Low Latency and Low Cost DRAM
Architecture



Quick memory recap
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But why exactly?

* In SRAM it’s intuitive. We pay more for better
speeds.

* But why should it happen in other storage
media? Let’'s look at couple examples.



Case study. Flash based media
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What makes DRAM expensive?



What makes DRAM expensive?

 What makes other stuff cheaper.



Quick RAM recap



RAM operations

TRP =TRAS + TRP
TRAS (minimal time that the line is opened)
TRCD TCL (or TCWL if writing)

READ DATA OUT

ACTIVATION
(select the RAM TBL 1. (disconnect the cell)
Line to be accessed) 2. (set the potential of
Sense line to 0.5Vvdd)

PRECHARGE

ACTIVATION PRECHARGING
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Quick junior high school physics
recap
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Parasitic capacitance Is about to hit
the fan
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Parasitic capacitance Is about to hit
the fan
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Parasitic capacitance Is about to hit

the fan
* We can see a lot of places

where the capacitance
becomes an Issue
e Can we fix I1t?
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Parasitic capacitance Is about to hit

the fan
* We can see a lot of places

where the capacitance
becomes an issue

« Can we fix it?

e Sure! Let’s see how
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Parasitic capacitance Is about to hit
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Parasitic capacitance Is about to hit
the fan
(We would like to minimize 1) da

e |dea 2. Increase dt. y— C—
e Sure. Who needed fast RAM dt
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Parasitic capacitance Is about to hit

the fan
(We would like to minimize |) du
* |dea 3. Decrease C. 1 = (C—
e Sure. Let’s look at how C Is calculaigd at
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Parasitic capacitance Is about to hit
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Parasitic capacitance Is about to hit

the fan
(We would like to minimize 1) duv
Idea 3. Decrease C. 3 = (| —
Sure. Let’s look at how C iIs calculatet dt

— Next best approximation uses elliptic integrals

- We use the power of “Finalista Slazaczka Z'fizgki’ to
pull even simpler approximations out of our ass sleeve



Parasitic capacitance Is about to hit
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Parasitic capacitance Is about to hit

the fan
(We would like to minimize |) du
* |dea 3. Decrease C. 1 = (C—
e Sure. Let’s look at how C Is calculaigd at

C = pA/d
e That's more like it. Now, what do these mean?



Parasitic capacitance Is about to hit
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* |ldea 1. Decrease p.
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Parasitic capacitance Is about to hit
the fan
* (We would like to minimize C) C = pA/d

* |dea 1. Decrease p. Unlikely. That would require
modifications to the production process

e |[dea 2. Decrease A. Shorter/thinner wires. Both
unlikely for obvious reasons.

 |dea 3. Increase d.



Parasitic capacitance Is about to hit

the fan
(We would like to minimize C) C = pA/d

ldea 1. Decrease p. Unlikely. That would require
modifications to the production process

ldea 2. Decrease A. Shorter/thinner wires. Both
unlikely for obvious reasons.

* |dea 3. Increase d. Sure, who needed small and
efficient DRAM dies.



This concludes the presentation

Low Latency and Low Cost DRAM
Architecture is Impossible.



Po prostu powieksz
swoje pamieci DRAM
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But walit, there 1s more!

* What If decreasing A in C=pA/d was a valid solution?
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But walit, there 1s more!

* What If decreasing A in C=pA/d was a valid solution?

* Sure, we get less memory per an amplifier circulit.
* But we can always add more amplifiers (increase row
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Once again...

* Memories are cheap, fast, capacious (choose
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Once again...

* Memories are cheap, fast, capacious (choose
two out of three).

 What if we could change what two of them we
are using?

(Obviously we can’t change the cost once we have bought it, so the more awake
people in the room have already guessed that sometimes we will choose speed

over capacitance)



Sorry, WHAT?

* Introducing the stupidly simple, and super
obvious in retrospect trick for faster memory
operations.



Sorry, WHAT?

* Introducing the stupidly simple, and super
obvious in retrospect trick for faster memory
operations — RGB RAM.




Sorry, WHAT?

* Introducing the stupidly simple, and super
obvious in retrospect trick for faster memory
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Let’s look at the benefits



Implementation: in-die transfer



Implementation: row decoder

* Predecoding.
* Input address is split to M blocks.

* For each block (size of N) output 2*N wires (a simple
decoder)

* At each row an AND gate with M inputs.

* We pay with additional wires for a decreasing the logic at
each row.



Implementation: double row decoder
 For on-die data transfers we need to be able to
select two rows at once.

* A naive approach dictates that we double the
whole row decoder

* Why Is this approach bad?



Implementation: double row decoder

e For on-die data transfers we need to be able to
select two rows at once.

e Since we only transfer between far and near
segment, we only double the lines for the
shorter one

* Only 0.33% size penalty
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Implementation: metadata



This would mark the end of the
hardware part of the presentation



Since now we basically have a
cache iIn DRAM, all the juicy topics
of cache management map onto
managing cache inside of DRAM



Near cache Is transparent to the OS
* Approach 1. Simple Caching (SC)
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Near cache Is transparent to the OS

* Approach 1. Simple Caching (SC)

* We apply LRU to the DRAM accesses. We categorize all
accesses as one of three
- Sense amp hit — Serve the memory, don’t change LRU
- Near segment hit — fetch from near segment, set as MRU

- Near segment miss — fetch from far segment, set as MRU.
* Possibly evict LRU from near segment.
* Possibly dump LRU to far segment if the DRAM line is dirty.



Near cache Is transparent to the OS

* Approach 2. Wait minimized caching (WMC)

e Since | should be hospitalized due to my
overdose of caffeine, and the fact that
overdosing on substances that promise to give
you energy actually cuts ones mental ability, | will
now read the WMC description from the paper,
since | cannot make any sense of it.
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Near cache Is transparent to the OS

* Approach 3. Benefit Based Caching (BBC)

 Same as Simple Caching, but instead of LRU we
calculate the benefit of a block being in near
segment)

* When a far segment is hit, we evict a block with the
smallest benefit. On every operation we halve the
benefit of all blocks.



Near cache Is transparent to the OS

* Approach 3. Benefit Based Caching (BBC)

 Same as Simple Caching, but instead of LRU we calculate
the benefit of a block being in near segment)

* When a far segment is hit, we evict a block with the smallest
benefit. Every operation we halve the benefit of all blocks.

* Benefit Is the amount of cycles saved by the block being in
the near segment.



Exposing the cache to OS

Simply allow OS to access the near region as regular
RAM.

Hope to get increased performance due to lower
timings for some memory

Has the benefit of being a simple replacement, without
any change to host system

Sadly, low performance increase



Exclusive cache

* Use the memory controller to handle decisions
on what to put in cache

* Since cache Is exclusive, we keep one row
clear in order to perform swap operations



Profile based page mapping

* OS controls virtual to physical mapping (this was
discussed last week, with the pmap function)

 TL-DRAM Iinforms OS about the areas of physical
memory that are in the close region

* |Information about the frequency of usage can be
obtained during compilation time, or dynamically via
hardware counters.



This concludes the software part of
the presentation



EVALUATION



Hardware setup

 We first need to consider the ratio between the
near and far region
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Test system specs (SPICE simulation)

Table 4. Evaluated System Configuration

Processor 5.3 GHz, 3-wide issue, 8 MSHRs/core,
128-entry instruction window

Last-Level 64B cache line, 16-way associative,
Cache 512kB private cache slice/core

Memory 64/64-entry read/write request queue,
Controller row-interleaved mapping, closed-page policy,
FR-FCFS scheduling [41]

DRAM 2GB DDR3-1066,
1/2/4 channel (@1-core/2-core/4-core), 1 rank/channel,
8 banks/rank, 32 subarrays/bank, 512 rows/bitline
t rcp (unsegmented): 15.0ns, t 5o (unsegmented): 52.5ns

TL-DRAM 32 rows/near segment, 480 rows/far segment
t rop (near/far): 8.2/12.1ns, t g ¢ (near/far): 23.1/65.8ns




Table 1. Latency & Die-Size Comparison of DRAMs (Sec 3)

Short Bitline  Long Bitline  Segmented Bitline

(Fig 2a) (Fig 2b) (Fig 2¢)

Unsegmented Unsegmented  Near Far

Length (Cells) 32 512 32 480

" Lowest High Lowest Low

RCD
Latency (8.2ns) (15ns) (8.2ns)  (12.1ns)
p Lowest High Lowest  Higher
RC (23.1ns) (52.5ns) (23.1ns)  (65.8ns)
Normalized Highest Lowest Low

Die-Size (Cost) (3.76) (1.00) (1.03)
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Power analysis

* Reduced bitline capacitance in near segment —
decrease of power usage while accessing data.

* Need to charge transistors while accessing far
segment - increase of power usage while
accessing the data
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More tiers?

* Yo, I've head you like cache. So | put cache memory on top of
your cache memory.

* Authors considered three “layers” with 32|224|256 cells each
* TRCD = 55%/70%/104%
* TRC = 44%/77%/157%

* Adding more layers costs 3.15% of substrate, and increases
power usage of further layers.
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