread create(&tid producer, NULL,
producer, NULL) ;
Pthread create(&tid consumer, NULL,
consumer, NULL) ;
Pthread join(tid producer, NULL);
Pthread join(tid consumer, NULL);

return 0;

Producer-Consumer on 1-element Buffer

Initially: empty =

Producer Thread

1, full ==

Consumer Thread

void *producer (void *arg) ({
int i1, item;

for (i=0; i<NITERS; i++) {
/* Produce item */
item = i;
printf ("produced %d\n",
item) ;

/* Write item to buf */
P (&shared.empty) ;
shared.buf = item;

V (&shared. full) ;

}
return NULL;

}

void *consumer (void *arg) ({
int i, item;

for (i=0; i<NITERS; i++) {

}

/* Read item from buf */
P(&shared. full) ;

item = shared.buf;
V(&shared.empty) ;

/* Consume item */
printf ("consumed %d\n“, item);

return NULL;

}

Why 2 Semaphores for 1-Entry Buffer?
B Consider multiple producers & multiple consumers

_©

e —— shared [~ -~

® Producers will contend with each to get empty
B Consumers will contend with each other to get full

Producers Consumers

P (&shared.empty) ; empty full P (&shared. full) ;
shared.buf = item; item = shared.buf;
V (&shared. full) ; V (&shared.empty) ;

Producer-Consumer on an n-element Buffer

en 0 and n elements @
° / °

B Implemented using a shared buffer package called sbuf.

Circular Buffer (n = 10)

B Store elements in array of size n
B jtems: number of elements in buffer
® Empty buffer:

® front =rear

B Nonempty buffer

rear: index of most recently inserted element
® front: (index of next element to remove — 1) mod n

B |nitially:
rear 0
items 0

Circular Buffer Operation (n = 10)

B |nsert 7 elements

front
rear

B Remove 5
5
7

rear
items
¥ |nsert

front
rear

ol 0 1 2 3 4 5 &6
7
7
elements
0 1 2 3 4 5 6
2
6 elements
s|] 0 1 2 3 4 5 6
elements
0 1 2 3 4 5 6

10

Sequential Circular Buffer Code

init(int v)
{

items = front = rear =

}

0,

insert (int v)
{
if (items >= n)
error () ;
if (++rear >= n) rear =
buf[rear] = v;
items++;

}

0,

int remove ()

{
if (items == 0)

error () ;

if (++front >= n) front
int v = buf[front];
items--;
return v;

0,

1

Producer-Consumer on an n-element Buffer

en 0 and n elements @
° / °

« XX
B Requires a mutex and two counting semaphores:

mutex: enforces mutually exclusive access to the buffer and counters

" slots: counts the available slots in the buffer

" 1tems: counts the available items in the buffer

B Makes use of general semaphores
" Will range in value from O to n

12

sbuf Package - Declarations

typedef
int
int
int
int
sem

#include '"csapp.h”

struct {
*buf;

n,
front;
rear;

t mutex;

sem:t slots;
sem t items;
} sbuf t;

/*
/*
/*
/*
/*
/*
/*

Buffer array
Maximum number of slots

buf[front+l (mod n)] is first item */

buf[rear] is last item
Protects accesses to buf
Counts available slots
Counts available items

void sbuf init(sbuf t *sp, int n);
void sbuf deinit(sbuf t *sp);

void sbuf insert(sbuf t *sp, int item);
int sbuf remove (sbuf t *sp);

*/
*/

*/
*/
*/
*/

sbuf.h

13

sbuf Package - Implementation

Initializing and deinitializing a shared buffer:

/* Create an empty, bounded, shared FIFO buffer with n slots */

void sbuf init(sbuf t *sp, int n)

{
sp->buf = Calloc(n, sizeof(int));
sp->n = n; /* Buffer holds max of n items */
sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
Sem init(&sp->mutex, 0, 1); /* Binary semaphore for locking */
Sem init(&sp->slots, 0, n); /* Initially, buf has n empty slots */
Sem init(&sp->items, 0, 0); /* Initially, buf has zero items */

}

/* Clean up buffer sp */
void sbuf deinit(sbuf t *sp)
{

Free (sp->buf) ;

}
sbuf.c

14

sbuf Package - Implementation

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer sp */
void sbuf insert(sbuf t *sp, int item)

{

P (&sp->slots) ; /* Wait for available slot */

P (&sp->mutex) ; /* Lock the buffer x/

if (++sp->rear >= sp->n) /* Increment index (mod n) */
sp->rear = 0;

sp->buf [sp->rear] = item; /* Insert the item */

V (&sp->mutex) ; /* Unlock the buffer *x/

V (&sp->items) ; /* Announce available item */

sbuf.c

15

sbuf Package - Implementation

Removing an item from a shared buffer:

int sbuf remove (sbuf t *sp)
{
int item;
P (&sp->items) ;
P (&sp->mutex) ;
if (++sp->front >= sp->n)
sp->front = 0;
item = sp->buf[sp->front];
V (&sp->mutex) ;
V(&sp->slots) ;
return item;

/*
/*
/*

/*
/*
/*

/* Remove and return the first item from buffer sp */

Wait for available item */

Lock the buffer
Increment index (mod n)

Remove the item
Unlock the buffer

*/
*/

*/
*/

Announce available slot */

sbuf.c

16

Demonstration

B See program produce-consume.c in code directory
B 10-entry shared circular buffer

® 5 producers
" Agentigenerates numbers from 20*i to 20*i — 1.
" Puts them in buffer

® 5 consumers
" Each retrieves 20 elements from buffer
® Main program
" Makes sure each value between 0 and 99 retrieved once

17

Today

B Using semaphores to schedule shared resources
® Producer-consumer problem
" Readers-writers problem

B Other concurrency issues
" Thread safety

" Races
" Deadlocks

18

Readers-Writers Problem

/’

; @ /‘

\Ij:t'?te/ _< @ >_ Read-only
Access

Access \
o &) _

B problem statement:
" Reader threads only read the object

" Writer threads modify the object (read/write access)
" Writers must have exclusive access to the object
® Unlimited number of readers can access the object

B QOccurs frequently in real systems, e.g.,
® Online airline reservation system
® Multithreaded caching Web proxy

Readers/Writers Examples

®
@ —
® ®
& —
® [

Variants of Readers-Writers

B Fjrst readers-writers problem (favors readers)
" No reader should be kept waiting unless a writer has already been
granted permission to use the object.
" A reader that arrives after a waiting writer gets priority over the

writer.

B Second readers-writers problem (favors writers)
® Once a writer is ready to write, it performs its write as soon as

possible
" A reader that arrives after a writer must wait, even if the writer is

also waiting.

B Starvation (where a thread waits indefinitely) is possible
in both cases.

21

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt; /*
sem t mutex, w; /*

void reader (void)
{
while (1) {
P (&mutex) ;
readcnt++;
if (readcnt
P(&w) ;
V (&mutex) ;

Initially 0 */
Both initially 1 */

1) /* First in */

/* Reading happens here */

P (&mutex) ;

readcnt--;

if (readcnt
V(&w) ;

V (&mutex) ;

0) /* Last out */

void writer (void)

{
while (1) {
P(&w) ;

/* Writing here */
V(&w) ;

}
}

rwl.c

22

Readers/Writers Examples

(wy

/Q .

\ readcnt=0

O

w=0

=0
\ readcnt 0

readcnt = 2 @ ‘

c e

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt; /*
sem t mutex, w; /*

void reader (void)
{
while (1) {
P (&mutex) ;
readcnt++;
if (readcnt
P(&w) ;
V (&mutex) ;

Initially 0 */
Both initially 1 */

1) /* First in */

/* Reading happens here */

P (&mutex) ;

readcnt--;

if (readcnt
V(&w) ;

V (&mutex) ;

0) /* Last out */

void writer (void)

{
while (1) {
P(&w) ;

/* Writing here */
V(&w) ;

}
}

Arrivals: R1 R2 W1 R3

rwl.c

24

Solution to First Readers-Writers Problem

Readers: Writers:
int readcnt; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) {
void reader (void) P(&w) ;
{
while (1) { /* Writing here */

P (&mutex) ;

readcnt++; V(&w) ;

if (readcnt == 1) /* First in */ }

P (&w) ; }
V (&mutex) ;

rwl.c
R1 _»'* Reading happens here */

Arrivals: R1 R2 W1 R3
P (&mutex) ;
readcnt--;
if (readcent == 0) /* Last out */ Readcnt ==

V(&w) ; W ==
V (&mutex) ;
}
}

25

Solution to First Readers-Writers Problem

Readers: Writers:
int readcnt; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) {
void reader (void) P(&w) ;
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
R2 —%¢ (readcnt == 1) /* First in */ }
P (&w) ; }
V (&mutex) ;

rwl.c
R1 _»'* Reading happens here */

Arrivals: R1 R2 W1 R3
P (&mutex) ;
readcnt--;
if (readcnt == 0) /* Last out */ Readcnt ==

V(&w) ; W ==
V (&mutex) ;
}
}

26

Solution to First Readers-Writers Problem

Readers:

int readcnt; /*
sem t mutex, w; /*

Initially 0 */
Both initially 1 */

void reader (void)
{
while (1) {
P (&mutex) ;
readcnt++;
if (readcnt
P(&w) ;
V (&mutex) ;

1) /* First in */

_»'* Reading happens here */

P (&mutex) ;
readcnt--;
if (readcnt
V(&w) ;
V (&mutex) ;
}
}

0) /* Last out */

Writers:

void writer (void)

/* Writing here */

V(&w) ;
}
}

Arrivals: R1 R2 W1 R3

Readcnt ==
W ==

rwl.c

27

Solution to First Readers-Writers Problem

Readers: Writers:
int readcnt; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) { ‘
void reader (void) P(&w) ; wi
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
if (readcnt == 1) /* First in */ }
P(&w) ; }
V (&mutex) ;

rwl.c
R2 ===J)/ * Reading happens here */

Arrivals: R1 R2 W1 R3

P (&mutex) ;

readcnt--;

if (readcnt == 0) /* Last out */ Readcnt ==
V(&w) ; W ==

V (&mutex) ;

Rl >
}

28

R2

Solution to First Readers-Writers Problem

Readers:

int readcnt; /*
sem t mutex, w; /*

Initially 0 */
Both initially 1 */

void reader (void)
{
while (1) {
P (&mutex) ;
readcnt++;
f (readcnt
P(&w) ;
V (&mutex) ;

1) /* First in */

/* Reading happens here */
—
P (&mutex) ;
readcnt--;
if (readcnt
V(&w) ;
V (&mutex) ;

1 ==

0) /* Last out */

}

Writers:

void writer (void)

/* Writing here */

V(&w) ;
}
}

Arrivals: R1 R2 W1 R3

Readcnt ==
W

rwl.c

29

Solution to First Readers-Writers Problem

Writers:

Readers:

int readcnt; /*
sem t mutex, w; /*

void reader (void)
{
while (1) {
P (&mutex) ;
readcnt++;
if (readcnt ==
P(&w) ;
V (&mutex) ;

R3 —»

/* Reading happens here */

R2

P (&mutex) ;

readcnt--;

if (readcnt ==
V(&w) ;

! =g/ (&mutex) ;
}

}

Initially 0 */
Both initially 1 */

1) /* First in */

0) /* Last out */

void writer (void)

}

/* Writing here */

V(&w) ;
}

rwl.c

Arrivals: R1 R2 W1 R3

Readcnt ==
W ==

30

Solution to First Readers-Writers Problem

Readers: Writers:
int readcnt; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) { ‘
void reader (void) P(&w) ; wi
{
while (1) { /* Writing here */
P (&mutex) ;
readcnt++; V(&w) ;
if (readcnt == 1) /* First in */ }
P(&w) ; }
V (&mutex) ;

rwl.c
/* Reading happens here */

Arrivals: R1 R2 W1 R3
P (&mutex) ;
readcnt--;
if (readcnt == 0) /* Last out */ Readcnt ==
i V(&w) ; W ==
R3 _k(&mutex) ;

}
}

31

Other Versions of Readers-Writers

B Shortcoming of first solution

® Continuous stream of readers will block writers indefinitely
® Second version

® Once writer comes along, blocks access to later readers

" Series of writes could block all reads
® FIFO implementation

" See rwgueue code in code directory

" Service requests in order received
® Threads kept in FIFO

" Each has semaphore that enables its access to critical section

32

Solution to Second Readers-Writers

F,r()t)lfarr] int readcnt, writecnt; // Initially O
sem t rmutex, wmutex, r, w; // Initially 1
void reader (void)
{
while (1) {
P(&r);
P (&rmutex) ;
readcnt++;
if (readcnt == 1) /* First in */
P(&w) ;
V(&rmutex) ;
V(&r)

/* Reading happens here */

P(&rmutex) ;

readcnt--;

if (readent == 0) /* Last out */
V(&w) ;

V (&rmutex) ;

Solution to Second Readers-Writers

Problem

void writer (void)

{

while (1) {

P (&wmutex) ;

writecnt++;

if (writecnt ==
P(&r) ;

V (&wmutex) ;

P(&w) ;
/* Writing here
V(&w) ;

P (&wmutex) ;

writecnt--;

if (writecnt ==
V(&r) ;

V (&wmutex) ;

1)

*/

0);

34

Managing Readers/Writers with FIFO

Time >

Requests | R| R|IW|R|R|R|WIW|R|W

Allowed |¢ >le—>sle 9(@)(@)'4—)ﬂ—bl

Concurrency

B |dea

" Read & Write requests are inserted into FIFO

" Requests handled as remove from FIFO
" Read allowed to proceed if currently idle or processing read
" Write allowed to proceed only when idle

" Requests inform controller when they have completed

® Fairness
" Guarantee very request is eventually handled

Readers Writers FIFO Implementation

B Full code in rwqueue.{h,c}

/* Queue data structure */

typedef struct ({
sem t mutex; // Mutual exclusion
int reading count; // Number of active readers
int writing count; // Number of active writers
// FIFO queue implemented as linked list with tail
rw_token t *head;
rw_token t *tail;

} rw queue t;

/* Represents individual thread's position in queue */
typedef struct TOK ({

bool is reader;

sem t enable; // Enables access

struct TOK *next; // Allows chaining as linked list
} rw_token t;

36

Readers Writers FIFO Use

® |n rwqueue-test.c

/* Get write access to data and write */
void iwriter (int *buf, int v)
{

rw_token t tok;

rw_queue request write(&q, &tok);

/* Critical section */

*buf = v;

/* End of Critical Section */

rw_queue release (&q); /* Get read access to data and read */

int ireader (int *buf)
{
rw_token t tok;
rw_queue_request read(&q, &tok);
/* Critical section */
int v = *buf;
/* End of Critical section */
rw_queue release (&q);
return v;

37

Library Reader/Writer Lock

¥ Datatype pthread rwlock t

B QOperations
" Acquire read lock
Pthread rwlock rdlock (pthread rw lock t *rwlock)
" Acquire write lock
Pthread rwlock wrlock (pthread rw lock t *rwlock)
" Release (either) lock
Pthread rwlock unlock (pthread rw lock t *rwlock)

® Observation
" Library must be used correctly!

" Up to programmer to decide what requires read access and
what requires write access

38

Today

B Using semaphores to schedule shared resources
" Producer-consumer problem
" Readers-writers problem

B Other concurrency issues
® Thread safety

" Interactions between threads and signal handling

39

Crucial concept: Thread Safety

B Functions called from a thread must be thread-safe

B Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads.

B (Classes of thread-unsafe functions:
® Class 1: Functions that do not protect shared variables
® Class 2: Functions that keep state across multiple invocations
® Class 3: Functions that return a pointer to a static variable
® Class 4: Functions that call thread-unsafe functions

40

Thread-Unsafe Functions (Class 1)

B Failing to protect shared variables
" Fix: Use P and V semaphore operations
" Example: goodent.c
" Issue: Synchronization operations will slow down code

41

Thread-Unsafe Functions (Class 2)

B Relying on persistent state across multiple function invocations

Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{
next = next*1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;
}

/* srand: set seed for rand() */
void srand(unsigned int seed)

{

next = seed;

}

42

Thread-Safe Random Number Generator

B Ppass state as part of argument

® and, thereby, eliminate static state

/* rand r - return pseudo-random integer on 0..32767 */

int rand r(int *nextp)
{
*nextp = *nextp*1103515245 + 12345;
return (unsigned int) (*nextp/65536) % 32768;

B Consequence: programmer using rand_r must maintain seed

43

Thread-Unsafe Functions (Class 3)

® Returning a pointer to
a static variable

B Fix 1. Rewrite function so
caller passes address of
variable to store result

" Requires changes in caller and
callee

® Fix 2. Lock-and-copy

® Requires simple changes in
caller (and none in callee)

" However, caller must free
memory.

" That’s what is done with Unix
buffered 1/0 (e.g., printf)

/* Convert integer to string */

char *itoa(int x)

{
static char buf[ll];
sprintf (buf, "%d", x);
return buf;

char *lc _itoa(int x, char *dest)
{

P (&mutex) ;

strcpy (dest, itoa(x));

V (&mutex) ;

return dest;

Thread-Unsafe Functions (Class 4)

B Calling thread-unsafe functions

" Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

" Fix: Modify the function so it calls only thread-safe functions 44

45

Reentrant Functions

B Def: A function is reentrant iff it accesses no shared
variables when called by multiple threads.
" Important subset of thread-safe functions
" Require no synchronization operations

" Only way to make a Class 2 function thread-safe is to make it
reetnrant (e.g., rand r)

All functions

Thread-safe
functions

Thread-unsafe
Reentrant functions

functions

Thread-Safe Library Functions

B All functions in the Standard C Library (at the back of your
K&R text) are thread-safe

" Examples:malloc, free, printf, scanf

B Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime r

ctime 3 ctime r
gethostbyaddr 3 gethostbyaddr r
gethostbyname 3 gethostbyname r
inet ntoa 3 (none)

localtime 3 localtime r
rand 2 rand r

Today

B Using semaphores to schedule shared resources
" Producer-consumer problem
" Readers-writers problem

B Other concurrency issues
" Thread safety
" Interactions between threads and signal, fork and 1/0

48

Threads Summary

® Threads provide another mechanism
for writing concurrent programs

B Threads are growing in popularity
" Somewhat cheaper than processes
" Easy to share data between threads
B However, the ease of sharing has a cost:

" Easy to introduce subtle synchronization errors
" Tread carefully with threads!

® For more info:

" D. Butenhof, “Programming with Posix Threads”
Addison-Wesley, 1997

49

