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But why exactly?
● In SRAM it’s intuitive. We pay more for better 

speeds.
● But why should it happen in other storage 

media? Let’s look at couple examples.
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Case study. DRAM
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What makes DRAM expensive?
● What makes other stuff cheaper.



  

Quick RAM recap



  

RAM operations

ACTIVATION
(select the RAM

Line to be accessed)

PRECHARGE
1. (disconnect the cell)
2. (set the potential of
Sense line to 0.5Vdd)

READ DATA OUT

TCL (or TCWL if writing)TRCD

ACTI
(select
Line to 

TRP

TRAS (minimal time that the line is opened)

TBL

ACTIVATION PRECHARGING

TRP = TRAS + TRP



  



  

Quick junior high school physics 
recap
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Parasitic capacitance is about to hit 
the fan

● We can see a lot of places

where the capacitance

becomes an issue
● Can we fix it?
● Sure! Let’s see how
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● Bad idea. Why? High resolution 

mathematical formulas 
brought to you by 
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from Wikipedia
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Parasitic capacitance is about to hit 
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(We would like to minimize I)
● Idea 2. Increase dt.
● Sure. Who needed fast RAM High resolution 

mathematical formulas 
brought to you by 
stealing raster graphics 
from Wikipedia
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Parasitic capacitance is about to hit 
the fan

(We would like to minimize I)
● Idea 3. Decrease C.
● Sure. Let’s look at how C is calculated

– Next best approximation uses elliptic integrals
– We use the power of “Finalista Ślązaczka z fizyki” to 

pull even simpler approximations out of our a̶s̶s sleeve

High resolution 
mathematical formulas 
brought to you by 
stealing raster graphics 
from Wikipedia



  

Parasitic capacitance is about to hit 
the fan

(We would like to minimize I)
● Idea 3. Decrease C.
● Sure. Let’s look at how C is calculated

C = pA/d

High resolution 
mathematical formulas 
brought to you by 
stealing raster graphics 
from Wikipedia



  

Parasitic capacitance is about to hit 
the fan

(We would like to minimize I)
● Idea 3. Decrease C.
● Sure. Let’s look at how C is calculated

C = pA/d
● That’s more like it. Now, what do these mean?

High resolution 
mathematical formulas 
brought to you by 
stealing raster graphics 
from Wikipedia
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Parasitic capacitance is about to hit 
the fan

● (We would like to minimize C)  C = pA/d
● Idea 1. Decrease p. Unlikely. That would require 

modifications to the production process
● Idea 2. Decrease A. Shorter/thinner wires. Both 

unlikely for obvious reasons.
● Idea 3. Increase d. Sure, who needed small and 

efficient DRAM dies.



  

Low Latency and Low Cost DRAM 
Architecture is impossible.

This concludes the presentation

(Standing ovation)
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● What if decreasing A in C=pA/d was a valid solution? 
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Once again...
● Memories are cheap, fast, capacious (choose 

two out of three).
● What if we could change what two of them we 

are using?

(Obviously we can’t change the cost once we have bought it, so the more awake 
people in the room have already guessed that sometimes we will choose speed 
over capacitance)
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operations.



  

Sorry, WHAT?
● Introducing the stupidly simple, and super 

obvious in retrospect trick for faster memory 
operations – RGB RAM.



  

Sorry, WHAT?
● Introducing the stupidly simple, and super 

obvious in retrospect trick for faster memory 
operations.



  

Let’s look at the benefits



  

Implementation: in-die transfer



  

Implementation: row decoder
● Predecoding.
● Input address is split to M blocks.
● For each block (size of N) output 2^N wires (a simple 

decoder)
● At each row an AND gate with M inputs.
● We pay with additional wires for a decreasing the logic at 

each row.



  

Implementation: double row decoder
● For on-die data transfers we need to be able to 

select two rows at once.
● A naive approach dictates that we double the 

whole row decoder
● Why is this approach bad?



  

Implementation: double row decoder
● For on-die data transfers we need to be able to 

select two rows at once.
● Since we only transfer between far and near 

segment, we only double the lines for the 
shorter one

● Only 0.33% size penalty



  



  

Implementation: metadata



  

This would mark the end of the
hardware part of the presentation



  

Since now we basically have a 
cache in DRAM, all the juicy topics 
of cache management map onto 
managing cache inside of DRAM



  

Near cache is transparent to the OS
● Approach 1. Simple Caching (SC)
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Near cache is transparent to the OS
● Approach 1. Simple Caching (SC)
● We apply LRU to the DRAM accesses. We categorize all 

accesses as one of three
– Sense amp hit – Serve the memory, don’t change LRU
– Near segment hit – fetch from near segment, set as MRU
– Near segment miss – fetch from far segment, set as MRU.

● Possibly evict LRU from near segment. 
● Possibly dump LRU to far segment if the DRAM line is dirty.



  

Near cache is transparent to the OS
● Approach 2. Wait minimized caching (WMC)
● Since I should be hospitalized due to my 

overdose of caffeine, and the fact that 
overdosing on substances that promise to give 
you energy actually cuts ones mental ability, I will 
now read the WMC description from the paper, 
since I cannot make any sense of it.
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● When a far segment is hit, we evict a block with the 
smallest benefit. On every operation we halve the 
benefit of all blocks. 



  

Near cache is transparent to the OS
● Approach 3. Benefit Based Caching (BBC)
● Same as Simple Caching, but instead of LRU we calculate 

the benefit of a block being in near segment)
● When a far segment is hit, we evict a block with the smallest 

benefit. Every operation we halve the benefit of all blocks.
● Benefit is the amount of cycles saved by the block being in 

the near segment. 



  

Exposing the cache to OS
● Simply allow OS to access the near region as regular 

RAM.
● Hope to get increased performance due to lower 

timings for some memory
● Has the benefit of being a simple replacement, without 

any change to host system
● Sadly, low performance increase



  

Exclusive cache
● Use the memory controller to handle decisions 

on what to put in cache
● Since cache is exclusive, we keep one row 

clear in order to perform swap operations



  

Profile based page mapping
● OS controls virtual to physical mapping (this was 

discussed last week, with the pmap function)
● TL-DRAM informs OS about the areas of physical 

memory that are in the close region
● Information about the frequency of usage can be 

obtained during compilation time, or dynamically via 
hardware counters.



  

This concludes the software part of 
the presentation



  

EVALUATION



  

Hardware setup
● We first need to consider the ratio between the 

near and far region



  

Hardware setup
● We first need to set the ratio between the near 

and far region



  



  

Test system specs (SPICE simulation)



  



  



  



  

Power analysis
● Reduced bitline capacitance in near segment → 

decrease of power usage while accessing data.
● Need to charge transistors while accessing far 

segment → increase of power usage while 
accessing the data



  



  

More tiers?
● Yo, I’ve head you like cache. So I put cache memory on top of 

your cache memory.
● Authors considered three “layers” with 32|224|256 cells each
● TRCD = 55%/70%/104%
● TRC = 44%/77%/157%
● Adding more layers costs 3.15% of substrate, and increases 

power usage of further layers.
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