Managing Distributed, Shared L2 Caches through

OS-Level Page Allocation

January 21, 2020

In the last episode...

Problem: CPUs are cheap and fast.
Memories are cheap, fast, capacious (choose two out of three).
Fast CPU with slow memory doesn't make sense.

Idea: Put fast memory between CPU and main memory.
Fast — so small.

CPU looks for data in the cache; if it finds it, it gets it from there
and continues to work; if it doesn't find it, it looks for it in main
memory.

Smaller, CPU registers hold words
faster, retrieved from cache memory.
and L1: / L1 cache
costlier (SRAM) L1 cache holds cache lines
(per byte) retrieved from L2 cache.
storage Lo L2 cache
devices (SRAM)

L2 cache holds cache lines

} retrieved from L3 cache.
L3: L3 cache
SRAM
Larger, () } L3 cache holds cache lines

slower, . retrieved from memory.
and L4: Main memory
cheaper (DRAM)

} Main memory holds disk blocks

(per byte) retrieved from local disks.
storage L5: Local secondary storage
devices / (local disks) \ Local disks hold files
retrieved from disks on
L6: Remote secondary storage remote network servers.
(distributed file systems, Web servers)

memory latency size
L1 4 cycles 32KiB
L2 10 cycles 256KiB
L3 40-75 cycles | 8MiB
DRAM 600 cycles 8GiB
HDD o0 o0

INTEL@©' 81 PHILIPPINES
1133/256/133/1. 475

71308208-0273

PENTIUM III SLSGQ

It was working

It was working; but now...

How to live?

How to live?

Private cache?

How to live?

Private cache? Shared cache?

Private cache

Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency

Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache

Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler

Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler
Cons: cache hit latency will be longer

TO

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

switch

L2 $ slice

Figure 1. An example 16-core tiled processor
chip and its tile (core).

Idea: give OS control over cache.

Idea: give OS control over cache.
Using simple shared cache hardware we can implement a private
caching policy, a shared cache policy, or a hybrid of the two

Idea: give OS control over cache.

Using simple shared cache hardware we can implement a private
caching policy, a shared cache policy, or a hybrid of the two
without any hardware support.

IBM Power 5!

S=Amod N

S=Amod N

Where S stands for the cache slice number, A for the memory
block address, and N for the number of cache slices.

Problem: contiguous memory blocks are hosted by different cache
slices

Problem: contiguous memory blocks are hosted by different cache
slices
Solution: replacing A with physical page number (PPN)

)] I — o t
210 T1 T2 T3 TO4—Ft— T2 | 13 I
. /—V Ly - - |
: \T*i\\ E
T4 T5 T6 T7 T4 T5 416 : y
: - e S~
— 1
o T8 T9 | T10 | T T8 T9 | TIONT11 t
e B | — =
— L |
= 7 T12 | T13laT14 PT15 T124-TT3 | T14 | T15 _—
1
Blocks Pages =
in memory (a) (b) in memory (c) inVM

Figure 2. (a) Physical memory partitioning and mapping to cache slice at the cache line granularity.
(b) Physical memory partitioning and mapping at the memory page granularity. (c) Virtual to physical
page mapping (PO, P1: process 0 and 1, VM: virtual memory).

CG; (0 < i < N — 1) — congruence group
CG; = { physical page (PPN =j) | pmap(j) = i}

OS has control on pmap.

CG; (0 < i < N — 1) — congruence group
CG;j = { physical page (PPN = j) | pmap(j) = i}

OS has control on pmap.

Private caching: for a page requested by a program running on
core i, allocate a free page from CG;

CG; (0 < i < N — 1) — congruence group
CG;j = { physical page (PPN = j) | pmap(j) = i}

OS has control on pmap.

Private caching: for a page requested by a program running on
core i, allocate a free page from CG;

Shared caching: for a requested page, allocate a free page from all
the congruence groups using random selection, round-robin etc...

CG; (0 < i < N — 1) — congruence group
CG;j = { physical page (PPN = j) | pmap(j) = i}

OS has control on pmap.

Private caching: for a page requested by a program running on
core i, allocate a free page from CG;

Shared caching: for a requested page, allocate a free page from all
the congruence groups using random selection, round-robin etc...

Hybrid caching: partition {CG;} into K groups (K < N); then
define a mapping from a core to a group; for page requested by
program running on core /, allocate a free page from the group
that core / maps to

Case 1 (avg. distance = 3) Case 2 (avg. distance = 2.5) Case 3 (avg. distance = 2)

Figure 3. Program (“P”) and data locations determine the minimum distance to bridge them.

T |

addr §‘ i
) |

: :

|

page # i

- |

1

|

L2 i
]

]

Figure 4. A Bloom filter based monitor mech-
anism to count actively accessed pages.

f
TO T T2]| T3
T4 T5 TGJl T7
\
\
(TB T9] rI"IO T11
T12 T1d tl'14 T15
/

GO0 ={T0,T1,T2,T4,75,T6}
G1={T3,77}
G2 = {T8,79,T12,T13}

G3={T10,T11,T14,T15)

Figure 5. A virtual multicore (VM) example.

PRIVATE SHARED (w/ line interleaving) OS-BASED
Hardware (tile) | Similar to a conventional unipro- | Coherence enforcementis simpler | (Same as SHARED); simple
cessor core with two-level caches; | and is mainly for L1 because L2is | hardware-based performance

coherence mechanism (e.g., direc-
tory) to cover L1 and L2 caches

shared by all cores

monitoring mechanism will help
reduce monitoring overhead

Software

(NA)

(NA)

OS-level support, esp. in the page
allocation algorithm

Data Proximity

Data items are attracted to local
cache slices through active repli-
cation; limited caching space can
result in performance degradation
due to capacity misses

Fine-grained cache line interleav-
ing results in non-optimal data
distribution; there is no explicit
control over data mapping

Judicious data mapping though
page allocation can improve data
proximity

Network Traffic

High coherence traffic (e.g., direc-
tory look-up and invalidation) due
to data replication [23]; increased
off-chip traffic due to high on-chip
miss rate

High inter-tile data traffic due to
remote L2 cache accesses, of-
ten 2x to 10X higher than PRI-
VATE [30]; lower off-chip traffic
due to larger caching capacity

Low off-chip traffic like SHARED;
improved program-data proxim-
ity through page allocation and
process scheduling leads to lower
inter-tile traffic than SHARED

Table 1. Comparing private caching, shared caching, and OS-based cache management approaches.

Test setup
CPU: 16 tiles (4x4); 16kB L1 1/D caches, 512kB L2 cache slice
L1 caches are foure-way set associative with a 32-byte line size

Each 8-cycle L2 cache slice is 8-way set associative with 128-byte
lines, two-cycle latency per each hop

2-GB off-chip main memory with 300 cycles latency

| NAME |

DESCRIPTION

INPUT

gcc gcec compiler reference (integrate. i)
parser English parser reference
eon probabilistic ray tracer reference (chair)
twolf place & route simulator reference
wupwise quantum chromodynamics solver reference
galgel computational fluid dynamics reference
ammp ODE solver for molecular dynamics reference
sixtrack | particle tracking for accelerator design reference
fft fast Fourier transform 4M complex numbers
Iu dense matrix factorization 512x512 matrix
radix parallel radix sort 3M integers
ocean ocean simulator 258258 grid

Table 2. Benchmark programs.

ARETIEANRIIRNTY

175 -‘IIF‘RV ESL §SP-RR OSP80 M SP60 B SP40 MPRVE

200
1.50
125

sixtrack

ammp

galgel

wupw ise

Figure 6. Single program performance
(rime~ ') of different policies, relative to PRV.

PRV SL SP-RR SP40 SP60 SP80 PRVS
gee 2.9 0.1 0.5 1.8 2.1 2.8 0.1
parser 6.6 0.5 0.6 2.6 3.7 58 0.4
load eon 0.0 0.0 0.0 0.0 0.0 0.0 0.0
miss twolf 16.3 0.1 0.1 1.6 7.3 13.1 0.0
rate wupwise 25.0 25.0 250 25.0 25.0 25.0 25.0
(%) galgel 6.3 0.1 0.1 0.9 34 5.0 0.1
ammp 46.6 0.1 0.4 18.9 264 349 0.1
sixtrack 13.5 0.5 0.5 14 3.2 10.4 0.5
gee 10.8 270.4 261.7 1359 76.0 55.6 0.4
parser 8.7 96.8 96.5 40.4 18.9 18.2 0.5
on-chip | eon 0.0 86.9 90.2 23.7 204 17.7 0.0
network | twolf 35.0 138.2 150.1 67.8 48.4 37.8 0.1
traffic wupwise 35.1 39.4 39.9 20.3 15.6 10.1 0.1
galgel 38.0 412.0 406.6 185.8 132.3 76.2 0.6
ammp 441.7 810.9 803.4 424.6 361.9 306.9 0.5
sixtrack 9.6 57.2 60.9 22.0 18.9 15.8 0.4

Table 3. L2 cache load miss rate and on-chip network traffic (message-hops) per 1k instructions.

8 STy
& o E s =
o
m w
7] M H
g
u =
o I 5
i 9 13 Sy
1] I g R e e
S L L
o
=1 w RN AR
m R i
Q
o <
w g
= T
a g
= s
<
g
&
T Y 2
L Zy =
Q
[T c
K B
o
= 5
z e
3 S
)
o
8
&
0 - 1 n W o
~ = |
- o (=}

gal ammp six

wup

gal ammp six

wup

gal ammp six

wup

Figure 7. Performance sensitivity to network
traffic. Performance relative to PRV, no traffic

case.

BvM

EPRV ESL

\\w\\\\\\w

£

Figure 8. Performance of parallel workloads,

relative to PRV.

(standing ovation)

