Improving C/C++ memory
safety

using sanitizers, hardware-assisted sanitizers and
memory tagging

speaker: Julian Pszczotowski

C/C++ memory safety

C/C++ memory safety

Heap-use-after-free char *p = new char[20];
Heap-buffer-overflow pl(20] = ..; // BUG
Stack-buffer-overflow delete [] p;
Stack-use-after-return p[0] = ...; // BUG

Stack-use-after-scope
Global-buffer-overflow
Use-of-uninitialized-memory

6 Chrome Releases July 24, 2018

[$5000](850350] High CVE-2018-6153: Stack buffer overflow in Skia. Reported by Zhen Zhou ...
[$3000][848914] High CVE-2018-6154: Heap buffer overflow in WebGL. Reported by Omair on 2018-06-01
[$N/A][842265] High CVE-2018-6155: Use after free in WebRTC. Reported by Natalie Silvanovich...
[$N/A][841962] High CVE-2018-6156: Heap buffer overflow in WebRTC. Reported by Natalie Silvanovich ...
[$N/A][840536] High CVE-2018-6157: Type confusion in WebRTC. Reported by Natalie Silvanovich ...

[$2000)[841280] Medium CVE-2018-6158: Use after free in Blink. Reported by Zhe Jin (£)

[$2000)(837275] Medium CVE-2018-6159: Same origin policy bypass in ServiceWorker.Reported by Jun Kokatsu ..

[$1000][839822] Medium CVE-2018-6160: URL spoof in Chrome on iOS. Reported by evitm0

[$1000)[826552] Medium CVE-2018-6161: Same origin policy bypass in WebAudio.Reported by Jun Kokatsu

[$1000][804123] Medium CVE-2018-6162: Heap buffer overflow in WebGL. Reported by Omair on 2018-01-21

[$500](849398] Medium CVE-2018-6163: URL spoof in Omnibox. Reported by Khalil Zhani on 2018-06-04

[$500](848786] Medium CVE-2018-6164: Same origin policy bypass in ServiceWorker.Reported by Jun Kokatsu

[$500][847718) Medium CVE-2018-6165: URL spoof in Omnibox. Reported by evi1mO0 of Bilibili Security ..

[$500](835554] Medium CVE-2018-6166: URL spoof in Omnibox. Reported by Lnyas Zhang on 2018-04-21

[$500](833143] Medium CVE-2018-6167: URL spoof in Omnibox. Reported by Lnyas Zhang on 2018-04-15

[$500](8282685] Medium CVE-2018-6168: CORS bypass in Blink. Reported by Gunes Acar and Danny Y. Huang of Princeton University, ..
[$500](384518] Medium CVE-2018-6169: Permissions bypass in extension installation .Reported by Sam P on 2014-07-16
[$TBD)(862059] Medium CVE-2018-6170: Type confusion in PDFium. Reported by Anonymous on 2018-07-10

[$TBD](851799) Medium CVE-2018-6171: Use after free in WebBluetooth. Reported by amazon@mimetics.ca on 2018-06-12
[STBD](847242] Medium CVE-2018-6172: URL spoof in Omnibox. Reported by Khalil Zhani on 2018-05-28

[STBD](836885] Medium CVE-2018-6173: URL spoof in Omnibox. Reported by Khalil Zhani on 2018-04-25

[SN/A](835299] Medium CVE-2018-6174: Integer overflow in SwiftShader. Reported by Mark Brand of Google Project Zero on 2018-04-20
[$TBD](826019] Medium CVE-2018-6175: URL spoof in Omnibox. Reported by Khalil Zhani on 2018-03-26

[SN/A](666824) Medium CVE-2018-6176: Local user privilege escalation in Extensions.Reported by Jann Horn of Google Project Zero on 2016-11-18

Every 6-8 weeks on https://chromereleases.googleblog.com, since ~ 2011 4

C/C++ memory safety

e *-use-after-free / *-buffer-overflow / uninitialized memory
o over 50% of High/Critical security bugs in Chrome & Android
o 70% of all security issues addressed in Microsoft products are caused by violations of memory
safety
e Not only security vulnerabilities:
o crashes, data corruption, developer productivity

AddressSanitizer (ASan)

AddressSanitizer

Released in May 2011

Memory error detector in C/C++ that finds most of the aforementioned bugs
Compiler instrumentation + run-time library (that replaces malloc/free)
Average slowdown: 2x, memory overhead: 1.5x-4x

No false positives!

During first 1.5 years found 1000+ bugs in:
o Firefox, Chrome, Vim, GCC, MySQL, LLVM, Perl, FFmpeg, libjpeg-turbo, FreeType, ...
e -fsanitize=address (demo)

Mapping: Shadow = (Addr>>3) + Offset

Virtual address space

OXEEEEEEEE
0x40000000 Application

Shadow

N\ B mprotect-ed

Ox3ELELELE /

0x28000000

N\

OxiffEfffsf
0x00000000

0x23£f£££EE Q
0x20000000)

Shadow byte

e Every aligned 8-byte word of memory has only 9 states
e First N bytes are addressable, the rest 8-N bytes are not
e Can encode in 1 byte (shadow byte)

e Extreme: 128 application bytes map to 1 shadow byte.

| Addressable
- Unaddressable
Shadow

',L:.fi.-i‘ N|lw|(sd|u|a|lN|o

Instrumentation: 8 byte access

*a:

ﬂ

char *shadow
1f (*shadow)

(a>>3)FOotfseéet

ReportError (a);

*a:

10

Instrumentation: N byte access (N=1, 2, 4)

*a:

ﬂ

char *shadow = (a>>3)+0ffset;
1f (*shadow &&
*shadow <= ((a&7)+N-1))
ReportError (a);
*az

11

AddressSanitizer (ASAN): redzones, quarantine

char *p = new char[24];

- [0:7] [8:15] [16:2m

// OMG

U

| p—
N
N

| W—
[

delete [] p; // kept in quarantine for a while

e |#e | ez pem]
/

p[O] = ... // OMG

Instrumenting globals

int a;

ﬂ

struct {
int original;
char redzone[60];
} a; // 32-aligned

13

Instrumenting stack

void foo () {

char a[328];

14

Instrumenting stack

void foo () {
char rzl[32]; // 32-byte aligned
char a[328];
char rz2([24];
char rz3[32];
int *shadow = (&rzl >> 3) + kOffset;
shadow[0] = Oxffffffff; // poison rzl

shadow[11] Oxff£f£££00; // poison rz2
shadow([12] Oxffffffff; // poison rz3
o CODE —-—==—meccacacaaa >

shadow|[0] = shadow|[1ll] = shadow[1l2] = 0O;

ASan run-time library

e Initializes shadow memory at startup

e Provides full malloc replacement
o Insert poisoned redzones around allocated memory
o Quarantine for free-ed memory
o Collect stack traces for every malloc/free

e Provides interceptors for functions like memset
e Prints error messages

16

The KernelAddressSanitizer

e Implementing ASan inside OS kernel is more difficult

e General idea is the same: shadow region + instrumented allocators (kernels
usually have many different allocators)

e Compilerinserts asan loadN() and asan storeN() calls, that we
have to implement

e Main challenge: setting up the shadow region early in the boot process (which
is obviously machine-dependent)

@ -fsanitize=kernel-address

17

The KernelAddressSanitizer

e Added to:
o Linux (2014)
o NetBSD (2018)
o FreeBSD (2019)
o Mimiker (2020)

ASan’s problems

e Hard to use in production (~2x overhead in memory/CPU/code size)

e Not a strong security mitigation:
o buffer overflows: access may jump over redzone
char *a = new char[100];
char *b = new char[1000];
a[500] = 0; // may end up somewhere in b

o use-after-free: access may “outlive” quarantine
char *a = new char[1 << 20]; // 1MB
delete [1 a; // <<< "free"
char *b = new char[1 << 28]; // 256MB

delete [] b; // drains the quarantine queue.

char *c = new char[1l << 20]; // 1MB
al[0] = 0; // "use". May land in ’c’.

e Does not detect bugs in pre-compiled binaries

19

Memory tagging

Tagged architecture

e Type of computer architecture where every word of memory is a tagged union
(i.e. data + tag)

e The ideais not new:

o Rice Computer (ca. 1960)
o Lisp machines (1970s, 1980s)

21

Memory tagging / coloring / tainting

e 64-bit architectures only

e Every aligned TG bytes have a TS-bit tag
o TG =tagging granularity, TS = tag size
o Example values: (TG=64, TS=4)/ (TG=16, TS=8)
e TS bits in the upper part of every pointer contain a tag

22

Memory tagging / coloring / tainting

e malloc():
o align to Tagging Granularity
o choose atag (e.g. randomly)
o tag the memory
o tag the returned pointer

o free():
o re-tag the memory

e Every load and store instruction raises an exception on mismatch between
the pointer and memory tags

23

Heap-buffer-overflow

char *: = new char[20]; // Ox@07fffffff1240
| -32:-17

24

Heap-buffer-overflow

char *: = new char[20]; // ox@eo7fffffff1240
| -32:-17

N

B[32] = ... // heap-buffer-overflow H # W

25

Heap-use-after-free

char *: = new char[20]; // Ox@0Q7fffffff1240
| -32:-17

26

Heap-use-after-free

char *: = new char[20]; // ox@e07fffffff1240
| -32:-17

delete [1 B; // Memory is retagged Hl = B

-32:-17

I[O] = ... // heap-use-after-free B # B}

27

Probability of bug detection, general case

® (2TS_1)/(2TS)
o [S =8:255/256 = 99.6%

e [S=4:15/16 =93.7%

Precision of buffer overflow detection

int *p = new char[20];

p[20]

p[32]

pil~1]

... // undetected (same granule)
... // detected (*)
... // detected (*)

p[100500] = ... // detected with high probability

29

Tag assignment strategies

e Random

e Dedicated “match-none” tag:
o 100% off-by-one (linear) buffer-overflow detection, but requires redzone
o 100% use-after-free-before-realloc

e Different tags for adjacent chunks
o 100% off-by-one (linear) buffer-overflow detection

30

MT and stack-buffer-overflow, stack-use-after-return

e Compiler instrumentation still needed to tag/untag local variables

e Significant memory overhead for large TG values (imagine aligning stack
variables to 64 bytes)

e Stack instrumentation can be optional

31

MT vs ASAN

o MT:
o Expected smaller RAM overhead (no redzones, but some alignment)
o Detection of buffer-overflows far from bounds
o Detection of use-after-free long after deallocation (without quarantine)
o Can initialize memory as a side effect
o Requires some hardware support (we’ll talk about it in a while)

e ASAN:

o Precise 1-byte buffer-overflow detection
o More portable (also for 32-bit, no need for hardware support)

32

MT vs ASAN

e Better detection of overflows and use-after-free-s makes MT much stronger
security mitigation against attackers!

33

Existing implementations of MT

HWASAN (ASAN-MT hybrid)

e Hardware-assisted ASAN
e Only for AArch64 (which supports top-byte-ignore), we keep the tag in the
MSB of a pointer

o notice: x86-64/Aarch64 allow only 48-bit virtual address space
e Memory tags kept in the shadow region (shadow requires 1/TG extra
memory)
e TG=16,TS=4
e Overhead: 2x CPU, 6% RAM, 2.5x code size

35

HWASAN (ASAN-MT hybrid)

// int foo(int *a) { return *a; }
// clang -02 --target=aarch64-linux -fsanitize=hwaddress -c load.c

9:
4:
8:
e
10:
14:
18:
4 € ol

08
08
09
3f
61
00
co
40

dc
o1
fc
01
00
00
03
20

a4
40
78
08
00
40
5f
21

d3
39
d3
6b
54
b9
dé
d4

ubfx
ldrb
lsr
cmp
b.ne
ldr
ret
brk

X8, x0, #4, #52 //

w8, [x8] //
X9, X0, #56 //
w9, w8 //
#12 //
wo, [x0] //
#0x902 //

shadow address
load shadow
address tag
compare tags
jump on mismatch
original load

trap

36

HWASAN vs ASAN

e HWASAN:

o probabilistic detection of errors, but detects far buffer-overflows and delayed use-after-free

o much smaller memory overhead (no heap redzones, no quarantine, 2x smaller shadow region)
o only for AArch64

o rather expensive stack instrumentation (consider disabling it)

e Both have similar CPU overhead

37

SPARC ADI hardware extension

ADI = Application Data Integrity

Supported on SPARC M7/M8 CPUs since 2016

TG=64, TS=4

The memory tag for a single 64-byte region is set with a single instruction

STXAPast 011110 Store Extended Word into Alternate = stxa reg.y, [regaddr] imm_asi

Space stxa reg, [reg_plus_imm] %asi

Load/store generates hardware exception on tag mismatch

Memory tags:
o not separately addressable
o stored in some hidden hardware state
o only way to read/write is through special instructions

Al

38

SPARC ADI hardware extension

e Need to instrument malloc()/free(), but not each read/write in the application
o CPU will detect errors itself

e Aligns malloc by 64
e Heap bugs only (costly stack instrumentation)

TLDR:

e Verylow CPU overhead :-)
e \Very low code size overhead :-)
e Onlyin SPARC! :-(

39

Incoming implementations of MT

ARM MTE (Memory Tagging Extension)

e MT for ARM announced at the end of 2018
e New hardware instructions for interacting with tagged memory, e.g.:

GMI
IRG
LDG
LDGV

ST2G

STG

Tag Mask Insert
Insert Random Tag
Load Allocation Tag
Load Tag Vector

Store Allocaton Tags

Store Allocation Tag

STG [<Xn/SP>{, #<simm>}]

GMI <Xd>, <Xn/SP>, <Xm>
IRG <Xd/SP>, <Xn/SP>{, <Xm>}

LDG <Xt>, [<Xn/SP>{, #<simm>}]

LDGV <Xt>, [<Xn/SP>]!

ST2G [<Xn/SP>], #<simm>
ST2G [<Xn/SP>, #<simm>]!

STG [<Xn/SP>], #<simm>
STG [<Xn/SP>, #<simm>]!

41

ARM MTE (Memory Tagging Extension)

e TG=16 (so very little malloc overalignment), TS=4
e Doesn'’t exist in hardware yet
e Similarly to SPARC ADI:

o Load/store generates hardware exception on tag mismatch
o Need only to instrument malloc()/free()
e Overheads:
o RAM: 3-5%
o CPU: “hoping for low-single-digit %”

42

Benefits of fully hardware-assisted MT

e Finds buggy accesses in non-instrumented code
o e.g.some legacy code that we don’t want to recompile with ASAN
o only changes in malloc()/free() required

e Could allow shipping instrumented binary to production
o large overhead of ASAN makes it not feasible, so usually ASAN-build is used only for testing

43

Bonus:
ThreadSanitizer

ThreadSanitizer v1

e TJool based on Valgrind that detects data races
e Released in 2009
e Slowdown 20-300x

o still faster than other tools at that time
e Found thousands of races (at least 180 in Chromium)

45

ThreadSanitizer v2

Compiler instrumentation + run-time library
Developed inside LLVM, imported into GCC
-fsanitize=thread (demo)

Slowdown 5-15x, memory overhead 5-10x
It's the current TSan

46

TSan detectable bugs

Regular data races

Races on mutexes, file descriptors, barriers, ...
Use-after-free races

Signal-unsafe malloc/free call in signal handler
Initializing objects without synchronization
Potential deadlocks

47

void
B

foe (1nt. *p) {
= 42;

§

void
P

}

foe(1rit %2p) 1

tsan func entry(_ builtin_return_address(0));

tsan writed (p);
= 42;
tsan func exit()

48

Shadow cell

An 8-byte shadow cell represents one memory
access:

o ~16 bits: TID (thread ID)

o ~42 bits: Epoch (scalar clock)

o 5 bits: position/size in 8-byte word

o 1 bit: IsWrite

Full information (no more dereferences)

TID

Pos

IsW

49

N shadow cells per 8 application bytes

TiD | |T1ID | "TID | [TID
Epo | Epo | Epo | |Epo
Pos ||Pos | | Pos | |Pos
IsW | |IsW | |[IsW | |IsW

50

Example: first access

i it

Write in thread T1 s

El

51

Example: second access

Read in thread T2 a1

Tl T2
El E2
i - 4:8
W R

52

Example: third access

Read in thread T3 o

Tl T2 T3
El E2 E3
O: 4: O:

53

Example: race?

Race if E1 not
"happens-before" E3

T1 T2 T3
El E2 E3
0:2 ||4: 0:4
W R R

54

Some overview of TSan v1 algorithm

e TSan v2isimplemented in a similar way

e We need to define happens-before relation

e TSan keeps track of: memory accesses, the aforementioned relation, mutex
locking/unlocking, signal/wait events, and looks for a race condition

e Let'slook at an example (very simple) definition of happens-before
o unfortunately it will sometimes report false-positives

55

Thread T1 Thread T2 Thread T3
S 52 S3
Signal(H1) |
sS4 | " waini)
S5
Signal(H2) |
S6 | T wai(H2) |
T

Figure 1: Example of happens-before relation.
S1 < Si (same thread); Si < Ss (happens-before arc
SIGNALT, (H1) — WAITT, (H1)); S1 < S7 (happens-before is
transitive); Ss A S2 (no relation).

“Data race” definition

Concurrent: two memory access events X and Y are
concurrent if X A Y, Y A X and the intersection of the lock
sets of these events is empty.

Data Race: a data race is a situation when two threads
concurrently access a shared memory location (i.e. there are
two concurrent memory access events) and at least one of
the accesses is a WRITE.

57

“Event lock set” definition

Writer Lock Set (LSw): the set of all write-held locks
of a given thread.

Reader Lock Set (LSRrq): the set of all read-held locks
of a given thread.

Event Lock Set: LSyw, for a WRITE event and LSgry
for a READ event.

58

Better “happens-before” definition

e Current happens-before looks only at SIGNAL -> WAIT pairs (where SIGNAL
is observed first)
e Better definitions could also look at another pairs of events:

o RD-UNLOCK -> WR-LOCK,
o WR-UNLOCK -> RD-LOCK,

o

e Fewer false-positives!

59

Shadow cell eviction

e When all shadow cells are filled, one random is replaced

60

TSan function interceptors

Over 100 interceptors:

malloc, free, ...

pthread _mutex_lock, ...
strlen, memcmp, ...
read, write, ...

61

Informative reports

e Need to report two stack traces:
o current (easy)
o previous (hard)

e Previous stack trace in TSan v2:

o Per-thread cyclic buffer of events
m event: memory access, function entry/exit
o Information will be lost after some time

62

Bibliography

e Memory Tagging and how it improves C/C++ memory safety.

K. Serebryany et al. 2018.

ThreadSanitizer — data race detection in practice. K. Serebryany et al. 2009.
https://www.youtube.com/watch?v=ILEcbXidK20/

https://qithub.com/gooqgle/sanitizers/

https://gcc.gnu.org/wiki/cauldron2012

https://Iwn.net/Articles/598486/
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges
%2C%20and%20Strateqic%20Shifts%20in%20the %20Software %20Vulnerability%20Mitigation%20

Landscape.pdf
e https://en.wikipedia.org/wiki/Tagaged architecture

63

https://www.youtube.com/watch?v=lLEcbXidK2o/
https://github.com/google/sanitizers/
https://gcc.gnu.org/wiki/cauldron2012
https://lwn.net/Articles/598486/
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://en.wikipedia.org/wiki/Tagged_architecture

