
Improving C/C++ memory 
safety

using sanitizers, hardware-assisted sanitizers and 
memory tagging

speaker: Julian Pszczołowski



C/C++ memory safety

2



C/C++ memory safety
● Heap-use-after-free
● Heap-buffer-overflow
● Stack-buffer-overflow
● Stack-use-after-return
● Stack-use-after-scope
● Global-buffer-overflow
● Use-of-uninitialized-memory
● ...

3

char *p = new char[20];
p[20] = …; // BUG
delete [] p;
p[0] = …; // BUG



4



C/C++ memory safety
● *-use-after-free / *-buffer-overflow / uninitialized memory

○ over 50% of High/Critical security bugs in Chrome & Android
○ 70% of all security issues addressed in Microsoft products are caused by violations of memory 

safety

● Not only security vulnerabilities:
○ crashes, data corruption, developer productivity

5



AddressSanitizer (ASan)

6



AddressSanitizer
● Released in May 2011
● Memory error detector in C/C++ that finds most of the aforementioned bugs
● Compiler instrumentation + run-time library (that replaces malloc/free)
● Average slowdown: 2x, memory overhead: 1.5x-4x
● No false positives!
● During first 1.5 years found 1000+ bugs in:

○ Firefox, Chrome, Vim, GCC, MySQL, LLVM, Perl, FFmpeg, libjpeg-turbo, FreeType, ...

● -fsanitize=address (demo)

7



8



9



10



11



12



13



14



15



ASan run-time library
● Initializes shadow memory at startup
● Provides full malloc replacement

○ Insert poisoned redzones around allocated memory
○ Quarantine for free-ed memory
○ Collect stack traces for every malloc/free

● Provides interceptors for functions like memset
● Prints error messages

16



The KernelAddressSanitizer
● Implementing ASan inside OS kernel is more difficult
● General idea is the same: shadow region + instrumented allocators (kernels 

usually have many different allocators)
● Compiler inserts __asan_loadN() and __asan_storeN() calls, that we 

have to implement
● Main challenge: setting up the shadow region early in the boot process (which 

is obviously machine-dependent)
● -fsanitize=kernel-address

17



The KernelAddressSanitizer
● Added to:

○ Linux (2014)
○ NetBSD (2018)
○ FreeBSD (2019)
○ Mimiker (2020)

18



ASan’s problems
● Hard to use in production (~2x overhead in memory/CPU/code size)
● Not a strong security mitigation:

○ buffer overflows: access may jump over redzone

○ use-after-free: access may “outlive” quarantine

● Does not detect bugs in pre-compiled binaries
19



Memory tagging

20



Tagged architecture
● Type of computer architecture where every word of memory is a tagged union 

(i.e. data + tag)
● The idea is not new:

○ Rice Computer (ca. 1960)
○ Lisp machines (1970s, 1980s)

21



Memory tagging / coloring / tainting
● 64-bit architectures only
● Every aligned TG bytes have a TS-bit tag

○ TG = tagging granularity, TS = tag size
○ Example values: (TG=64, TS=4) / (TG=16, TS=8)

● TS bits in the upper part of every pointer contain a tag

22



Memory tagging / coloring / tainting
● malloc():

○ align to Tagging Granularity
○ choose a tag (e.g. randomly)
○ tag the memory
○ tag the returned pointer

● free():
○ re-tag the memory

● Every load and store instruction raises an exception on mismatch between 
the pointer and memory tags

23



24



25



26



27



28



29



Tag assignment strategies
● Random
● Dedicated “match-none” tag:

○ 100% off-by-one (linear) buffer-overflow detection, but requires redzone
○ 100% use-after-free-before-realloc

● Different tags for adjacent chunks
○ 100% off-by-one (linear) buffer-overflow detection

● ...

30



MT and stack-buffer-overflow, stack-use-after-return
● Compiler instrumentation still needed to tag/untag local variables
● Significant memory overhead for large TG values (imagine aligning stack 

variables to 64 bytes) 
● Stack instrumentation can be optional

31



MT vs ASAN
● MT:

○ Expected smaller RAM overhead (no redzones, but some alignment)
○ Detection of buffer-overflows far from bounds
○ Detection of use-after-free long after deallocation (without quarantine)
○ Can initialize memory as a side effect
○ Requires some hardware support (we’ll talk about it in a while)

● ASAN:
○ Precise 1-byte buffer-overflow detection
○ More portable (also for 32-bit, no need for hardware support)

32



MT vs ASAN
● Better detection of overflows and use-after-free-s makes MT much stronger 

security mitigation against attackers!

33



Existing implementations of MT

34



HWASAN (ASAN-MT hybrid)
● Hardware-assisted ASAN
● Only for AArch64 (which supports top-byte-ignore), we keep the tag in the 

MSB of a pointer
○ notice: x86-64/Aarch64 allow only 48-bit virtual address space

● Memory tags kept in the shadow region (shadow requires 1/TG extra 
memory)

● TG=16, TS=4
● Overhead: 2x CPU, 6% RAM, 2.5x code size

35



HWASAN (ASAN-MT hybrid)

36



HWASAN vs ASAN
● HWASAN:

○ probabilistic detection of errors, but detects far buffer-overflows and delayed use-after-free
○ much smaller memory overhead (no heap redzones, no quarantine, 2x smaller shadow region)
○ only for AArch64
○ rather expensive stack instrumentation (consider disabling it)

● Both have similar CPU overhead

37



SPARC ADI hardware extension
● ADI = Application Data Integrity
● Supported on SPARC M7/M8 CPUs since 2016
● TG=64, TS=4
● The memory tag for a single 64-byte region is set with a single instruction

● Load/store generates hardware exception on tag mismatch
● Memory tags:

○ not separately addressable
○ stored in some hidden hardware state
○ only way to read/write is through special instructions

38



SPARC ADI hardware extension
● Need to instrument malloc()/free(), but not each read/write in the application

○ CPU will detect errors itself

● Aligns malloc by 64
● Heap bugs only (costly stack instrumentation)

TLDR:

● Very low CPU overhead :-)
● Very low code size overhead :-)
● Only in SPARC! :-(

39



Incoming implementations of MT

40



ARM MTE (Memory Tagging Extension)
● MT for ARM announced at the end of 2018
● New hardware instructions for interacting with tagged memory, e.g.:

41



ARM MTE (Memory Tagging Extension)
● TG=16 (so very little malloc overalignment), TS=4
● Doesn’t exist in hardware yet
● Similarly to SPARC ADI:

○ Load/store generates hardware exception on tag mismatch
○ Need only to instrument malloc()/free()

● Overheads:
○ RAM: 3-5%
○ CPU: “hoping for low-single-digit %”

42



Benefits of fully hardware-assisted MT
● Finds buggy accesses in non-instrumented code

○ e.g. some legacy code that we don’t want to recompile with ASAN
○ only changes in malloc()/free() required

● Could allow shipping instrumented binary to production
○ large overhead of ASAN makes it not feasible, so usually ASAN-build is used only for testing

43



Bonus:
ThreadSanitizer

44



ThreadSanitizer v1
● Tool based on Valgrind that detects data races
● Released in 2009
● Slowdown 20-300x

○ still faster than other tools at that time

● Found thousands of races (at least 180 in Chromium)

45



ThreadSanitizer v2
● Compiler instrumentation + run-time library
● Developed inside LLVM, imported into GCC
● -fsanitize=thread (demo)
● Slowdown 5-15x, memory overhead 5-10x
● It’s the current TSan

46



TSan detectable bugs
● Regular data races
● Races on mutexes, file descriptors, barriers, ...
● Use-after-free races
● Signal-unsafe malloc/free call in signal handler
● Initializing objects without synchronization
● Potential deadlocks
● ...

47



48



49



50



51



52



53



54



Some overview of TSan v1 algorithm
● TSan v2 is implemented in a similar way
● We need to define happens-before relation
● TSan keeps track of: memory accesses, the aforementioned relation, mutex 

locking/unlocking, signal/wait events, and looks for a race condition
● Let’s look at an example (very simple) definition of happens-before

○ unfortunately it will sometimes report false-positives

55



56



“Data race” definition

57



“Event lock set” definition

58



Better “happens-before” definition
● Current happens-before looks only at SIGNAL -> WAIT pairs (where SIGNAL 

is observed first)
● Better definitions could also look at another pairs of events:

○ RD-UNLOCK -> WR-LOCK,
○ WR-UNLOCK -> RD-LOCK,
○ …

● Fewer false-positives!

59



Shadow cell eviction 
● When all shadow cells are filled, one random is replaced

60



TSan function interceptors
Over 100 interceptors:

● malloc, free, …
● pthread_mutex_lock, …
● strlen, memcmp, …
● read, write, ...

61



Informative reports
● Need to report two stack traces:

○ current (easy)
○ previous (hard)

● Previous stack trace in TSan v2:
○ Per-thread cyclic buffer of events

■ event: memory access, function entry/exit
○ Information will be lost after some time

62



Bibliography
● Memory Tagging and how it improves C/C++ memory safety.

K. Serebryany et al. 2018.
● ThreadSanitizer – data race detection in practice. K. Serebryany et al. 2009.
● https://www.youtube.com/watch?v=lLEcbXidK2o/ 
● https://github.com/google/sanitizers/
● https://gcc.gnu.org/wiki/cauldron2012
● https://lwn.net/Articles/598486/
● https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges

%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20
Landscape.pdf

● https://en.wikipedia.org/wiki/Tagged_architecture

63

https://www.youtube.com/watch?v=lLEcbXidK2o/
https://github.com/google/sanitizers/
https://gcc.gnu.org/wiki/cauldron2012
https://lwn.net/Articles/598486/
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://en.wikipedia.org/wiki/Tagged_architecture

