Low Latency and Low Cost DRAM
Architecture

Quick memory recap

But why exactly?

But why exactly?

* In SRAM it’s intuitive. We pay more for better
speeds.

But why exactly?

* In SRAM it’s intuitive. We pay more for better
speeds.

* But why should it happen in other storage
media? Let’'s look at couple examples.

Case study. Flash based media

1200 2500

1000
2000

800
1500

600
1000

400
500

200
0 0

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

500

450

400

350

300

250

200

150

100

50

Case study. HDD'’s

0.5

15

2.5

3.5

4.5

1800

1600

1400

1200

1000

800

600

400

200

Case study. DRAM

20

40

60

80

100

120

140

What makes DRAM expensive?

What makes DRAM expensive?

 What makes other stuff cheaper.

Quick RAM recap

RAM operations

TRP =TRAS + TRP
TRAS (minimal time that the line is opened)
TRCD TCL (or TCWL if writing)

READ DATA OUT

ACTIVATION
(select the RAM TBL 1. (disconnect the cell)
Line to be accessed) 2. (set the potential of
Sense line to 0.5Vvdd)

PRECHARGE

ACTIVATION PRECHARGING

Row Address Selection

32_.,
33_...

Column Address Selection

:

Data

T T 1

T [T L T [
1 1 1 -1
L £ L L

T T 1
— = 9 71— =
L L L L

T !
1 1 J_"J_L_I_
L L L =

T T 1

T [T L T [
1 1 1 1
L L L L

Quick junior high school physics
recap

i g
Rospberry Pi 3 Model B+ e | Lae
@ Raspberry Pi 2017

Made in the UK '8

L

B a

I
L]
[

JISPLAY =

o

[=<2
n-T|||r|||

I.-"[:h

2w
-I

pininEn

i

J1 PWR IN
-_

T I T

Parasitic capacitance Is about to hit
the fan

A g g\
—{—

-

Parasitic capacitance Is about to hit
the fan

1T 1 1 1
E J—i JH JH JH
gl T| T| T| T
[=F]
E L 1 T 1
ap) @ ’_-,_LAL "_-I_LAL .JH ,_-I_LAL
A B — -+ L =
E Al hs T 1
et L T T
£ IT| T| T| T
1 1 1 1
— g T e
T| T| T| T
zi Column Address Selection

Data

Parasitic capacitance Is about to hit
the fan

* We can see a lot of places s T o T
£/ T| T| IT| T

where the capacitance ey
. al» & L L L L

becomes an Issue {1 I O
E ,J_i Ii Iﬁ .J_L_L
= T| IT| IT| T

L L 1 1
| T| IT| T

22:: Column Address Selection

Data

Parasitic capacitance Is about to hit

the fan
* We can see a lot of places

where the capacitance
becomes an Issue
e Can we fix I1t?

{=-T -]
]
vy
Row Address Selection

32_.,
33_.,

Column Address Selection

Data

1 1 1 1
| T| T| T
1L 1 1 1
| T| T| T
T T T 1
I| T| T| T
L L L L
| T| T| T

Parasitic capacitance Is about to hit

the fan
* We can see a lot of places

where the capacitance
becomes an issue

« Can we fix it?

e Sure! Let’s see how

{=-T -]
]
vy
Row Address Selection

32_.,
33_.,

Column Address Selection

Data

1 1 1 1
| T| T| T
1L 1 1 1
| T| T| T
T T T 1
I| T| T| T
L L L L
| T| T| T

Parasitic capacitance Is about to hit
the fan
(We would like to minimize 1) da

L
Tt

Parasitic capacitance Is about to hit
the fan

(We would like to minimize |) du

+ Idea 1. Minimize dv. 1= (C—

dt

Parasitic capacitance Is about to hit
the fan

(We would like to minimize |) du

+ Idea 1. Minimize dv. 1 = (' —

 Bad idea. Why? dt

Parasitic capacitance Is about to hit
the fan

(We would like to minimize |) du

* |dea 2. Increase dt. 1 = (C—

dt

Parasitic capacitance Is about to hit
the fan
(We would like to minimize 1) da

e |dea 2. Increase dt. y— C—
e Sure. Who needed fast RAM dt

Parasitic capacitance Is about to hit
the fan

(We would like to minimize |) du

e |dea 3. Decrease C. 1 = C—

dt

Parasitic capacitance Is about to hit
the fan

(We would like to minimize |) du

e |dea 3. Decrease C. 1 = C—

dt

e Sure. Let's look at how C Is calculated

Parasitic capacitance Is about to hit

the fan
(We would like to minimize |) du
* |dea 3. Decrease C. 1 = (C—
e Sure. Let’s look at how C Is calculaigd at

el el

d —
arcush(ﬂ) lﬂ(zf_i + ij_i _ 1)
i1

Parasitic capacitance Is about to hit
the fan
(We would like to minimize 1) da

e |dea 3. Decrease C. ’L' — C—

dt

* Sure. Let’s look at how C Is calculated
— Next best approximation uses ellipticsintegrals

Parasitic capacitance Is about to hit

the fan
(We would like to minimize 1) duv
Idea 3. Decrease C. 3 = (| —
Sure. Let’s look at how C iIs calculatet dt

— Next best approximation uses elliptic integrals

- We use the power of “Finalista Slazaczka Z'fizgki’ to
pull even simpler approximations out of our ass sleeve

Parasitic capacitance Is about to hit
the fan

(We would like to minimize |) du

e |dea 3. Decrease C. 1 = C—

dt

e Sure. Let’s look at how C Is calculated
C = pA/d

Parasitic capacitance Is about to hit

the fan
(We would like to minimize |) du
* |dea 3. Decrease C. 1 = (C—
e Sure. Let’s look at how C Is calculaigd at

C = pA/d
e That's more like it. Now, what do these mean?

Parasitic capacitance Is about to hit
the fan
* (We would like to minimize C) C = pA/d

* |ldea 1. Decrease p.

Parasitic capacitance Is about to hit
the fan
* (We would like to minimize C) C = pA/d

* |dea 1. Decrease p. Unlikely. That would require
modifications to the production process

Parasitic capacitance Is about to hit
the fan
* (We would like to minimize C) C = pA/d

* |dea 1. Decrease p. Unlikely. That would require
modifications to the production process

e |[dea 2. Decrease A.

Parasitic capacitance Is about to hit
the fan
* (We would like to minimize C) C = pA/d

* |dea 1. Decrease p. Unlikely. That would require
modifications to the production process

e |[dea 2. Decrease A. Shorter/thinner wires. Both
unlikely for obvious reasons.

Parasitic capacitance Is about to hit
the fan
* (We would like to minimize C) C = pA/d

* |dea 1. Decrease p. Unlikely. That would require
modifications to the production process

e |[dea 2. Decrease A. Shorter/thinner wires. Both
unlikely for obvious reasons.

 |dea 3. Increase d.

Parasitic capacitance Is about to hit

the fan
(We would like to minimize C) C = pA/d

ldea 1. Decrease p. Unlikely. That would require
modifications to the production process

ldea 2. Decrease A. Shorter/thinner wires. Both
unlikely for obvious reasons.

* |dea 3. Increase d. Sure, who needed small and
efficient DRAM dies.

This concludes the presentation

Low Latency and Low Cost DRAM
Architecture is Impossible.

Po prostu powieksz
swoje pamieci DRAM

Wybierz rozmiar:

ﬁ ® 16GiB(Ostroznie!)

POTWIERDZ

But walit, there 1s more!

* What If decreasing A in C=pA/d was a valid solution?

But walit, there 1s more!

* What If decreasing A in C=pA/d was a valid solution?

e Sure, we get less memory per an amplifier circulit.

But walit, there 1s more!

* What If decreasing A in C=pA/d was a valid solution?

e Sure, we get less memory per an amplifier circulit.

* But we can always add more amplifiers (increase row
length)

But walit, there 1s more!

* What If decreasing A in C=pA/d was a valid solution?

* Sure, we get less memory per an amplifier circulit.
* But we can always add more amplifiers (increase row

N 5 tRCD kRC e :
e n g @ 16 M 16 : cells-per-bitline] v p
o | o o
5 64 | :77(492mm3)r.7dte-7512e rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr § S
b ' 35 Il
g 5 - : 55 = cells
= l i
L = :
; y e IO
o 32 . 32(276) III sense- amps
zZ 37 @ AM ' RLDRAM
) 5 | FCRAM i 64 (168) |FcrRAM N
S5 g 128
=8 = . 5651 108 (114.’ S 512 (73.5) Ve
_: DDR3 256 (87) ’L‘ =0
DDR3 =
cel/s Q ‘ . . S cells
0\’ 0 20 30 40 50 60
III sense- amps * m Latency (ns) III sense- amps

T RLDRAM bitline lengt h estimated from its latency and die-size [21, 27].
(b) Cost Opt. t The reference DRAM is 55nm 2GB DDR3 [39]. (a) Latency Opt.

Once again...

* Memories are cheap, fast, capacious (choose
two out of three).

Once again...
* Memories are cheap, fast, capacious (choose
two out of three).

 What if we could change what two of them we
are using?

Once again...

* Memories are cheap, fast, capacious (choose
two out of three).

 What if we could change what two of them we
are using?

(Obviously we can’t change the cost once we have bought it, so the more awake
people in the room have already guessed that sometimes we will choose speed

over capacitance)

Sorry, WHAT?

* Introducing the stupidly simple, and super
obvious in retrospect trick for faster memory
operations.

Sorry, WHAT?

* Introducing the stupidly simple, and super
obvious in retrospect trick for faster memory
operations — RGB RAM.

Sorry, WHAT?

* Introducing the stupidly simple, and super
obvious in retrospect trick for faster memory

operations. éé‘
olation TR

: Sé : cells§

bitline

—
1)

bitline

(c) Our Proposal

Let’s look at the benefits

Implementation: in-die transfer

Implementation: row decoder

* Predecoding.
* Input address is split to M blocks.

* For each block (size of N) output 2*N wires (a simple
decoder)

* At each row an AND gate with M inputs.

* We pay with additional wires for a decreasing the logic at
each row.

Implementation: double row decoder
 For on-die data transfers we need to be able to
select two rows at once.

* A naive approach dictates that we double the
whole row decoder

* Why Is this approach bad?

Implementation: double row decoder

e For on-die data transfers we need to be able to
select two rows at once.

e Since we only transfer between far and near
segment, we only double the lines for the
shorter one

* Only 0.33% size penalty

w—
. . | y N -
. ‘ ' i q
= !
S— - } '. '1 - — I
ElR
' A
. 4

T

!‘
1]
I
“‘ T i, T I T Tl i
]
!

Implementation: metadata

This would mark the end of the
hardware part of the presentation

Since now we basically have a
cache iIn DRAM, all the juicy topics
of cache management map onto
managing cache inside of DRAM

Near cache Is transparent to the OS
* Approach 1. Simple Caching (SC)

Near cache Is transparent to the OS

* Approach 1. Simple Caching (SC)

* We apply LRU to the DRAM accesses. We
categorize all accesses as one of three

- Sense amp hit

- Near segment hit
- Near segment miss

Near cache Is transparent to the OS

* Approach 1. Simple Caching (SC)

 We apply LRU to the DRAM accesses. We
categorize all accesses as one of three

- Sense amp hit — Serve the memory, don’'t change LRU

- Near segment hit
- Near segment miss

Near cache Is transparent to the OS

* Approach 1. Simple Caching (SC)

* We apply LRU to the DRAM accesses. We
categorize all accesses as one of three
- Sense amp hit — Serve the memory, don’t change LRU
- Near segment hit — fetch from near segment, set as MRU
- Near segment miss

Near cache Is transparent to the OS

* Approach 1. Simple Caching (SC)

* We apply LRU to the DRAM accesses. We categorize all
accesses as one of three
- Sense amp hit — Serve the memory, don’t change LRU
- Near segment hit — fetch from near segment, set as MRU

- Near segment miss — fetch from far segment, set as MRU.
* Possibly evict LRU from near segment.
* Possibly dump LRU to far segment if the DRAM line is dirty.

Near cache Is transparent to the OS

* Approach 2. Wait minimized caching (WMC)

e Since | should be hospitalized due to my
overdose of caffeine, and the fact that
overdosing on substances that promise to give
you energy actually cuts ones mental ability, | will
now read the WMC description from the paper,
since | cannot make any sense of it.

Near cache Is transparent to the OS
* Approach 3. Benefit Based Caching (BBC)

Near cache Is transparent to the OS

* Approach 3. Benefit Based Caching (BBC)

« Same as Simple Caching, but instead of LRU
we calculate the benefit of a block being in near
segment)

Near cache Is transparent to the OS

* Approach 3. Benefit Based Caching (BBC)

 Same as Simple Caching, but instead of LRU we
calculate the benefit of a block being in near
segment)

* When a far segment is hit, we evict a block with the
smallest benefit. On every operation we halve the
benefit of all blocks.

Near cache Is transparent to the OS

* Approach 3. Benefit Based Caching (BBC)

 Same as Simple Caching, but instead of LRU we calculate
the benefit of a block being in near segment)

* When a far segment is hit, we evict a block with the smallest
benefit. Every operation we halve the benefit of all blocks.

* Benefit Is the amount of cycles saved by the block being in
the near segment.

Exposing the cache to OS

Simply allow OS to access the near region as regular
RAM.

Hope to get increased performance due to lower
timings for some memory

Has the benefit of being a simple replacement, without
any change to host system

Sadly, low performance increase

Exclusive cache

* Use the memory controller to handle decisions
on what to put in cache

* Since cache Is exclusive, we keep one row
clear in order to perform swap operations

Profile based page mapping

* OS controls virtual to physical mapping (this was
discussed last week, with the pmap function)

 TL-DRAM Iinforms OS about the areas of physical
memory that are in the close region

* |Information about the frequency of usage can be
obtained during compilation time, or dynamically via
hardware counters.

This concludes the software part of
the presentation

EVALUATION

Hardware setup

 We first need to consider the ratio between the
near and far region

80
60
40
20

Latency (ns)

o

o

Latency (ns)
N B O
o

o

and far region

EtRCD @EtRC

Near Segment Length (Cells)
(a) Cell in Near Segment

| mtRCD m@tRC

Far Segment Length (Cells)
(b) Cell in Far Segment

Figure 10. Latency Analysis

Hardware setup
e \We first need to set the ratio between the near

511(510(508(504(496(480(448|384|256|512
Ref.

VDD i

0.75Vpp

0.50V,,

0.75Vpp

0.50Vpp

L RCDnear t RASnear

_____ . . Near Segment (TL-DRAM) |
: o Long Bitline
i i ——- Short Bitline
0 5 10 15 20 25 30 35 40 (ns)
(a) Cell in Near Segment (128 cells)
tReDfar t RASfar

- —— Near Segment (TL-DRAM)
—— Far Segment (TL-DRAM)
----- Long Bitline

——- Short Bitline

.............. e e e

]
1
]
i
I
1
]
i
I

AP R —
]
i
i
1
|
]
i
1
I
]
i

0 5 10 15 20 25 30 35

(b) Cell in Far Segment (384 cells)
Figure 11. Activation: Bitline Voltage

4b: (ns)

"TRanm‘ .
Voo ; —— Near
SRR Long
| L ——-Short
0.75Vpp 3
T O5OVDD E
0 5 10 15 20(ns)
(a) Cell in Near Segment
tRPfar
Voo ~ Near
— Far ;
i I \ - Long i
075V ! -\~~~ short
1 0.50Vpp}

0 5 10 15 20(ns)

(b) Cell in Far Segment
Figure 12. Precharging

15% 7 msc mwWMC mBBC

10% -
D% I T T T T | T T T 1
1 2 4 8 16 32 64 128 256

Near Segment Length (cells)

IPC Improvement

Figure 16. Varying Near Segment Capacity (Inclusive Cache)

Test system specs (SPICE simulation)

Table 4. Evaluated System Configuration

Processor 5.3 GHz, 3-wide issue, 8 MSHRs/core,
128-entry instruction window

Last-Level 64B cache line, 16-way associative,
Cache 512kB private cache slice/core

Memory 64/64-entry read/write request queue,
Controller row-interleaved mapping, closed-page policy,
FR-FCFS scheduling [41]

DRAM 2GB DDR3-1066,
1/2/4 channel (@1-core/2-core/4-core), 1 rank/channel,
8 banks/rank, 32 subarrays/bank, 512 rows/bitline
t rcp (unsegmented): 15.0ns, t 5o (unsegmented): 52.5ns

TL-DRAM 32 rows/near segment, 480 rows/far segment
t rop (near/far): 8.2/12.1ns, t g ¢ (near/far): 23.1/65.8ns

Table 1. Latency & Die-Size Comparison of DRAMs (Sec 3)

Short Bitline Long Bitline Segmented Bitline

(Fig 2a) (Fig 2b) (Fig 2¢)

Unsegmented Unsegmented Near Far

Length (Cells) 32 512 32 480

" Lowest High Lowest Low

RCD
Latency (8.2ns) (15ns) (8.2ns) (12.1ns)
p Lowest High Lowest Higher
RC (23.1ns) (52.5ns) (23.1ns) (65.8ns)
Normalized Highest Lowest Low

Die-Size (Cost) (3.76) (1.00) (1.03)

= ueawi3

—— mxc_r_n_me.v.

S D) 65T

—— T =Y 4 2y 7

L | pell-wealls

e =11 1= A S rd

—"" ppe-weans

L] 9|eds-wealls

S xm_QOm.Om._w

)"
W B row buffer [nearsegment B far scgmcntm
IR PRI

| 'ue|ex'ggy

1 Wq'oLy

1 'SNJJeJ’'g¢ly

ree Adoo-wealys

|

— 1]y '99y

— je)serc/t

PSS 1,900d)

il

____ NLUQ“—
—— zdizq'To¥
== gyody

B BBC

il

o IWQqo3 Sy
= ‘wolud gey

] M B
M 208 ¢cor

OWMC
OWMC

o l[E3PLvy
fl Buals'gst

.

| pweuppy

-19UWO'T /1

Ctopueld

Figure 14. Single-core: IPC improvement, LLC MPKI, Fraction of accesses serviced at row buffer/near segment/far segment, Power

consumption

1
X R
o

0% -

[—
o O O O
m 00 W <

30%
25% -+
20% -+
15% -
10% -
5% -
0%
-5%
-40% -

[T T T T [1

=X Q X X RER x =X

o o~ OO 00O o o O

— S ®OF N <+ N ~

uswanoidw) Dd| INdN S9SS9J0B ANYH(@SeaJou]
||e Jo uonoely Jamog

mSC OWMC mBBC

S aailillll

128 256
Near Segme nt Length (cells)

(a) Sensitive - Sensitive

Weighted Speedup
Improvement
w1
=

mSC ODWMC mBBC BSC OWMC EBBC

a jo B
= =]
E % 15% - E E 15% -

10% 10%
g5 % g5 % il |
52 0% 52 0% .
o= 128 256 o= 128 256
= Near Segment Length (cells) = Near Segment Length (cells)

(b) Sensitive - Non-Sensitive (c) Non-sensitive - Non-Sensitive

Figure 17. System Performance: 2-core, Inclusive Cache

W Performance Improvement

0,
30% 1 Power Reduction

25%
20%
15%
10%
5%
0%

1(1-ch) 2(2-ch) 4 (4-ch)
Core-count (# of memaory channels)

Figure 18. Inclusive Cache Analysis (BBC)

Perf. Improvement
& Power Reduction

B Performance Improvement B Performance Improvement

= 0 - o
§ S 305 | B Power Reduction £ 5 39% 1 power Reduction

§ 3 20% § S 20% -

3 @ 15% 20 15% -

g o 19% 2 < 10%

E v 5% £ o 5% -

. 8 0% ~ 2 0%

E o 1 (1'Ch] 2 {Z'Ch) 4 (4-Ch] E =8 1 (1'Ch) 2 (2'Ch] 4 (4'Ch]
o o L 3

Core-count (# of memory channels)
Figure 19. Exclusive Cache Analysis (WMC) Figure 20. Profile-Based Page Mapping

Core-count (# of memory channels)

Power analysis

* Reduced bitline capacitance in near segment —
decrease of power usage while accessing data.

* Need to charge transistors while accessing far
segment - increase of power usage while
accessing the data

1.5

g B Wordline M Bitline [JLlogic

S 1.0 -

o O

a S

N FRRRRRNT]
oS

o EUD I | |
3 12|48 16 3264|128 256
=

Ref.
(a) Power Consumption for ACTIVATE

Near Segment (Cells)

1.5 4
M Bitline Precharging [Logic Control

= lppnnnnnnid.

1 ‘ 2 ‘ 4 ‘ 8 |16 | 32 6d‘128‘256
Near Segment (Cells) F

Normalized Power
Consumption

Ref.

(b) Power Consumption for PRECHARGE
1 Ref.: Long Bitline, F: Far Segment, I: Inter-Segment Data Transfer

Figure 13. Power Consumption Analysis

More tiers?

* Yo, I've head you like cache. So | put cache memory on top of
your cache memory.

* Authors considered three “layers” with 32|224|256 cells each
* TRCD = 55%/70%/104%
* TRC = 44%/77%/157%

* Adding more layers costs 3.15% of substrate, and increases
power usage of further layers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

