

Low Latency and Low Cost DRAM
Architecture

Quick memory recap

But why exactly?

But why exactly?
● In SRAM it’s intuitive. We pay more for better

speeds.

But why exactly?
● In SRAM it’s intuitive. We pay more for better

speeds.
● But why should it happen in other storage

media? Let’s look at couple examples.

Case study. Flash based media

Case study. HDD’s

Case study. DRAM

What makes DRAM expensive?

What makes DRAM expensive?
● What makes other stuff cheaper.

Quick RAM recap

RAM operations

ACTIVATION
(select the RAM

Line to be accessed)

PRECHARGE
1. (disconnect the cell)
2. (set the potential of
Sense line to 0.5Vdd)

READ DATA OUT

TCL (or TCWL if writing)TRCD

ACTI
(select
Line to

TRP

TRAS (minimal time that the line is opened)

TBL

ACTIVATION PRECHARGING

TRP = TRAS + TRP

Quick junior high school physics
recap

Parasitic capacitance is about to hit
the fan

Parasitic capacitance is about to hit
the fan

Parasitic capacitance is about to hit
the fan

● We can see a lot of places

where the capacitance

becomes an issue

Parasitic capacitance is about to hit
the fan

● We can see a lot of places

where the capacitance

becomes an issue
● Can we fix it?

Parasitic capacitance is about to hit
the fan

● We can see a lot of places

where the capacitance

becomes an issue
● Can we fix it?
● Sure! Let’s see how

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)

High resolution
mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 1. Minimize dv.

High resolution
mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 1. Minimize dv.
● Bad idea. Why? High resolution

mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 2. Increase dt.

High resolution
mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 2. Increase dt.
● Sure. Who needed fast RAM High resolution

mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 3. Decrease C.

High resolution
mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 3. Decrease C.
● Sure. Let’s look at how C is calculatedHigh resolution

mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 3. Decrease C.
● Sure. Let’s look at how C is calculatedHigh resolution

mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 3. Decrease C.
● Sure. Let’s look at how C is calculated

– Next best approximation uses elliptic integrals

High resolution
mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 3. Decrease C.
● Sure. Let’s look at how C is calculated

– Next best approximation uses elliptic integrals
– We use the power of “Finalista Ślązaczka z fizyki” to

pull even simpler approximations out of our a̶s̶s sleeve

High resolution
mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 3. Decrease C.
● Sure. Let’s look at how C is calculated

C = pA/d

High resolution
mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

(We would like to minimize I)
● Idea 3. Decrease C.
● Sure. Let’s look at how C is calculated

C = pA/d
● That’s more like it. Now, what do these mean?

High resolution
mathematical formulas
brought to you by
stealing raster graphics
from Wikipedia

Parasitic capacitance is about to hit
the fan

● (We would like to minimize C) C = pA/d
● Idea 1. Decrease p.

Parasitic capacitance is about to hit
the fan

● (We would like to minimize C) C = pA/d
● Idea 1. Decrease p. Unlikely. That would require

modifications to the production process

Parasitic capacitance is about to hit
the fan

● (We would like to minimize C) C = pA/d
● Idea 1. Decrease p. Unlikely. That would require

modifications to the production process
● Idea 2. Decrease A.

Parasitic capacitance is about to hit
the fan

● (We would like to minimize C) C = pA/d
● Idea 1. Decrease p. Unlikely. That would require

modifications to the production process
● Idea 2. Decrease A. Shorter/thinner wires. Both

unlikely for obvious reasons.

Parasitic capacitance is about to hit
the fan

● (We would like to minimize C) C = pA/d
● Idea 1. Decrease p. Unlikely. That would require

modifications to the production process
● Idea 2. Decrease A. Shorter/thinner wires. Both

unlikely for obvious reasons.
● Idea 3. Increase d.

Parasitic capacitance is about to hit
the fan

● (We would like to minimize C) C = pA/d
● Idea 1. Decrease p. Unlikely. That would require

modifications to the production process
● Idea 2. Decrease A. Shorter/thinner wires. Both

unlikely for obvious reasons.
● Idea 3. Increase d. Sure, who needed small and

efficient DRAM dies.

Low Latency and Low Cost DRAM
Architecture is impossible.

This concludes the presentation

(Standing ovation)

But wait, there is more!
● What if decreasing A in C=pA/d was a valid solution?

But wait, there is more!
● What if decreasing A in C=pA/d was a valid solution?
● Sure, we get less memory per an amplifier circuit.

But wait, there is more!
● What if decreasing A in C=pA/d was a valid solution?
● Sure, we get less memory per an amplifier circuit.
● But we can always add more amplifiers (increase row

length)

But wait, there is more!
● What if decreasing A in C=pA/d was a valid solution?
● Sure, we get less memory per an amplifier circuit.
● But we can always add more amplifiers (increase row

length)

Once again...
● Memories are cheap, fast, capacious (choose

two out of three).

Once again...
● Memories are cheap, fast, capacious (choose

two out of three).
● What if we could change what two of them we

are using?

Once again...
● Memories are cheap, fast, capacious (choose

two out of three).
● What if we could change what two of them we

are using?

(Obviously we can’t change the cost once we have bought it, so the more awake
people in the room have already guessed that sometimes we will choose speed
over capacitance)

Sorry, WHAT?
● Introducing the stupidly simple, and super

obvious in retrospect trick for faster memory
operations.

Sorry, WHAT?
● Introducing the stupidly simple, and super

obvious in retrospect trick for faster memory
operations – RGB RAM.

Sorry, WHAT?
● Introducing the stupidly simple, and super

obvious in retrospect trick for faster memory
operations.

Let’s look at the benefits

Implementation: in-die transfer

Implementation: row decoder
● Predecoding.
● Input address is split to M blocks.
● For each block (size of N) output 2^N wires (a simple

decoder)
● At each row an AND gate with M inputs.
● We pay with additional wires for a decreasing the logic at

each row.

Implementation: double row decoder
● For on-die data transfers we need to be able to

select two rows at once.
● A naive approach dictates that we double the

whole row decoder
● Why is this approach bad?

Implementation: double row decoder
● For on-die data transfers we need to be able to

select two rows at once.
● Since we only transfer between far and near

segment, we only double the lines for the
shorter one

● Only 0.33% size penalty

Implementation: metadata

This would mark the end of the
hardware part of the presentation

Since now we basically have a
cache in DRAM, all the juicy topics
of cache management map onto
managing cache inside of DRAM

Near cache is transparent to the OS
● Approach 1. Simple Caching (SC)

Near cache is transparent to the OS
● Approach 1. Simple Caching (SC)
● We apply LRU to the DRAM accesses. We

categorize all accesses as one of three
– Sense amp hit
– Near segment hit
– Near segment miss

Near cache is transparent to the OS
● Approach 1. Simple Caching (SC)
● We apply LRU to the DRAM accesses. We

categorize all accesses as one of three
– Sense amp hit – Serve the memory, don’t change LRU
– Near segment hit
– Near segment miss

Near cache is transparent to the OS
● Approach 1. Simple Caching (SC)
● We apply LRU to the DRAM accesses. We

categorize all accesses as one of three
– Sense amp hit – Serve the memory, don’t change LRU
– Near segment hit – fetch from near segment, set as MRU
– Near segment miss

.

Near cache is transparent to the OS
● Approach 1. Simple Caching (SC)
● We apply LRU to the DRAM accesses. We categorize all

accesses as one of three
– Sense amp hit – Serve the memory, don’t change LRU
– Near segment hit – fetch from near segment, set as MRU
– Near segment miss – fetch from far segment, set as MRU.

● Possibly evict LRU from near segment.
● Possibly dump LRU to far segment if the DRAM line is dirty.

Near cache is transparent to the OS
● Approach 2. Wait minimized caching (WMC)
● Since I should be hospitalized due to my

overdose of caffeine, and the fact that
overdosing on substances that promise to give
you energy actually cuts ones mental ability, I will
now read the WMC description from the paper,
since I cannot make any sense of it.

Near cache is transparent to the OS
● Approach 3. Benefit Based Caching (BBC)

Near cache is transparent to the OS
● Approach 3. Benefit Based Caching (BBC)
● Same as Simple Caching, but instead of LRU

we calculate the benefit of a block being in near
segment)

Near cache is transparent to the OS
● Approach 3. Benefit Based Caching (BBC)
● Same as Simple Caching, but instead of LRU we

calculate the benefit of a block being in near
segment)

● When a far segment is hit, we evict a block with the
smallest benefit. On every operation we halve the
benefit of all blocks.

Near cache is transparent to the OS
● Approach 3. Benefit Based Caching (BBC)
● Same as Simple Caching, but instead of LRU we calculate

the benefit of a block being in near segment)
● When a far segment is hit, we evict a block with the smallest

benefit. Every operation we halve the benefit of all blocks.
● Benefit is the amount of cycles saved by the block being in

the near segment.

Exposing the cache to OS
● Simply allow OS to access the near region as regular

RAM.
● Hope to get increased performance due to lower

timings for some memory
● Has the benefit of being a simple replacement, without

any change to host system
● Sadly, low performance increase

Exclusive cache
● Use the memory controller to handle decisions

on what to put in cache
● Since cache is exclusive, we keep one row

clear in order to perform swap operations

Profile based page mapping
● OS controls virtual to physical mapping (this was

discussed last week, with the pmap function)
● TL-DRAM informs OS about the areas of physical

memory that are in the close region
● Information about the frequency of usage can be

obtained during compilation time, or dynamically via
hardware counters.

This concludes the software part of
the presentation

EVALUATION

Hardware setup
● We first need to consider the ratio between the

near and far region

Hardware setup
● We first need to set the ratio between the near

and far region

Test system specs (SPICE simulation)

Power analysis
● Reduced bitline capacitance in near segment →

decrease of power usage while accessing data.
● Need to charge transistors while accessing far

segment → increase of power usage while
accessing the data

More tiers?
● Yo, I’ve head you like cache. So I put cache memory on top of

your cache memory.
● Authors considered three “layers” with 32|224|256 cells each
● TRCD = 55%/70%/104%
● TRC = 44%/77%/157%
● Adding more layers costs 3.15% of substrate, and increases

power usage of further layers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

