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In the last episode...



Problem: CPUs are cheap and fast.
Memories are cheap, fast, capacious (choose two out of three).
Fast CPU with slow memory doesn’t make sense.



Idea: Put fast memory between CPU and main memory.
Fast – so small.

CPU looks for data in the cache; if it finds it, it gets it from there
and continues to work; if it doesn’t find it, it looks for it in main
memory.





memory latency size

L1 4 cycles 32KiB

L2 10 cycles 256KiB

L3 40-75 cycles 8MiB

DRAM 600 cycles 8GiB

HDD ∞ ∞





It was working
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Private cache

Each cache slice is associated with a specific processor core and
replicates data freely as the processor accesses them.

Pros: low hit latency
Cons: capacity misses

Shared cache
Single cache where each cache slice accepts only an exclusive
subset of all memory blocks.

Pros: better overall utilization of on-chip caching capacity,
enforcing cache co-herence becomes simpler
Cons: cache hit latency will be longer
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Idea: give OS control over cache.

Using simple shared cache hardware we can implement a private
caching policy, a shared cache policy, or a hybrid of the two
without any hardware support.
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IBM Power 5!



S = A mod N

Where S stands for the cache slice number, A for the memory
block address, and N for the number of cache slices.
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Problem: contiguous memory blocks are hosted by different cache
slices

Solution: replacing A with physical page number (PPN)
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CGi (0 < i < N − 1) – congruence group
CGi = { physical page (PPN = j) | pmap(j) = i}

OS has control on pmap.

Private caching: for a page requested by a program running on
core i , allocate a free page from CGi

Shared caching: for a requested page, allocate a free page from all
the congruence groups using random selection, round-robin etc...

Hybrid caching: partition {CGi} into K groups (K < N); then
define a mapping from a core to a group; for page requested by
program running on core i , allocate a free page from the group
that core i maps to
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Test setup

CPU: 16 tiles (4x4); 16kB L1 I/D caches, 512kB L2 cache slice

L1 caches are foure-way set associative with a 32-byte line size

Each 8-cycle L2 cache slice is 8-way set associative with 128-byte
lines, two-cycle latency per each hop

2-GB off-chip main memory with 300 cycles latency













(standing ovation)


