
Managing Distributed, Shared L2 Caches through
OS-Level Page Allocation

January 21, 2020



In the last episode...



Problem: CPUs are cheap and fast.
Memories are cheap, fast, capacious (choose two out of three).
Fast CPU with slow memory doesn’t make sense.



Idea: Put fast memory between CPU and main memory.
Fast – so small.

CPU looks for data in the cache; if it finds it, it gets it from there
and continues to work; if it doesn’t find it, it looks for it in main
memory.





memory latency size

L1 4 cycles 32KiB

L2 10 cycles 256KiB

L3 40-75 cycles 8MiB

DRAM 600 cycles 8GiB

HDD ∞ ∞





It was working

; but now...



It was working; but now...





How to live?

Private cache? Shared cache?



How to live?

Private cache?

Shared cache?



How to live?

Private cache? Shared cache?



Private cache

Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler
Cons: cache hit latency will be longer



Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler
Cons: cache hit latency will be longer



Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency

Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler
Cons: cache hit latency will be longer



Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler
Cons: cache hit latency will be longer



Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache

Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler
Cons: cache hit latency will be longer



Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler
Cons: cache hit latency will be longer



Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler

Cons: cache hit latency will be longer



Private cache
Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler
Cons: cache hit latency will be longer





Idea: give OS control over cache.

Using simple shared cache hardware we can implement a private
caching policy, a shared cache policy, or a hybrid of the two
without any hardware support.



Idea: give OS control over cache.
Using simple shared cache hardware we can implement a private
caching policy, a shared cache policy, or a hybrid of the two

without any hardware support.



Idea: give OS control over cache.
Using simple shared cache hardware we can implement a private
caching policy, a shared cache policy, or a hybrid of the two
without any hardware support.



IBM Power 5!



S = A mod N

Where S stands for the cache slice number, A for the memory
block address, and N for the number of cache slices.



S = A mod N

Where S stands for the cache slice number, A for the memory
block address, and N for the number of cache slices.



Problem: contiguous memory blocks are hosted by different cache
slices

Solution: replacing A with physical page number (PPN)



Problem: contiguous memory blocks are hosted by different cache
slices
Solution: replacing A with physical page number (PPN)





CGi (0 < i < N − 1) – congruence group
CGi = { physical page (PPN = j) | pmap(j) = i}

OS has control on pmap.

Private caching: for a page requested by a program running on
core i , allocate a free page from CGi

Shared caching: for a requested page, allocate a free page from all
the congruence groups using random selection, round-robin etc...

Hybrid caching: partition {CGi} into K groups (K < N); then
define a mapping from a core to a group; for page requested by
program running on core i , allocate a free page from the group
that core i maps to



CGi (0 < i < N − 1) – congruence group
CGi = { physical page (PPN = j) | pmap(j) = i}

OS has control on pmap.

Private caching: for a page requested by a program running on
core i , allocate a free page from CGi

Shared caching: for a requested page, allocate a free page from all
the congruence groups using random selection, round-robin etc...

Hybrid caching: partition {CGi} into K groups (K < N); then
define a mapping from a core to a group; for page requested by
program running on core i , allocate a free page from the group
that core i maps to



CGi (0 < i < N − 1) – congruence group
CGi = { physical page (PPN = j) | pmap(j) = i}

OS has control on pmap.

Private caching: for a page requested by a program running on
core i , allocate a free page from CGi

Shared caching: for a requested page, allocate a free page from all
the congruence groups using random selection, round-robin etc...

Hybrid caching: partition {CGi} into K groups (K < N); then
define a mapping from a core to a group; for page requested by
program running on core i , allocate a free page from the group
that core i maps to



CGi (0 < i < N − 1) – congruence group
CGi = { physical page (PPN = j) | pmap(j) = i}

OS has control on pmap.

Private caching: for a page requested by a program running on
core i , allocate a free page from CGi

Shared caching: for a requested page, allocate a free page from all
the congruence groups using random selection, round-robin etc...

Hybrid caching: partition {CGi} into K groups (K < N); then
define a mapping from a core to a group; for page requested by
program running on core i , allocate a free page from the group
that core i maps to











Test setup

CPU: 16 tiles (4x4); 16kB L1 I/D caches, 512kB L2 cache slice

L1 caches are foure-way set associative with a 32-byte line size

Each 8-cycle L2 cache slice is 8-way set associative with 128-byte
lines, two-cycle latency per each hop

2-GB off-chip main memory with 300 cycles latency













(standing ovation)


