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Chapter 1

Word equations: basic notions and results

1.1 Introduction
A word equation consists of a pair (u, v) of words over letters (constants) and variables and a solution
is a substitution of the variables by words in letters such that the formal equality u = v becomes a
true equality of words (strings).

It is fairly easy to see that WordEquation reduces to Hilbert’s 10th Problem, see Exercise 8.
Hence in the mid 1960s there was an attempt to prove undecidability of Hilbert 10th Problem via
undecidability of word equations. The program failed in the sense that Matiyasevich proved Hilbert’s
10th Problem to be undecidable in 1970, but by a completely different method, which employed number
theory. On the other hand, in 1977 Makanin showed in his seminal paper [40] that satisfiability of
word equations is decidable. Makanin’s algorithm became famous since it settled a long standing
problem and also because his algorithm had an extremely complex termination proof. Furthermore
Makanin extended his results to free groups and showed that the existential and positive theories in
free groups are decidable [41, 42].

1.2 Definitions
Definition 1.1 (Alphabet, variables). In context of word equations we usually consider a finite
alphabet Σ and finite set of variables X , which is disjoint with Σ. Elements of Σ are usually denoted
by small letters a, b, c, . . .. Elements of X are usually denoted as X,Y, Z, . . ..
Definition 1.2 (Word equation, systems of word equations). A word equation is a pair (u, v), usually
written as u = v, where u, v ∈ (Σ ∪ X )∗ is a sequence of letters and variables. A system of word
equations is a set of word equations, usually denoted as (u1, v1), (u2, v2), . . .
Definition 1.3 (Substitution, solution, length-minimal solution). Given a set of variables X and a
set of letters Σ, a substitution is a morphism s : X → Γ+ ⊇ Σ+. A substitution is extended to Σ as
an identity (so s(a) = a for a ∈ Σ) and to (Σ ∪ X )∗ as a homomorphism (so s(αβ) = s(α)s(β) for
α, β ∈ (Σ ∪ X )∗).

A substitution is a solution of a word equation u = v, when s(u) = s(v); a solution of a system of
equations is defined accordingly. A solution s of a word equation u = v is length-minimal (or simply
minimal), when for any other solution s′ it holds that

|s(u)| ≤ |s′(u)| .
Given a solution s for the equation u = v the s(u) is a solution word for this solution of the

equation.
Note that we do allow that the solution uses letters that are not in the instance, but this is a slight

technical detail.
Problem: (Satisfiability of) Word Equations
Input: A system of word equations with variables X over Σ.
Task: Decide, whether this system has a solution.
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Definition 1.4 (Cubic and quadratic systems of equations). We say that a system of word equations
is quadratic, if every variable occurs at most twice in it. It is cubic, when every variable occurs at
most thrice.

Definition 1.5 (Language Constraints). Language Constraints for system of word equations are given
as additional constraints of the form X ∈ C or X /∈ C, where X ∈ X and C comes from some specified
language class (say: regular, context-free, etc.). The meaning of the constraint X ∈ C (or X /∈ C) is
that we require from a solution s that s(X) ∈ C (or s(X) /∈ C).

Example 1.1. The equation
aXca = abY a

has a solution s(X) = baba and s(Y ) = abac.
The equation

aX = Xa

has an infinite number of solutions, each is of the form s(X) = ak for some k > 0.
The equation

aXb = Y

has a solution s(X) = w and s(Y ) = awb for each word w.
The equation

aXY X3 = XY aY 2

has infinite number of solutions: Since s(aXY ) and s(XY a) have always the same length, this is
equivalent to a system of equations

aXY = XY a and X3 = Y 2 .

The former has solutions X = an, Y = am and the latter ensures that 3n = 2m.
The equation

XbaY b = baaababbab

has a solution s(X) = baaa, s(Y ) = bba

1.3 Cuts and satisfiability
This section is based on [52].

Definition 1.6 (Cut, touching a cut). A cut (in an equation) is a position between two symbols (i.e.
letters, variables or ‘=’ sign) or at the beginning or end of the equation. We generalise this notion to
a cut for a solution.

A substring in s(u) or s(v) overlaps a cut α, if α is within this word. It touches a cut if it overlaps
a cut or a cut is directly before or directly after it.

Fact 1.7. There are |u|+ |v|+ 2 cuts in a word equation u = v.

Definition 1.8. For a function f : X 7→ N a substitution (solution) s is an f -substitution (f -solution),
if |s(X)| = f(X) for each variable X.

Definition 1.9. Given a substitution s we say that two positions in s(uv) are in R′ relation, if:

• they are corresponding positions of s(u) and s(v) or

• they are corresponding positions of different occurrences of some s(X)

Define R as a transitive, reflexive and symmetric closure of R′.

Lemma 1.10. Consider a substitution s and the R relation, let f be such that s is an f -substitution.
Then
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1. There is an f -solution if and only if no equivalence class contains two positions corresponding
to different constants and the sides of the equation have equal lengths when substituted with an
f -substitution.

2. if s is a solution and there is an equivalence class containing no constants from the equation
then it is not length-minimal. Moreover, the symbols at positions in this class can be filled with
the same arbitrary string, in particular by ϵ, and the obtained substitution is a solution.

3. For any two positions iRj in an f -solution s′ we have s′(uv)[i] = s′(uv)[j].

Proof. Rather obvious.

Lemma 1.11. Suppose that s is a length-minimal solution and w is a substring in s(u). Then there
is a substring w in s(u) or s(v) which overlaps with a cut.

Proof. Left as an easy exercise.

In the following, we denote cuts by Greek letters. For a cut α let (α)k be the word that extends
2k−1 to the left and right from α (truncate it, when this exceeds the s(u) or s(v)).

Those observation lead to two simple algorithms for word equations:

Theorem 1.12. Given a length function f , deciding, whether there is an f -solution for u = v, can
be done in SPACE(log f(uv)).

In the same space we can verify, whether this is a lenght minimal solution.
Given a bound N , we can verify in SPACE(log(N + |uv|)), whether there is a solution such that its

solution word is of size at most N .

Proof. It is enough to verify the conditions from Lemma 1.10.
The computation of the length can be easily done in the given space, by going through the equations

and summing the values.
To check that there are no two such positions, fo each two position with different letters we verify,

whether they are connected. This complement of this is a reachability problem in a graph with
positions as vertices and R′ as an edge relation. Note that the relation is symmetric and symmetric
reachability is in LOGPSPACE, in our case the size is f(uv). The complement is in the same class.

To verify that this is a length-minimal solution, we can check, whether there exist a function f ′ for
which there is an f ′-solution, but f ′(uv) < f(uv). We iterate over possible values of f ′, which takes
O(log f(uv)) space and each check also takes O(log f ′(uv)) ≤ O(log f(uv)) space.

The last point is done similarly as in the case above.

1.4 SLPs and satisfibility
Definition 1.13 (Straight Line Programme, SLP). Straight Line Programme (SLP) is a CFG in the
Chomsky normal form that generates a unique string. The size of the SLP is the sum lengths of its
right-hand sides and for an SLP A it is denoted by |A|. The unique word generated by A is denoted
by val(A).

Without loss of generality we assume that nonterminals of an SLP are X1, . . . , Xg, each rule is
either of the form Xi → a or Xi → XjXk, where j, k < i; the latter condition essentially means that
they are in the Chomsky normal form. This increases the size of the SLP only by a constant fraction.
With this assumption the size is asymptotically the same as the number of nonterminals: in this case
— g.

Note, that an SLP can be seen as a word equation of a very restricted kind.

1.4.1 Equivalence of SLPs
Given two SLPs A,B the equivalence problem is the question whether they define the same string, i.e.
val(A) = val(B). This can clearly be tested in PSPACE, but in fact can be done in P, which we will
learn later on.
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1.4.2 Composition systems
In many proofs it is easier to use the ‘substring’ approach rather than the SLPs. Thus the composition
systems are SLPs that additionally allow a usage of substrings of nonterminals, i.e. we can use A[b : e]
in a rule, its semantics is ‘substring of a string generated by A from position b to e’. It is easy to show
that composition system can be transformed into an SLP with a polynomial size increase; the proof
is left as an exercise.

Lemma 1.14. A composition system of size n can be transformed into an equivalent SLP of size
O(n2)

Proof. Proof is left as an exercise. This is not the best bound.

1.4.3 Satisfiability via SLPs
This section is based on [52].

For a cut α by (α)k as a string extending 2k positions to the left of α and 2k to the right of α; if
this is not possible, then we take as many letters as possible.

Consider (α)k+1 and express it as

(α)k+1 = wk(α)kw′
k

where |wk|, |w′
k| ≤ 2k−1.

By Lemma 1.11, we get that wk and w′
k are substrings of some (β)i and (γ)i. As they are of length

2k−1, so when wk overlaps β, it is within (β)k, so we can in fact take (β)k and (γ)k
Thus

(α)k+1 = (β)k[i . . j](α)k(γ)k[i′ . . j′]

Treating (α)k+1 as nonterminals, we obtain a composition systems for those cuts. Now, for k = logN
the (α)k+1 is actually the whole s(u). Thus, we have a composition system of size O(n2 logN) for
the smallest solution (and so also the same size for each variable). The same argument applies also to
each variable

Theorem 1.15. Given a length-minimal solution of an equation u = v there is a composition system
of size O(n2 logN) of a solution word.

Exercises

Task 1 Show that a satisfiability of a system of word equations is NP-hard already when Σ = {a}.

Hint:Thisreducestosomeotherknownequations.

Task 2 Show that the satisfiability of word equations is NP-hard when we consider only systems in
which every right-hand side does not contain variables.

(Note: it might be easier to show this when we allow also ϵ as a substitution for a variable).
Task 3 Show that the problem of satisfiability of a system of word equations can be reduced to the
problem of satisfiability of a single word equation, when we are allowed to add letters to the alphabet.
Show the same result also when adding letters is not allowed, but |Σ| ≥ 2.
Task 4 Suppose that s is a length-minimal solution of a word equation u = v. Let w be a substring
of s(u). Show that w has an occurrence that touches a cut.

Strengthen this for |w| ≥ 2: in this case w overlaps a cut.
Strengthen this for w = a ∈ Σ: in this case a occurs in u or in v.
Conclude that without loss of generality the length-minimal solutions do not use letters outside

the alphabet Σ.

Hint:Usingtheinductivedefinitionofthetransitiveclosuremaybehelpful.



1.4. SLPS AND SATISFIBILITY 11

Task 5 Reduce the satisfiability problem for word equations to the satisfiability problem of cubic word
equations, i.e. when each variable occurrs at most three times in the system of word equations.

Task 6 Show that the problem of word equations with context-free constraints is undecidable. Here
“context-free constraints” means that we apart from the equations, we allow also condition of the
form X ∈ L, where X is any variable and L is a CFG. For s to be a solution we require then that
s(X) ∈ L.

Task 7 Show that the Intersection Problem for DFAs
Problem: Non-emptiness of Intersection for DFAs
Input: DFAs (deterministic finite automata) D1, D2, . . . , Dm

Task: Decide, whether the intersection of their languages is non-empty

is PSPACE-hard.
Show that this problem is in PSPACE even when we allow NFAs.
Deduce from this that word equations with regular constraints are PSPACE-hard; as in Task 6 the
regular constraints mean that apart from the equations, we allow also condition of the form X ∈ L,
where X is any variable and L is regular language, given a by a DFA and we require that s(X) ∈ L.

Task 8 (Long: two points) Consider a mapping from Σ = {a, b} to 2× 2 matrices over N, defined
as

φ(a) =
[
1 1
0 1

]
and φ(b) =

[
1 0
1 1

]
.

Extend this to Σ∗ as a homomorphism.
Show that for any w ∈ Σ∗ its image is a a matrix with a determinant one.

Show that this mapping is injective; to do this, consider, what are the rows of a matrix φ(a)
[
n n′

m m′

]

and what are the rows of φ(a)
[
n n′

m m′

]
. Deduce from this that looking at the matrix Mw = φ(w) we

can determine the left-most letter of w by looking at rows of Mw.
Show that if a 2 × 2 matrix M with determinant 1 and all natural entries can be represented as

either φ(a)M ′ or φ(b)M ′, where M ′ has a determinant 1 and all natural entries. Again: compare the
rows.

Deduce from this that φ is an isomorphism between Σ∗ and 2×2 matrices with determinant 1 and
all entries natural.

Deduce from this that satisfiability of word equation over Σ = {a, b} reduces to the satisfiability
of equations over natural numbers (to do this, represent a φ(X) as a matrix of variables representing
natural numbers).

Task 9 Show that the composition system of size n can be turned into an SLP of polynomial size.
How small you can make the polynomial?
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Chapter 2

Satisfiability of word equations in PSPACE

Idea

In Section 1.4.3 we showed that there is an SLP for the length-minimal solution of size poly(n, logN).
The construction of the SLP was top-down and it required an external bound on the size of the SLP,
i.e. N . In this chapter we show that a bottom-up approach for such a construction is more useful, as
we do not need an upper-bound on the size of the solution.

2.1 Bottom-up costruction of an SLP for a word

Definition 2.1. Two different letters ab are called a pair. An occurrence of aℓ in w is a maximal block
if it cannot be extended to the right nor left.

A pair compression of ab in w replaces each occurrence of ab by occurrence of a fresh letter c. A
block compression of a in w for each ℓ replaces all maximal blocks aℓ with a fresh letter aℓ. To simplify
the description, for p: a pir of different letters or a letter, we will say that we compress p.

“aℓ” is just a naming convention, it does not store any information about ℓ.
The following algorithm builds an SLP for a word. Our goal is to simulate it on the solution word.

Algorithm 1 Compression of a word w

1: while |w| > 1 do
2: L← list of letters in w
3: choose p a pair of different letters from L or a letter from L
4: compress blocks of p.

2.2 Soundness and completeness

Definition 2.2 (Soundness, completeness). A nondeterministic procedure is sound, when given an
unsatisfiable word equation u = v it cannot transform it to a satisfiable one, regardless of the non-
deterministic choices; such a procedure is complete, if given a satisfiable equation u = v for some
nondeterministic choices it returns a satisfiable equation u′ = v′.

Observe, that a composition of sound (complete) procedures is sound (complete, respectively)

Lemma 2.3. The following operations are sound:

1. replacing all occurrences of a variable X with wXw′ for arbitrary w,w′ ∈ (Σ ∪ X )∗;

2. replacing some occurrences of a word w ∈ Σ+ (in u and v) with a fresh letter c;

3. removal of a variable X from the equation.

13
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Proof. In the first case, if s′ is a solution of u′ = v′ then s defined as s(X) = s′(wXw′) and s(Y ) = s′(Y )
otherwise is a solution of u = v.

In the second case, if s′ is a solution of u′ = v′ then s obtained from s′ by replacing each c with w
is a solution of u = v.

Lastly, in the third case, if s′ is a solution of u′ = v′ then we can obtain s from s′ by defining the
substitution s(X) = ϵ and s(Y ) = s′(Y ) in other cases.

2.3 Crossing and Noncrossing Pairs and Blocks

Definition 2.4. Given an equation u = v and a substitution s and an occurrence of a substring
w ∈ Σ+ in s(u) (or s(v)) we say that this occurrence of w is

• explicit, if it comes from substring w of u (or v, respectively)

• implicit, it it comes from substitution of s(X) for a single occurrence of a variable X

• crossing otherwise.

A string w is crossing (with respect to a solution s) if it has a crossing occurrence and non-crossing
(with respect to a solution s) otherwise.

We say that a pair of ab is a crossing pair (with respect to a solution s), if ab has a crossing
occurrence. Otherwise, a pair is non-crossing. Similarly, a letter a ∈ Σ has a crossing block, if there
is a maximal block of a which has a crossing occurrence. This is equivalent to a (simpler) condition
that aa is a crossing pair.

Unless explicitly stated, we consider crossing/non-crossing pairs ab in which a ̸= b.

Lemma 2.5. Given an equation with n occurrences of variables the number of different crossing pairs
and blocks is at most 2n.

Proof is left as an easy exercise.

2.4 Compression of noncrossing pairs and blocks

Algorithm 2 PairCompNCr(a, b) Pair compression for a non-crossing pair
1: let c ∈ Σ be an unused letter
2: replace each explicit ab in u and v by c

Algorithm 3 BlockCompNCr(a) Block compression for a letter a with no crossing block
1: for each explicit a occurring in u or v do
2: for each ℓ do
3: let aℓ ∈ Σ be an unused letter
4: replace every explicit a’s maximal ℓ-block occurring in u or v by aℓ

Lemma 2.6. PairCompNCr(a, b) is sound and when ab is a non-crossing pair in an equation u = v
(with respect to some solution s) then it is complete: the new equation u′ = v′ has a solution s′ such
that s′(u′) is obtained by compression of pair ab in s(u).

Similarly, BlockCompNCr(a) is sound and when a has no crossing blocks in u = v (with respect to
some solution s) it is complete: the new equation u′ = v′ has a solution s′ such that s′(u′) is obtained
by compression of each maximal block aℓ in s(u) into aℓ.

In particular, in both cases if anything was compressed, so (u, v) ̸= (u′, v′) then |s′(u′)| < |s(u)|.
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Proof. From Lemma 2.3 it follows that both PairCompNCr(a, b) and BlockCompNCr(a) are sound.
Suppose that u = v has a solution s such that ab is a noncrossing pair with respect to s. Define

s′: s′(X) is equal to s(X) with each ab replaced with c (where c is a new letter). Consider s(u) and
s′(u′). Then s′(u′) is obtained from s(u) by replacing each ab:

explicit the explicit occurrences of ab are replaced by PairCompNCr(a, b),

implicit the implicit ones are replaced by the definition of s′ and by the assumption

crossing there are no crossing occurrences.

In particular, if anything was compressed in the equation then |s′(u′)| < |s(u)|.
The same argument applies to s(v) and s′(v′). Hence s′(u′) = s′(v′), which concludes the proof in

this case.
The proof for the block compression follows in the same way.

2.5 Uncrossing

In the following, we always assume that a solution for each variable is non-empty (and remove such
variables otherwise).

Algorithm 4 Pop(a, b)
1: for X ∈ X do
2: if the first letter of s(X) is b then ▷ Guess
3: replace each X in u and v by bX ▷ Implicitly change s(X) = bw to s(X) = w
4: if s(X) = ϵ then ▷ Guess
5: remove X from u and v
6: . . . ▷ Perform a symmetric action for the last letter and a

Lemma 2.7. The Pop(a, b) is sound and complete.
Furthermore, if s is a solution of u = v then for some nondeterministic choices the obtained u′ = v′

has a solution s′ such that s′(u′) = s(u) and ab is non-crossing (with regards to s′).

Algorithm 5 Pop (a) Popping a-prefixes and a-suffixes
1: for X ∈ X do
2: let ℓX and rX be the lengths of the a-prefix and suffix of s(X) ▷ Guess

▷ If s(X) = aℓXX then rX = 0
3: replace each X in u and v by aℓXXarX ▷ ℓX and rX are stored as bitvectors,

▷ implicitly change s(X) = aℓXwarX to s(X) = w
4: if s(X) = ϵ then ▷ Guess
5: remove X from u and v

Lemma 2.8. Pop(a) is sound. It is complete, to be more precise: For a solution s of u = v let for
each X ℓX , rX be the lengths of a-prefix and a-suffix of s(X). Then when Pop pops aℓX to the left and
arX to the right, the returned equation u′ = v′ has a solution s′ such that s(u) = s′(u′) and a has no
crossing blocks with respect to s′.
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2.6 The algorithm

Algorithm 6 WordEqSat Checking the satisfiability of a word equation
1: while |U | > 1 or |V | > 1 do
2: L← list of letters (in the equation)
3: choose p a letter or pair from L ▷ Guess
4: if p is crossing then
5: uncross p
6: compress p
7: Solve the problem naively ▷ With sides of length 1, the problem is trivial

Lemma 2.9. Given an equation u = v and its length-minimal solution s the length of the maximal
a-block in s(u) is 2O(|uv|).

The proof is given in later Chapter 7 and it follows from a more general bound on the exponent
of periodicity.

Lemma 2.10. For appropriate nondeterministic choices, the equations stored by (successful) compu-
tation of WordEqSat are of length O(n2), the additional computation performed by WordEqSat use
O(n2) space.

Note that the bound does not hold for all nondeterministic choices, but by using standard tech-
niques we can bound the space available to the algorithm and reject the computation that try to
exceed this space.

Proof. As we do not add occurrences of variables, the equation has at most n occurrences of variables.
If there is an uncrossing pair or letter, then we compress it. This does not increase the size of the

equation.
So consider the case in which there are no non-crossing pairs and no non-crossing letters. For an

occurrence of a letter a in u = v and p; a pair or a letter we say that this occurrence is covered by p,
when some occurrence of p includes this occurrence of letter. Note that each letter in the equation is
covered by some occurrence of some p.

Choose p which covers most letters in the equation, let the equation have m letters. As there are
non non-crossing letters and pairs, there are at most 2n different ps, hence some covers at least

m

2n

different occurrences; fix such p. Uncrossing of p introduces at most 2n letters to the equation.
Compression of p removes at least m

4n letters from the equation. Hence uncrossing and compressing p
leads to an equation with

m− m

4n + 2n = (1− 1
4n)m+ 2n

Now, if m ≤ 8n2 then also above bound yields a bound of at most 8n2 on the size of the equation,
hence for appropriate non-deterministic choices the equation has length at most 8n2.

Theorem 2.11. Satisfiability of word equations is in PSPACE.

Proof. First of all, the whole algorithm runs in polynomial space.
As all subprocedures are sound, we never return YES for an unsatisfiable equation.
If the equation is satisfiable, then after each compression step, which changes something, we end up

with an equation with a shorter solution word (for a length-minimal solution). Thus we cannot cycle.
So we can have counter, which after visiting large enough number of equations tells us to reject.
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Exercises

Task 10 Show that for a word equation with m occurrences of variables the sum of numbers of
different crossing pairs and different letters with crossing blocks is at most 2m.

Task 11 Let s be a length-minimal solution of a word equation u = v. Show that

• Let ab occur in s(u). Show that ab has a crossing or explicit occurrence in s(u) or s(v) (with
respect to s).

• Let a occur in s(u). Show that a occurs in u or v, i.e. it has an explicit occurrence.

• Let aℓ be a maximal block in s(u). Show that it has a crossing, explicit occurrence or it is a
prefix or suffix of some s(X) (so in other words: it touches the cut). It might help to look at
baℓc.

Task 12 Show that we can uncross and compress all blocks of all letters in parallel, i.e. as one
procedure that pops at most one prefix and one suffix per occurrence of variable.

Task 13 A partition of an alphabet Σ is a pair (Σ1,Σ2) such that Σ1 ∪ Σ2 = Σ and Σ1 ∩ Σ2 = ∅.
Show that we can uncross and compress a set of pairs {aibi}i∈I in parallel, assuming that ai ∈ Σ1

and bi ∈ Σ2 for each i ∈ I.

Task 14 Consider a word w ∈ Σ∗ such that none of its two consecutive letters are the same. Occurrence
of letters from an occurrence of a pair ab in w is covered by a partition (Σ1,Σ2) if a ∈ Σ1 and b ∈ Σ2.
Show that there is a partition of Σ such that it covers at least |w|−1

2 letters in w. Show that it can be
computed in linear time.

Generalise this observation to a word equation with a solution s (and at most n occurrences of
variables).

Hint:Reducethisproblemtocalculationofamaximal(weighted)cutinagraph.Ithasasimple
randomisedsolutionwhichcanbederandomisedusingexpectedvalueapproach.Itisdescribedin
MichaelMitzenmacher,EliUpfalProbabilityandcomputingbook[44]aswellasinVijayVazirani
Approximationalgorithmsbook[65].

Task 15 Using Tasks 12–14 devise an algorithm for word equation that keeps a linear-size equation;
the algorithm can use more memory when processing the equations, moreover, at some point it will
have to store blocks acn, but we treat them as size-1. (The latter is a cheat, but we will learn how to
deal with this later on).

Task 16 Using Task 15 devise an algorithm that verifies the equivalence of SLPs in polynomial time.
You should probably have it run in two modes: one aims at reducing |A| by a constant fraction

and the other at reducing | val(A)| by a constant fraction; here val(A) denotes the word derived by A.
There are are some uniteresting details concerning the exact computational model, so you can

ignore the logn factors.
Note: it is an open problem, whether this can be solved significantly faster than O(|A| log | val(A)|).

Task 17 [(Long and tedious, but not that difficult), 2 points] The goal of this task is to create a
variant of algorithm that performs only compression of pairs, perhaps pairs of the same letter.

Note: we do not use the bound on the exponent of periodicity.
The reason why we cannot use compression of pairs aa is that they can overlap and the compression

is ambiguous, for instance consider an equation aX = Xa (all its solutions have s(X) ∈ a∗). We cannot
pair letters in X and in s(aX) in the same way.

However, this can be walked around: observe, that a and X commute, as they both represent
blocks of a. Thus we can change aX to Xa on the left-hand side, without affecting the equation.

Show, that if there is a particular letter a, such that each variable either:

1. has no a-prefix and no a-suffix or
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2. is a block of a

then we can rearrange the variables and perform the aa-pair compression. This should pop at most 1
letter from each variable.

Show that afterwards 1–2 is satisfied for a′, which represents aa.
To reach an equations satisfying 1–2 we pop a-prefixes and a-suffixes of variables, but represent

them as variables.
However, this is not yet enough, as we pile up with many letters popped from variables. To remedy

this, we type the letters that represent compressed blocks of a: initially we type a and variables
satisfying 2; then we additionally perform pair compression for letters that are a-typed. Show that in
this way 1 can be generalised: there is no prefix and suffix of a-typed letters.

This should be enough for the algorithm.

Task 18 Assume that Task 17 is correct, i.e. we are able to solve word equations in (non-deterministic)
polynomial space performing only compressions of the form ab → c. Show that this implies that the
size of the length-minimal solution is at most doubly exponential, i.e. at most 22p(n) , where p is a
polynomial.

This argument does not work that easily for variant with block compression. Can you say why?

Task 19 Show that the algorithm for word equations (in some variant: choose whichever you like) in
fact generates an SLP of size poly(n, logN) for some solution of a word equation of size N . How low
can you make the dependency on logN?

Task 11 should be helpful.
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Free groups

3.1 Free groups
Given a finite alphabet Σ define Σ−1 as {a−1 : a ∈ Σ}. Define a reduction (rewriting) rules

aa−1 → ϵ, a−1a→ ϵ . (3.1)

Lemma 3.1. Every word in (Σ ∪ Σ−1)∗ has a unique normal form under the rewriting rules (3.1).

A simple proof is left as an exercise.
Words as in Lemma 3.1 are called reduced or irreducible, for a word w this normal form is denoted

by IRR(w).

Definition 3.2. A free group over generators Σ consists of reduced words IRR((Σ ∪ Σ−1)∗) over
(Σ ∪ Σ−1)∗. The multiplication of w and w′ ∈ IRR((Σ ∪ Σ−1)∗) is defined as

w · w′ = IRR(ww′) .

It is easy to check that this operation is well defined and that it defines a group.
As the normal form is unique, it holds that

IRR(ww′) = IRR(IRR(w) IRR(w′))

and so we may also treat elements in (Σ ∪Σ−1)∗ as elements of the free group and the multiplication
is defined inthe same way.

We shall also denote a free group with generators g1, g2, . . . , gℓ by F (g1, g2, . . . , gℓ). Given two free
groups G,G′ by G ∗G′ we denote the free groups with the set of generators that is a disjoint union of
generators of G and G′.

We consider word equations in free groups, defined in a natural way. From algebraic perspective
they are more interesting than the semigroups. Makanin extended his results for word equations to
groups [41, 42]. We can naturally see a word equation over a free group as an ordinary word equation
over (Σ ∪ Σ−1)∗, however, we may loose some solutions in this way: consider an equation aX = bY .
Naturally it has no solution as a word equation, but it does in a free group: take X = a−1 and
Y = b−1.

3.2 Free monoids/semigroups with involution
In a similar way, we treat Σ∗ as a free monoid over the set of generators Σ. In such a setting we talk
about word equations in free monoids.

An involution (defined for any monoid) is a bijection · : M 7→ M such that x = x, xy = y x for
each x, y ∈ M . In case of a free monoid (Σ ∪ Σ−1)∗ the involution on a letter a is defined as a−1,
where (a−1)−1 = a. In case of groups, the inverse operator is also an involution.

In general, the reduction is possible, assuming that we allow regular constraints and involution in
the equation.

19
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3.3 Reduction: equations in groups to equations in free semigroup with
involution and rational constraint

Theorem 3.3. Given a system of equations over a free group it can transformed into a system of
equations over free monoid with involution such that there is a bijection between solutions of the system
of equations in the free group and solutions over the free monoid with involution that do not contain
factors aa. This bijection is an identity of variables that occur in both systems.

Firstly, each equation can be reduced to a form XY = Z or X = a by adding appropriate amount
of new variables.

Given one such equation we can replace it by a system of equations

X = X ′R Y = R−1Y ′ X ′Y ′ = Z

Then any solution of the original equation gives a solution of the new system in which X ′Y ′ is
irreducible and any irreducible solution of the new system gives a solution of the old one.

So it is left to turn such a system of word equations in groups into an equisatisfiable system in a
free monoid with involution.

We take the equation as they are and regular constraints that say that there are no factors aa−1

in any variable, for any a ∈ (Σ ∪ Σ′). Then we need to deal with the R−1: for each such variable we
introduce another equation R−1 = R.

It is easy to see that the new system has a solution (as a semigroup) iff the original system had a
solution.

Finally, note that the regular constraints about the irreducible form can be encoded in a different
way.

We shall later show how to solve equations (in a free semigroup) with regular constraints and
involution.

Exercises

Task 20 (Newman’s lemma) A rewriting system S = {(ℓi, ri)}i∈I is confluent, if for all s, t, u with
s→∗

S t and s→∗
S u there exists v with t, u→∗

S v; it is local confluent, if s, t, u with s→S t and s→S u
there exists v with t, u→∗

S v.
S is terminating, if there is no infinite chain

s1 → s2 → · · · → sn → · · · .

Show that if S is locally confluent and terminating then it is confluent.
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Solving equations in free groups

By Theorem 3.3 to solve equations in free groups it is enough to solve them in free semigroups with
involution and constraints w ∈ IRR(M) (and the results from Chapter 5 also ask for constraints of
the form “w does not use letter a”). In general we will do this with the regular constraints.

4.1 Regular sets
Consider Σ∗, think of it as a free semigroup. A regular language is defined using an NFA N , let it
have n states Q. Then the transition function naturally defines (Boolean) transition matrices, whose
rows and columns are indexed by Q: for a letter a the Ma has mp,q = 1 iff we can go from p to q using
letter a. Note that such a transition matrix can be defined for each word w ∈ Σ∗ and so we have a
natural homomorphism from Σ∗ to M, that is, the set of Boolean matrices of size n× n.
Remark. In this setting the automaton reads the word left to right; in many cases one sets mp,q = 1
iff we can go from q to p; this has the disadvantage that we use the automaton that reads from right
to left, but we can use usual column vectors to denote the configuration of an automaton.

A regular language can be defined using this homomorphism as well: note that a word is accepted
if its transition matrix leads from starting state to final state. In other words, there is a finite amount
of matrices, which are accepting, and the (finite) rest is rejecting.

If we consider a monoid with involution, then we usually assume that the regular constraints are
given by a homomorphism that also respects this involution. There is no canonical way to define the
involution, it could be, say, the inverse on the Boolean matrices (if this is well defined), but could be
any other operation, for instance — the transpose.

It is easy to see that if φ : Σ∗ → M does not respect the involution then we can take larger
matrices and define the new homomorphism so that it does respect the involution (this may be a
different involution than originally, though).

We usually denote the homomorphism to matrices by ρ and talk about the transition of a letter.

4.2 Regular constraints
In the most convenient case, we specify the regular constraints with a series of conditions of a form
X ∈ R, X /∈ R′. Each such conditions is potentially given by a different automaton. When we move to
the matrix setting, creating one matrix for all such conditions essentially corresponds to the creation
of one automaton for the appropriate Boolean combination of such conditions, which is expensive.
Instead, we can think that ρ assigns a tuple of matrices, rather than just one. This allows to save
space.

Secondly, the list of conditions for X: X ∈ Ri, X ̸∈ R′
i can be viewed as a restriction of ρ(s(X))

to the (finite) set of legal transitions. In our algorithm we think that the constraints are given by
specifying the actual transition for s(X). From computational point of view this is not restricting
(assuming that we deal with classes NP or higher), as we can initially non-deterministically guess the
appropriate transition from a set of transitions.

21
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Lemma 4.1. Word equations with regular constraints of the form X ∈ R, Y /∈ R′ where the regular
languages are defined using NFAs that are part of the input are NP-equivalent to the same equation with
regular constraints given by ρ(X), where ρ maps letters and variables to vectors of Boolean matrices

4.3 Model

We work with equations over (Σ ∪ Σ)∗. Every variable X has the associated variable X. We require
that a solution satisfies

s(X) = s(X) .

Concerning the regular constraints, we assume that we are given ρ1, . . . , ρm that are homomorphisms
from (Σ∪Σ)∗ to Boolean matrices (with some involution) and that they do respect the involution, i.e.

ρ(w) = ρ(w) .

They are collectively called ρ, in the sense that ρ(w) = (ρ1(w), . . . , ρm(w)). The input specifies ρ(X)
for each X and we require that a solution s satisfies the equation and for each variable

ρ(s(X)) = ρ(X) .

As an additional technical assumption we assume that the involution has no fixed-points, i.e. a ̸= a
for each a ∈ Σ ∪ Σ. This is not necessarily true for the input alphabet, but it is easy to modify the
instance so that this holds (exercise).

4.4 Main issue

It turns out that the main issue is the bounding of the alphabet used in the solution. We shall deal with
this problem at the end, as it distorts a little the flow of the argument. At the moment, imagine that
we begin with the given alphabet and whenever we make a compression, we add the new letter into
the alphabet. Note that this means that we can arrive at the same equation with different alphabets
(which may mean that the shortest solution is of different length). It is not possible to simply remove
those letters from the alphabet and from the equation, as they may be needed for the the regular
constraints.

Keeping such a large alphabet is a problem, as we cannot give a standard PSPACE argument that
an equation cannot repeat. For the moment we assume that an equation comes with a (perhaps very
large) alphabet and the solution should be over this alphabet.

4.5 The algorithm

In essence we are going to run the previous algorithm, a couple of modifications are needed, though.
In particular, it is based on popping and compression.

4.6 Needed modifications

4.6.1 Constraints

Whenever we pop letters, we need to guess new values for variables, so that the total value is the
same. For instance, when we replace X with aX ′ then it should hold that ρ(aX ′) = ρ(X). The value
for ρ(X ′) is guessed and verified. We also need to guess when we remove the variable, in which case
we need to have ρ(X) = ρ(ϵ).
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4.6.2 Involution

When we replace X with wXw′ then we also need to replace X by wXw′ = w′ Xw.
When we compress ab to c then we also need to compress ab to c. Firstly, this affects the notion

of a crossing pair (ab may be crossing due to ba). Concerning the replacement, this is easy, as long as
ab and ab do not overlap, which can happen only when a = a or b = b. There are different possible
approaches now. We present one, in which we forbid the creation of self-involuting letters, which boils
down to forbidding to compression of aa as a pair.

4.6.3 Pair compression

Since we do not want the letters b = b, we never compress pairs aa.

4.6.4 Blocks and Quasiblocks compression

With such a restriction the blocks compression works as intended. We could also do the variant with
only compression of two letters and using other variables for representing a-blocks, but here we need
to be careful: while we can move the extra a to the left, for a we then need to move the to the right.
This is fine, as a ̸= a

There is a problem with (aa)k, as we do not compress it at all. We do this similarly to blocks
compression: we replace (aa)k with ckck. Note that technically ck “represents” a self-involuting string,
but we “forget” about this. But this is fine, as ckck is self-involuting.

As a result, aaa is still not compressible, but this is the longest incompressible string and so we
still get a PSPACE algorithm, with a constant-larger space consumption (exercise).

4.6.5 Preprocessing

For technical reasons, we need to ensure that there is at least one letter in the equation (as otherwise we
may end up with something like X = X plus constraints). This is clearly preserved by all operations,
so at the very beginning, in a preprocessing phase, we pop one letter from one variable.

4.7 Letters
As already noted, we cannot assume that there is a solution over the letters that are in the equation.
This is because the letters that are crossed out have non-trivial transitions and removing them changes
the total transition of a substitution for a variable.

The easiest solution is the extend the initial alphabet so that it has one letter for each possible
transition (note that in this way the alphabet may become exponential) and considering solutions over
the letters that are in the equation and in the initial alphabet (Exercise).

We follow a slightly more involved approach, which is much more useful, when we want to describe
the set of all solutions of a word equation.

The idea is that if there is a letter in the substitution for a variable that is not in the equation not
it is a letter from the original equation, then in some sense it was a mistake to compress this letter
in the first place. But each letter in any equation corresponds to some string of letters in the original
equation. To track the meaning of constants outside the current equation, we additionally require that
a solution (over an alphabet Σ′) supplies some homomorphism α : Σ′ → A∗, which is constant on A
and compatible with ρ, in the sense that ρ(b) = ρ(α(b)) for all letters b. Thus, we extend the notion of
a solution: a pair (s, α) is called a full solution of the equation. In particular, given an equation (u, v)
the α(s(u)) corresponds to a solution of the original equation. Note, that α is a homomorphism with
respect to the involution, i.e. we assume that α(a) = α(a). Note that α is used only in the analysis,
it is not stored or constructed by the algorithm, nor does it influence the working of the algorithm.

Definition 4.2. During the work of the algorithm that was given an equation over (Σ∪Σ)∗ we denote
Σ0 = Σ ∪ Σ and call it the input alphabet. Given the equation u = v and a solution s the solution’s
alphabet denotes the smallest alphabet that includes all letters of s(U) and the input alphabet and
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the equation’s alphabet is the smallest alphabet that includes the input alphabet and all letters in
u = v (except variables).

For an equation u = v by a full solution we denote a pair (s, α) such that s is a solution of u = v
and α is a function from the solutions alphabet to words over the input alphabet that respects the
involution and it is compatible with the constraints ρ, i.e.

• α : Σ→ Σ∗
0, where Σ is solution’s alphabet for s and Σ0 is the input alphabet;

• α(a) = α(a) for each a ∈ Σ;

• ρ(a) = ρ(α(a)) for each a ∈ Σ;

• α(a) = a for each letter in the input alphabet.

Example 4.1. If there are no constraints then for a given equation α can be defined in any way that
respects the involution.

On the other hand, if the equation contains a letter c that has a transition ρ(c) that is not realised
by any word w ∈ Σ∗, where Σ is the input alphabet, then there is no α; this is somehow to be
expected, as then c does not represent any word over the input alphabet (and in fact the algorithm
cannot construct it).

It is easy to define α after a compression operation: when w is replaced with c then we simply
denote α(c) = α(w) (note, that it may be that for two different letters we get that α(c) = α(c′), but
this is not a problem, as we never assume that α(c) ̸= α(c′)).

Lemma 4.3. For any subprocedure, if the equation u = v before the procedure has a full solution (s, α)
then for appropriate non-deterministic choices the new equation (u′ = v′) has a full solution (s′, α′)
such that α(s(u)) = α′(s′(u′)).

Proof. If there is no compression, then α′ = α. If w is compressed to c then α′(c) = α(w). The
existence of the solution follows in the same way as before.

Definition 4.4. A solution s of an equation u = v it is simple if the solution’s alphabet is the
equation’s alphabet.

In other words, it uses only letters that are in the equation or were in the input equation.
Given a non-simple full solution (s, α) we can replace all constants c /∈ Σ (where Σ is the alphabet

of the equation) in all s(X) by α(c) (note, that as ρ(c) = ρ(α(c)), the ρ(s(X)) = ρ(s′(X))). This
process is called a simplification of a solution and the obtained substitution s′ is a simplification of s.
It is easy to show that (s′, α) is a full solution and that α(s′(u)) = α(s(u)), so in some sense both s
and s′ represent the same solution of the original equation.

Lemma 4.5. Suppose that (s, α) is a full solution of the equation (u, v). Then its simplification (s′, α)
is also a full solution of (u, v) and α(s′(u)) = α(s(u)).

Proof. Let Σ be the alphabet of the equation and Σ′ the alphabet of the solution s. Consider any
constant b ∈ Σ′ \ Σ. As it does not occur in the equation, all its occurrences in s(u) and s(v) come
from the variables, i.e. from some s(X). Then replacing all occurrences of b in each s(X) by the
same string w preserves the equality of s(u) = s(v), thus s′ is also a solution. Since we replace some
constants b with α(b) (and α ◦ α = α), clearly α(s(X)) = α(s′(X)) for each variable. in particular,
the weight contributed by each variable occurrence does not change. Furthermore, as ρ(b) = ρ(α(b))
we have that ρ(s(X)) = ρ(s′(X)). Thus, α(s′(u)) = α(s(u)).

In other words, we can always assume that if the equation has a solution then it has a simple one.



4.7. LETTERS 25

Algorithm 7 WordEqInvRegSat Checking the satisfiability of a word equation with involution and
regular constraints

1: Σ← input equation
2: Pop (Σ,Σ) ▷ Pop some letter from some variable
3: while u or v is not a letter do
4: Σ′ ← letters in the equation or Σ
5: close Σ′ under involution (Σ← Σ′ ∪ Σ′)
6: choose p: a letter a ∈ Σ′ or aa with a ∈ Σ′ or ab ∈ Σ′2 (here b ̸= a ̸= a)

▷ Choose such that p has an implicit or crossing occurrence
7: if p is crossing then
8: uncross p
9: Compress p

However, replacing single letters in substitution by long words contradicts the very idea of the
method, which only shortens the solutions. We need to devise some more precise measure that can
be used instead of length of the solution.

A weight of a solution (s, α) of an an equation (u, v) is

w(s, α) = |U |+ |V |+ 2
∑
X∈X

|UV |X |α(s(X))| , (4.1)

Lemma 4.6. All compression and popping operations decrease the weight (if something changes in
the equation) or keep it constant, when nothing changes. Furthermore, the simplification preserves the
weight.

Weight can be used to show the termination of the algorithm.

Lemma 4.7. For any subprocedure, if it transforms a satisfiable equation (u, v) to a satisfiable equation
(u′, v′) ̸= (u, v) then the corresponding full solution of (u′, v′) has a smaller weight than the full solution
of (u, v).

Proof. Note that in (4.1) the parts corresponding to the substitutions for variables do not change. But
if anything changes in the equation, some constants were compressed and so the weight drops.

Lemma 4.8. There is a constant c such that during the run of WordEqInvRegSat given an equation
of size at most cn2 with full solution (s, α) there is a p such that after the uncrossing (when needed)
and compression of p the new equation has a full solution (s′, α′) with less weight than before and size
at most cn2.

This gives the termination argument of our algorithm. We proceed within PSPACE, keeping some
solution, after the compression operation we replace the corresponding solution by its simplification.
The weight decreases after the first operation and does not change after the second. Thus we end up
in a trivial equation.

Exercises

Task 21 An involution · is any operation (defined in a semigroup) such that · is an identity and ab = ba.
In particular, we can define on some letters as an identity, such letters are called self-involuting.

Show that we can reduce a problem of word equations in a free semigroup with involution and
regular constraints to the case in which there is no self-involuting letter.

Here regular constraints are defined using a homomorphism from the free semigroup with involution
to a finite semigroup (with involution).
Task 22 Show that if a homomorphism ρ : M → Bn×n (so: Boolean matrices of size n × n) from a
free monoid with involution M into Boolean matrices does not preserve involution (in particular, the
involution on Bn×n may be undefined), then we can find a different set of Boolean matrices Bm×m for
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which the involution is defined and there is a homomorphism ρ′ : M → Bm×m from M to Bm×m that
preserves the involution and for each set of the form ρ−1(M) for some M ⊆ Bn×n there is M ′ ⊆ Bm×m
such that ρ−1(M) = ρ′−1(M ′) (but not necessarily the other way around), i.e. regular sets defined
using ρ can be also defined using ρ′.

Hint:TakeBn×nandconsiderBn×n×Bn×n.Howtodefinetheinvolution?

Task 23 (2 points) Show that given a word equation over a free monoid with regular constraints
given by ρ we can extend the input alphabet Σ by letters

{aτ : τ ∈ N and there is a word w ∈ Σ∗ such that ρ(w) = τ}.

Show the equisatisfiability of the problem over the original alphabet and over such an extended al-
phabet. Modify the algorithm that tests the satisfiability of word equations so that it works also in
case of regular constraints. Can you implement the algorithm in PSPACE?



Chapter 5

Positive theory of free groups

Given a free group G (the definition is similar in case of semigroups) a positive sentence is of a form

Q1X1X2X2 . . . QkXkφ(X1, X2, . . . , Xk)

where each Qi is a quantifier and φ is a formula that uses only variables X1, X2, . . . , Xk, constants
from appropriate domain and relations (and functions, when needed) and only ∧ and ∨ as used as
logical connectives. A positive theory of a structure A consists of positive sentences that hold in A.
The corresponding decision problem asks to decide, whether a given sentence belongs to a positive
theory (of A).

It is easy to show that positive theory of a free semigroup is undecidable (exercise). On the other
hand, the positive theory of a free semigroup is decidable, as shown by Makanin [42]. Below we show
this result, in a variant given by Diekert and Lohrey [10], which is somehow based on idea of Gurevich
to use random words.

The true reason for this is that since our formula holds for “any X”, it means that it holds for
random word (in appropriate sense) X. But such a random word has very little interference with other
words. So in some sense it “is” a constant. Still, we need to allow the following variables to “use” this
new constant, thus we allow Yi to use {k1, k2, . . . , ki}, but not the later constants. Consider a simple
example ∀X∃Y XY = 1. Then when we replace X with k we get ∃Y kY = 1 which is satisfiable for
Y = k−1.

To make the visible distinction more clear, we will use small letters for constants and capital letters
for variables (usually quantified).

The main property of positive formulas is that they are preserved under homomorphisms: if a
positive sentence φ( #»z ) (where #»z is a vector of elements) holds in some structure A and i : A→ B is
a homomorphism, then

#    »

i(z) holds in B.

Lemma 5.1. Let φ( #»

X) be a positive formula with free variables #»

X and let i : A → B be a homo-
morphism onto B. Then for any vector #»z of elements of A if φ( #»z ) holds in A then φ(i( #»z )) holds in
B.

Proof. We make the induction over the structure of φ. First, if φ is a relation, this holds by the
definition of the homomorphism.

Then by easy induction this holds also when φ is quantifier-free (this holds for all atoms and we
take a positive Boolean combinations of the atoms).

Let φ( #»z ) = ∀Xψ(X, #»z ). Then by the induction assumption it holds for ψ(x, #»z ) for each x and
#»z . Fix #»z . When we apply the quantifier, the formula φ( #»z ) holds when for all x ∈ A it holds that
ψ(x, #»z ) holds. But then by the induction assumption, also ψ(i(x), i( #»z )) holds for each i(x) and this
takes as values all elements of B. So also φ(i( #»z )) holds in B.

The argument for the existential quantifier is similar (for a witness x ∈ A we take the witness i(x)
in B).

27
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5.1 Notation
The input free group, with generators Σ, is denoted as G. We shall extend our free semigroup by new
elements: let ⟨E⟩ denote the group generated by E, the relations between elements in E are always
clear from the context, usually those are free generators. Let also G ∗ H denote the free product
of G and H, i.e. this group is generated by ⟨G,H⟩ and there are no nontrivial relations between
elements of G,H. In the process, we will use many new constants k1, . . . , km. Then by G[i..j] we
denote G ∗ ⟨ki⟩ ∗ ⟨ki+1⟩ ∗ · · · ∗ ⟨kj⟩.

In the proof we will also need to use the corresponding free monoid with involution. By M we
denote the free monoid with involution with generators Σ and M∗⟨k⟩ is defined analogously, also Mi..j

is defined in a similar way. We always assume that k ̸= k in those monoids.

5.2 Main result
The main result of this section is the following theorem.

Theorem 5.2. Let G be a free group. Then for all #»z ∈ G a positive formula with no free variables

ψ( #»

Z) = ∀X1∃Y1 · · · ∀Xm∃Ymφ(X1, . . . , Xm, Y1, . . . , Ym,
#»z ). (5.1)

holds in G if and only if

∃Y1 ∈ G[1..1]∃Y2 ∈ G[1..2] · · · ∃Ym ∈ G[1..m]φ(k1, . . . , km, Y1, . . . , Ym,
#»z ). (5.2)

holds in G ∗ ⟨k1, k2, . . . , km⟩.

Note that Theorem 5.2 gives the decidability of positive theory of free groups: the only extra
condition is restriction of the generators for free groups, which can be modelled by regular constraints
(in the group or in the semigroup case).
Remark. We give the proof in the case of equations alone, but it can be generalised ot the case of
regular constraints.
Remark. Note, that Makanin’s original construction gave a “concrete” word, instead of a “random”
one.

5.3 Main technical Lemma
Lemma 5.3. Let M be a free monoid with involution and let M2, . . . ,Mm be free monoids with
involution that contain it and let k be constant not present in any of them.

Let φ be a positive formula without free variables #»

Z of the form:

ψ( #»

Z) = ∀X1 ∈ IRR(M)∃Y1 ∈ IRR(M1)∃Y2 ∈ IRR(M2) . . . ∃Ym ∈ IRR(Mm)∃ #»

Y ∈ IRR(Mm)
φ(X1, Y1, . . . , Ym,

#»

Z,
#»

Y ) .

If it holds on some sequence of elements #»z ∈M then there exist two words s1, s2 ∈ IRR(M) such that
the following formula holds:

∃Y1 ∈ IRR(M ∗ ⟨k⟩)∃Y2 ∈ IRR(M2 ∗ ⟨k⟩) . . . ∃Ym ∈ IRR(Mm ∗ ⟨k⟩)
∃ #»

Y ∈ IRR(Mm ∗ ⟨k⟩)φ(s1ks2, Y1, . . . , Ym,
#»z ,

#»

Y ),

Note that the s1, s2 are constants but they can (and actually do) depend on #»z .
The rest of this Section is devoted to the proof of the Lemma.
Take two different constants a, b and fix some word ℓ of length at least 2 that use both constants.

Fix λ ≥ 2d+ 1, where d is the number of equations. Consider a set R = {r0, r1, . . . , rλ} ⊆ {a, b, a, b}p,
where p is some large constant (to be established later), in particular, twice longer than any constant
in the system; those constants include those in #»z .
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Consider a string
s = r0ℓr1ℓ . . . rλ−1ℓrλ

Roughly, this is a string that we use for ∀X quantifier, but we shall replace some riℓri+1 by rikri+1,
where k is a fresh constant.

Given |ri| = p and |ℓ| we say that set of strings R has enough randomness, when each word w of
length at least (|ri|− |ℓ|)/2 occurs in at most one of strings in R∪R and it has at most one occurrence
is such a string.

Lemma 5.4. There is a set R with properties above that has enough randomness.

Using Kolmogorov complexity/Probabilistic method it is easy to show that such set of strings exists,
for large enough m. Alternatively, one can give explicit construction. This is left as an exercise.

The meaning of enough randomness notion is that

Lemma 5.5. If r ∈ R ∪R occurs in riℓri+1 then this is either a prefix or suffix of riℓri+1 (so r = ri
or r = ri+1).

Proof. Place r within riℓri+1, and see that it will have an overlap with ri or ri+1 of length at least
(|r| − |ℓ|)/2. So this substring has two occurrences in R ∪R, which is a contradiction.

Consider rewriting systems P1, . . . , Pλ, defined as

Pi = {(ri−1ℓri, ri−1k1ri), (riℓri−1, rik1ri−1)}

Lemma 5.6. Each system Pi is confluent and length reducing;in particular it has a unique normal
form.

Each of those rewriting systems is confluent and so has a unique normal form, denoted by κi(w).
We say that t contains the cut of (u, v) if there is an occurrence of t in uv that is not contained in

u nor in v.

Lemma 5.7. Given a pair of strings (u, v) there are at most two different riℓri+1 that contain their
cut.

Proof. Otherwise there are three. So consider the first of those occurrences and the last. They overlap
with at least one letter. Then the middle occurrence overlaps with at least half of its length with the
first one or last one, so some r occurs in riℓri+1, which cannot be.

Lemma 5.8. Let {xjyj = zj}dj=1 be a set of equations. Then there is i such that for each j

κi(xj)κi(yj) = κi(zj) (5.3)

On the other hand, if (5.3) holds then xjyj = zj holds as well.

Proof. For a fixed equation there are at most 2 different riℓri+1 that contain a cut between xj and yj .
So there is one riℓri+1 that does not contain any cut. Hence when we calculate the normal form, each
rewriting on xjyj is done separately on xj and yj , which show the claim.

proof of Lemma 5.3. Take s as the string substituted for X and all the witnesses y1, . . . , ym,
#»y . We

then take the rewriting system guaranteed to exist by Lemma 5.8 and rewrite all the constants and
witnesses. Then

• x is replaced so that it contains a single occurrence of k;

• each witness is rewritten, maybe it has occurrences of k;

• constants (inluding those in #»z ) are too short to be rewritten;

• all equations that used to hold still hold by Lemma 5.8).
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• if after the rewriting the equation holds then it held also originally (we can replace k back with
ℓ to get the original equation). Denote the obtained formula by ψ′.

The rest of the argument is similar as in the case of Lemma 5.1: when we consider atoms, if an
atom of φ(s, y1, . . . , ym,

#»y , #»z ) holds then the corresponding atom of φ(κx, κ(y1), . . . , κ(ym), #»κ (y) #»κ (z))
holds.

We then proceed with an induction: if a subterm of φ(s, y1, . . . , ym,
#»y , #»z ) holds then the corre-

sponding subterm of φ(κx, κ(y1), . . . , κ(ym), #»κ (y) #»κ (z)) holds.

Lastly, we go through the existential quantifiers (the witnesses are explicitly given).

In the other direction, if κi(xj)κi(yj) = κi(zj) holds, then xjyj = zj os obtained by replacing
(all occurrences of) a constant by a string, which preserves the equality.

5.4 Main proof: quantifier elimination

Denote by G[i..j] the free group G∗⟨ki, . . . , kj⟩ and introduce similar notation for the free monoid with
inversion. The proof of Theorem 5.2 is done by induction on the number of the quantifiers. If there
are none then we are done.

Otherwise the formula is

∀X1∃Y1∀X2∃Y2 · · · ∀Xm∃Ymφ(X1, X2, . . . , Xm, Y1, Y2, . . . , Ym,
#»z ) .

for some m > 0. By assumption for each x1, y1,
#»z ∈ G the formula

∀X2∃Y2 · · · ∀Xm∃Ymφ(x1, X2, . . . , Xm, y1, Y2, . . . , Ym,
#»z ) .

(note that x1 and y1 are now fixed elements) holds in G if and only if

∃Y2 ∈ G[2..2] · · · ∃YmG[2..m]φ(x1, k2, . . . , km, y1, Y2, . . . , Ym,
#»z ) .

holds in G[2..m].
As x1, y1 are any elements, we can take the existential quantifier over y1 and then the universal

over x1, thus the following are equivalent:

∀X1∃Y1∀X2∃Y2 · · · ∀Xm∃Ymφ(X1, X2, . . . , Xm, Y1, . . . , Ym,
#»z ).

and
∀X1 ∈ G∃Y1 ∈ G∃Y2 ∈ G[2..2] . . . ∃Ym ∈ G[2..m]φ(X1, k2, . . . , km, Y1, . . . , Ym,

#»z ), (5.4)

In the following we prove equivalence of (5.4) and (5.2).

Lemma 5.9. For φ positive if #»z satisfies (5.2) then it satisfies (5.4).

Proof. We use Lemma 5.1.
Take any x1 ∈ G. Take a homomorphism h : G[1..m] → G[2..m] defined by h(k1) = x1 and as an

identity on other generators, note that it is naturally restricted to a homomorphism from G[1..i]. Take
y1, . . . , ym ∈ such that yi ∈ G[1..i] such that φ(k1, . . . , km, y1, . . . , ym,

#»z ) holds. Then Lemma 5.1 yields
that

φ(h(x1), h(k2), . . . , h(km), h(y1), . . . , h(ym), h( #»z )) = φ(k1, k2, . . . , km, h(y1), . . . , h(ym), #»z )

holds as well. Take h(yi) as a witness for Yi, which shows that (5.4) holds, as claimed.

Lemma 5.10. For φ positive if #»z satisfies (5.4) then it satisfies (5.2).
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Proof. For the proof in the other direction we shall also use the reduction to the monoid case. Note
that a reduction described in the previous chapter reduces the problem of equations in free groups to
free monoids with involution. Denote by M,M[i..m] the free monoid (with involution) corresponding
to G,G[i..m]. Then the formula

φ(k1, . . . , km, Y1, . . . , Ym,
#»z )

is rewritten into formula

∃ #»

Y ∈ IRR(M)φ′(k1, . . . , km, Y1, . . . , Ym,
#»z ,

#»

Y )

(note that #»

Y may depend on #»z ) where the new variables #»

Y are used to appropriately brake down the
equations. Adding the quantifiers yields that (5.4) is equivalent to:

∀X1 ∈ IRR(M)∃Y1 ∈ IRR(M)∃Y2 ∈ IRR(M[2..2]) . . . ∃Y[2..m] ∈ IRR(M[2..m])∃
#»

Y ∈ IRR(M[2..m])
φ′(X1, k2 . . . , km, Y1, . . . , Ym,

#»z ,
#»

Y ) .

By the Lemma 5.3 if it holds then for some s1, s2 ∈ IRR(M) the formula

∃Y1 ∈ IRR(M[1..1])∃Y2 ∈ IRR(M[1..2]) . . . ∃Ym ∈ IRR(M[1..m])
∃ #»

Y ∈ IRR(M[1..m])φ′(s1k1s2, . . . , km, Y1, . . . , Ym,
#»z ,

#»

Y ) ,

holds. So we can lift it back to the group setting, i.e. there are s1, s2 ∈ G such that

∃Y1 ∈ G[1..1]∃Y2 ∈ G[1..2] . . . ∃Ym ∈ G[1..m]φ(s1k1s2, . . . , km, Y1, . . . , Ym,
#»z ) . (5.5)

Consider an automorphism of G[1..m] defined by h(k1) = s−1
1 k1s

−1
2 and an identity on other generators

(this is an automorphism, see Lemma 5.12). Since it is an isomorphism, we can apply it on (5.5), see
Lemma 5.11 The only affected is the k1 constant, so we get the following is equivalent:

∃Y1 ∈ G[1..1]∃Y2 ∈ G[1..2] . . . ∃Ym ∈ G[1..m]φ(k1, . . . , km, Y1, . . . , Ym,
#»z ) ,

and this is exactly (5.2).

Lemma 5.11. Let G1, . . . ,Gm ≤ G be groups, #»z ∈ G be elements of G and let i : G → G be an
automorphism of G such that i(Gj) = Gj. Then

∃Y1 ∈ G∃Y2 ∈ G2 . . . ∃Ym ∈ Gmφ(Y1, . . . , Ym,
#»z )

holds if and only if

∃Y1 ∈ G1∃Y2 ∈ G2 . . . ∃Ym ∈ Gmφ(Y1, . . . , Ym, i( #»z ))

holds.

Proof. A simple proof is left as an exercise.

Lemma 5.12. Let G = ⟨c1, . . . , cm⟩ be a free group and consider h : G→ G defined as

h(c1) = gc1g
′

h(ci) = ci for i > 1 ,

where g, g′ ∈ ⟨c2, . . . , cm⟩. Then h is an automorphism of G (so an isomorphism from G to G).

Proof. A simple proof is left as an exercise.

The Lemmata 5.9 and 5.10 give the proof of Theorem 5.2.
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Exercises

Task 24 The ∃∗-theory of word equations consists of all sentences of the form:

∃x1,x2,...,xk
φ(x1, x2, . . . , xk)

where φ is quantifier-free logic formula that uses ∧,∨,¬ as connectives and atomic formulas that are
word equations that use constants from Σ∗ and variables x1, x2, . . . , xk.

Show that we can verify sentences from this theory in PSPACE.

Hint:Thealgorithmwillheavilyemploynon-determinismtoreducethiscasetoasystemofword
equations.Theinequalitiesareeasytohandle:lookforfirstdifferences.

Task 25 Show that a positive theory of word equations over free semigroup is undecidable. Two
alternations of quantifiers are enough (one, if you put some thought into it: ∀∃ is undecidable).

Hint:FirstmaketheclaimaboutthewholetheoryandtheneliminatethenegationasinTask24.

Task 26 Consider the positive ∃∀ fragment of word equations over a semigroup (no negation). Show
that it is decidable.

To this end consider first the ∀ positive fragment.

Hint:Universallyquantifiedequationstendtobefalse.

Task 27 Show that for large enough ri there is a set of enough random string.

Hint:ThesimplestproofisthroughKolmogorov’scomplexity,butrandomstringsshouldalsobe
good.

Task 28 Show that each of the defined rewriting systems Pi is confluent and thus each term has a
unique normal form (note that the rewriting system is length-reducing).

Task 29 Prove Lemma 5.11.

Task 30 Prove Lemma 5.12.
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Basic string combinatorics (stringology)

6.1 Periodicity
Definition 6.1 (Prefix, suffix). A word u is a prefix of w when w = uv for some v, this is denoted
by u⊑w, it is a proper prefix when additionally u ̸= w, this is denoted by u⊏w. Similarly v is a suffix
(proper suffix) of w when w = uv for some u (some u ̸= ϵ), this is denoted by w⊒v (w⊐v, respectively).

Given a word w is u-prefix is the longest prefix of w from the set u∗.

Definition 6.2 (Period of a word). A word w = w[1 . . n] has a period u if

w = uw[1 . . n− |u|] .

A string p is a border of w when it is both a suffix and a prefix.
A string w is a power of (or repetition of ) u if w = uk for some k ≥ 0. It is a power (or repetition),

if it is of the form w = uk for some k > 1.

Fact 6.3. A word w has a period of length p if and only if it has a border of length |w| − p.

Fact 6.4. If a word w has a period p then it is of the form

w = pkp′

where p′ is a prefix of p and k ≥ 1.

Example 6.1. Consider a word aabaaba. It has periods aab and aabaab. It has a borders aaba and a.
It is not a power. Its prefix aabaab = (aab)2 is a power. It is of the form (aab)2a.

Depending of the context, the period and border are either words or the lengths of those words.

Lemma 6.5 (Periodicity Lemma). If a word w has periods p, q such that

p+ q ≤ |w|

then w has a period gcd(p, q).

Corollary 6.6 (Alternative formulation). For two words u, v if

uv = vu

then there is w and natural numbers n,m ≥ 0 such that u = wn, v = wm, i.e. they are (perhaps
trivial) powers of the same word.

Proof. The proof follows by an induction on the unordered pairs {max(|u|, |v|),min(|u|, |v|)} sorted
lexicographically. If |u| = |v| then clearly u = v and we are done; if one of u, v is empty then we are
also done.

Otherwise, without loss of generality let |v| < |u|. Then from uv = vu we conclude that v is a
prefix of u and so u = vu′. Writing it down

vu′v = vvu′ implies u′v = vu′ .

The rest follows from the induction assumption.
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The periodicity lemma has also a stronger variant

Lemma 6.7 (Strong Periodicity Lemma). If a word w has periods p, q such that

p+ q ≤ |w|+ gcd(p, q)

then w has a period gcd(p, q)

Corollary 6.8 (Alternative formulation). For two words u, v if uv and vu have a common prefix of
length at least |uv| − gcd(|u|, |v|) then then there is w and n,m such that u = wn, v = wm, i.e. they
are powers of a the same word.

6.2 Failure function
Definition 6.9 (MP failure function). Given a word w = w[1 . . n] define

πw[i] = max{j < i : w[1 . . j] is a border of w[1 . . i]}

In other words, for a prefix w[1 . . i] we store the length of the longest non-trivial border (so other
than whole w[1 . . i]).

Lemma 6.10. Given a word w its failure function πw can be computed in O(|w|) time.

Example 6.2. Consider the word aabaaba. Then

πaabaaba = [0, 1, 0, 1, 2, 3, 4] .

6.3 Primitive words
Definition 6.11. A word u ̸= ϵ is primitive if u = wk implies w = u and k = 1

Example 6.3. Word p = aabaa is primitive, so is a word p′ = aabaaabaa. Note that p is border of p′.

Definition 6.12. We say that word u, v are conjugate (or cyclic shifts) if there are words p, q such
that

v = pq, u = qp.

Lemma 6.13. Word u is primitive if an only if its conjugates are all pairwise different.

Lemma 6.14. Let u, u′ be nonempty, conjugate words. Then u is primitive if and only if u′ is
primitive.

Lemma 6.15. Let u be primitive then
u2 = u′uu′′

implies that {u′, u′′} = {ϵ, u}.

Proof. From the statement it follows that |u′u′′| = |u|. Furthermore, u′ is a prefix of u and u′′ is a
suffix of u. Thus u = u′u′′. Again from the equation we get

u′u′′u′u′′ = u′u′u′′u′′

and so u′′u′ = u′u′′ = u, which implies that one of u′, u′′ is u and the other ϵ.

Theorem 6.16. Let u, v, w be primitive such that u2 is a prefix of v2 and v2 of w2. Then |u|+|v| ≤ |w|.

Theorem 6.17. Given a word w there are O(log |w|) different primitive p such that p2⊑w. All such
p can be found in O(|w|) time.

Proof. The proof is left as an exercise. It follows from Theorem 6.16 and simple application of the
MP array.



6.3. PRIMITIVE WORDS 35

Exercises

Task 31 Show that Lemma 6.7 follows from its variant in which gcd(|u|, |v|) = 1.

Task 32 Prove Lemma 6.7, it may be easiest to prove Corollary 6.8 by adapting the proof of Corol-
lary 6.6.

Task 33 (Alternative proof of Periodicity Lemma 6.5) Given a word w[1 . . p+ q] with periods
p, q such that gcd(p, q) = 1 define a graph on the positions of this word: there is an edge {i, j} if and
only if |i− j| ∈ {p, q}. Show that this graph is a cycle. Deduce from this that w ∈ a∗ for appropriate
a.

Strengthen this to the case, when w = w[1 . . p+ q − 1].

Hint:Whathappenswiththegraphfromthefirstpoint,whenweremovethelastnode?

Task 34 Prove Theorem 6.16.

Task 35 Prove Theorem 6.17.

Task 36 Recall the linear-time construction of the MP array.
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Chapter 7

Exponent of periodicity

By n we denote the length of the equation and by nv the number of occurrences of variables in this
equation.

Definition 7.1. For a word w the exponent of periodicity per(w) is the maximal k such that uk is a
substring of w, for some u ∈ Σ+.

The notion of exponent of periodicity is naturally transferred from strings to equations: For an
equation u = v, define the exponent of periodicity as

per(u = v) = max
s

[per(s(u))] ,

where the maximum is taken over all length-minimal solutions s of u = v.

The ultimate goal is to prove a well-known exponential bound on exponent of periodicity of length-
minimal solutions.

Theorem 7.2 (Kościelski and Pacholski [27]). Given an equation u = v of length n and number of
occurrences of variables nv its exponent of periodicity per(u = v) is:

per(u = v) = poly(n) · 2O(nv) .

.

This bound is known to be tight (and relatively easy to show), up to the constant in the exponent.

7.1 Idea and an example

As a gentle introduction, consider maximal a blocks in a solution s(u) of an equation u = v. If s is
length minimal then we know that each maximal block has a length which is a length of a crossing
block or a-prefix or a-suffix of some variable. Hence, if ℓX , rXX∈X are the length of the a-prefixes and
suffixes, then each of them is an arithmetic expression in ℓX , rXX∈X . Now we would like to exchange
ℓX , rXX∈X to other lengths ℓ′X , r′

XX∈X , but this cannot be done arbitrarily.

Example 7.1. Consider an equation

XabXXa = aXbY Y Y . (7.1)

It is easy to show that the solutions of of the form s(X) = aℓX , s(Y ) = aℓY where

2ℓX + 1 = 3ℓY .

and the other way around.
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This is because some blocks “need to be” equal. We formalize this by introducing variables in
place of values ℓX , rXX∈X and equation which enforce that the appropriate blocks (so arithmetic
expressions) are equal. In our case this would be

2LX + 1 = 3LY .

What are the exact equations? We equalize the lengths of blocks equal in s, consider the solutions of
the corresponding system of linear equations, which translate to substitutions (and solutions) of the
original word equation. In particular, ℓX , rXX∈X is a solution of linear system and it yields solution
s of the word equation.

Now, if s is length-minimal then ℓX , rXX∈X is “minimal” in appropriate sense. And suchminimal
solution can be bounded in terms of equation’s parameters.

7.2 P -presentations
In order to generalize the idea from the previous section, we need to be careful: given a string w
its occurrences may overlap. To solve this, we will look only at primitive words (which is enough to
bound the exponent of periodicity).

Definition 7.3. Let P be a primitive word and U0, . . . , Uu be a sequence of words. Define a function:

[U0, . . . , Uu] : Nu → Σ∗ by [U0, . . . , Uu](ℓ1, . . . , ℓu) = U0P
ℓ1U1P

ℓ2 · · ·P ℓuUu .

A P -presentation of a word W is a sequence (U0, . . . , Uu) such that:

1. for i ≤ u P 2 is not a subword of Ui,

2. for 0 < i < u P ̸= Ui,

3. for 0 < i ≤ u P is a prefix of Ui,

4. for 0 ≤ i < u P is a suffix of Ui,

and for some ℓ1, . . . , ℓu we have
W = [U0, . . . , Uu](ℓ1, . . . , ℓu)

Note that only first condition is non-void if the presentation has u = 0.
The idea is that “powers of P” do not behave that well for small powers, i.e. single P , but they

behave well for at least squares. Hence each (with some small exceptions at the beginning and end)
Ui begins and ends with P .

Our main goal is to show that the P -presentation of a word is unique and that given a P -
presentation of W,W ′ the P -presentation of WW ′ can be computed and that it depends only on
Uu and V0.

Theorem 7.4. Given a primitive word P and a word W the P -presentation of W exists and it is
unique; it can be computed greedily.

Given P -presentations of W,W ′:

W = [U0, . . . , Uu](k1, . . . , ku)
W ′ = [V0, . . . , Vv](ℓ1, . . . , ℓv)

the P -presentation of WW ′ is of one of the following forms, the form depends only on Uu and V0.

• WW ′ = [U0, . . . , Uu−1, V1, . . . , Vv](k1, . . . , ku−1, ku + ℓ1 + c, ℓ2, . . . , ℓv) for some 0 ≤ c ≤ 3.

• WW ′ = [U0, . . . , Uu−1, U
′, V1, . . . , Vv](k1, . . . , ku−1, ku+c, ℓ1+c′, ℓ2, . . . , ℓv) for some 0 ≤ c, c′ ≤ 2.

• WW ′ = [U0, . . . , Uu−1, U
′, V ′, V1, . . . , Vv](k1, . . . , ku−1, ku + c, c′, ℓ1 + c′′, ℓ2, . . . , ℓv) for some 0 ≤

c, c′, c′′ ≤ 2.
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• WW ′ = [U0, . . . , Uu−1, U
′, U ′′, V ′, V1, . . . , Vv](k1, . . . , ku−1, ku, 0, 0, ℓ1, ℓ2, . . . , ℓv).

The proof of the Theorem 7.4 is left as an exercise.
Example 7.2. P = aabaa, W = aabaaaaba = Paaba, W ′ = abaaaabaa = abaaP . Then WW ′ has a
P -presentation (P, aabaabaa, P ). And this is the last case in the Theorem 7.4.

7.3 System of equations

We now allow parametrised P -presentations and parametrised words defined by them. The parametrised
P -presentation can use variables instead of numbers for the powers of P . In terms of a solution: we
fix a solution s and create a parametrised substitution S out of it. We then inspect the word equation
and create a system of linear Diophantine equations, in variables that are used in the parametrised
presentation for variables. Every solution of this system will give values for variables that turn the
parametrised substitution into a true solution of the word equation.

We will use natural variable {LX , RX}X ∈X (in palce of first and last variables in the parametrized
presentations of substitutions for variables) and an infinite set of variables {Ni}. Unless specifically
said, each time we use a variable Ni, it is fresh, i.e. not used elsewhere.

Fix a solution s and a primitive word P . Let s(X) has a P -presentation [U0, . . . , Uu](k1, . . . , ku).
We create a parametrised substitution S defined on X as

S(X) = [U0, . . . , Uu](LX , N1, . . . , Nu−1, RX)

If u = 0 then it has no variables, if u = 1 then the only variable is LX . Note that the indices in N are
used only for illustration: those are variables not used elsewhere.

Let R be the right-hand side. Our goal is to calculate the P -presentation of S(R). To this end we
consider the consecutive prefixes R′⊑R and define the P -presentation of S(R′) for them.

• R′ = ϵ and so it has a P -presentation (ϵ).

• When we have such a representation for S(R′) and we want to extend it to the P -presentation
of S(R′X) then by Theorem 7.4 the P -presentation of S(R′X) is the presentation of S(R′) and
S(X) concatenated with some small changes in the middle.
The parametrised P -presentation of S(R′X) uses fresh variables and adds equations that for-
malise the equalities between old and new variables, according to Theorem 7.4. Note that at
most 4 of them are not of the form Ni = Nj and so at most 8 sides of the equation are other
than the variables from {Ni}.

• we do a similar things for S(R′w), where w is a word between variables on a side of the equation.
Note that we need to compute the P -factorization of w.

In the end we get a P -factorisation of S(R). We do the same for S(L), where L is the left-hand side
of the equation, and add equalities between corresponding variables.

In the end we get a set of linear equation D. In total it has at most 8|uv| sides that are different
than the variables from {Ni}.

Lemma 7.5. For a word equation L = R in the constructed system:

• variable LX (RX) is used at most |LR|X number of times

• at most 2nv sides use a variable from {LX , RX}X∈X

• the sum of (absolute values of) constants is at most |LR|/|P |+ 6nv

We can remove the variables Ni at the cosnt of increasing the above estiamtions twice.
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Proof. A variable LX , RX is introduced when parsing X and is used once. For constants: the constants
from processing words in the equation sum up to at most |LR|/|P | and the constants introduced when
merging P -representations introduce sum up to at most 6 per merge.

The variables Ni are never altered by the procedure. Hence the resulting system is equivalent to
a one using only the non-trivial sides, though we might need to use such a side twice.

Lemma 7.6. For any prefix R′ of R and a parametrised solution S let the parametrised P -presentation
of S(R′)

[U0, . . . , Uℓ]({LX , RX}X∈X , {Ni})

For any numbers {ℓX , rX}X∈X , {ni} the P -presentation of S[{ℓX , rX}X∈X , {ni}](u′) is

[U0, . . . , Uℓ]({ℓX , rX}X∈X , {ni}) .

Each solution of the system D yields a solution of the word equation.

Lemma 7.7. Each solution of D gives a solution of the word equation, obtained by replacing variables
with their values in the P -presentations.

7.4 Solutions of system of linear Diophantine equations

Consider a system of m linear Diophantine equations in r variables x1, . . . , xr, written as

r∑
j=1

ni,jxj = ni for i = 1, . . . , m . (7.2)

In the following, we are interested only in natural solutions, i.e. the ones in which each component
is a natural number. We introduce a partial ordering on such solutions:

(q1, . . . , qr) ≥ (q′
1, . . . , q

′
r) if and only if qj ≥ q′

j for each j = 1, . . . , r.

A solution (q1, . . . , qr) is minimal if it satisfies (7.2) and there is no solution smaller than it. (Note,
that there may be incomparable minimal solutions.)

It is known, that each component of the minimal solution is at most exponential:

Lemma 7.8 (cf. [27, Corollary 4.4]). For a system of linear Diophantine equations (7.2) let w =
r +∑m

i=1 |ni| and c = ∑m
i=1

∑r
j=1 |ni,j |. If (q1, . . . , qr) is its minimal solution, then qj ≤ (w + r)ec/e.

The proof is a slight modification of the original proof of Kościelski and Pacholski, we recall it [27].

proof, cf. [27]. The proof follows by estimation based on work of [66] and independently by [29]

Claim 7.8.1 (cf. [27]). Consider a (vector) equations and inequalities Ax = B, Cx ≥ D with integer
entries in A, B, C and D. Let M be the upper bound on the absolute values of the determinants

of square submatrices of the matrix
(
A
C

)
, r be the number of variables and w the sum of absolute

values of elements in B and D. Let q = (q1, . . . , qr) be a minimal non-zero (i.e. there is a non-zero
coordinate) solution. Then for each 1 ≤ i ≤ r we have qi ≤ (w + r)M .

So it remains to estimate M from Claim 7.8.1, we recall the argument of [27].
Recall the Hadamard inequality: for any matrix N = (ni,j)ki,j=1 we have

det2(N) ≤
k∏
j=1

k∑
i=1

n2
i,j .
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Therefore

|det(N)| ≤

 k∏
j=1

k∑
i=1

n2
i,j

1/2

Hadamard inequality

≤

 k∏
j=1

(
k∑
i=1
|ni,j |

)21/2

trivial

=
k∏
j=1

k∑
i=1
|ni,j | simplification

≤

∑k
j=1

(∑k
i=1 |ni,j |

)
k

k inequality between means

≤
(
c

k

)k
by definition

k∑
j=1

k∑
i=1
|ni,j | = c

≤ ec/e calculus: sup at k = c/e.

Taking N to be any submatrix of (ni,j) yields that M ≤ ec/e and consequently qi ≤ (w + r)ec/e, as
claimed.

7.5 Exponent of periodicity bound
We can now infer the upper-bound on the exponent of periodicity of the length-minimal solution of
the word equation.

As a first step, let us estimate the values w, r, c from Lemma 7.8 in case of system of equations D

Lemma 7.9. For a system of equations D Lemma 7.8 yields a bound of

O(ne4nv/e)

on coordinates of its minimal solutions.

This follows from Lemma 7.5.

Lemma 7.10 (cf. [27]). Consider a solution s of a word equation u = v, and a system D created for it.
Consider all solutions {ℓX , rX}X∈X of this system and the corresponding solutions S[{ℓX , rX}X∈X ].
For a length-minimal s′ among them the largest power wp for a substring wp of a solution word s′(u)
is O(poly(n)e4nv/e).

Proof. We know that all S[{ℓX , rX}X∈X ] are solutions. Let, as in the statement, s′ be a length minimal
among them, let it correspond to a solution {ℓ′X , r′

X}X∈X of D. Then by definition ℓ′X , (r′
X) are the

first and last value in the P -presentations of s′(X). Other values in the P -presentations linearly
depend on them (with only non-negative coefficients and constants). We show that {ℓ′X , r′

X}X∈X is a
minimal solution of D: suppose for the sake of contradiction that it is not. Then there is a solution
{ℓ′′X , r′′

X}X∈X of D, such that

ℓ′′X ≤ ℓ′X and r′′
X ≤ r′

X for each X ∈ X (7.3)

and at least one of those inequalities is strict, without loss of generality let ℓ′′Y < ℓ′Y .
Then the lengths of all substitutions |s′′(X)| ≤ |s′(X)| and for Y the equality is strict. Thus s′ is

not length-minimal, contradiction.
Now we can use Lemma 7.9 to get our bounds.

As a short corollary we obtain:
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Theorem 7.11 (cf. [27]). The exponent of periodicity of a word equation u = v with nv occurrences
of variables is O(poly(n)e4nv/e).

Proof. We can estimate the lengths of exponent of periodicity for each word P separately, by Lemma 7.10;
note that it is enough to consider primitive words P .

Exercises

Task 37 Show that the exponential bound on the exponent of periodicity is tight (the exact constant
at the exponent is not tight, though).

Task 38 Show that we can use the P -presentation approach for the compression algorithm (for
solving word equations): we do not guess the lengths of the a-prefixes and suffixes, but denote them
as variables and we write an appropriate system of linear equations.

Show that when the word equation can be encoded using m bits (in a natural encoding) then the
constructed system has size O(m) bits.

Hint:Unaryencodingtheconstants,inwhichaconstantpisencodedusingpbits,maybeeasierfor
proofpurposes,eventhoughitisnotefficient.

Task 39 Show that we can verify the system of linear Diophantine equations in which all constants
are encoded in unary in linear space (counted in bits).

Hint:Repeatedlyguesstheparityofsidesofallequationsanddivideby2.Thisisafirststepfor
decidabilityofPresburger’sarithmetics.

Task 40 Using the bound on the size of the minimal solutions of integer programming show that
the doubly exponential bound on the size of the length-minimal solution follows from the original
algorithm for satisfying word equations.

Task 41 Prove Theorem 7.4.

Task 42 Show Hadamard inequality for a square matrix N = (ni,j)ki,j=1

|det(N)| ≤
k∏
j=1

√√√√ k∑
i=1

n2
i,j .
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Word equations with one variable

As of today, the case of word equations with 3 variables remains unknown: it is not known to be
NP-hard, nor it is known to be within NP. (It is known to be within NP in some restricted cases [54]).

On the other hand, it was shown by Charatonik and Pacholski [4] that indeed, when only two
variables are allowed (though with arbitrarily many occurrences), the satisfiability can be verified
in deterministic polynomial time. The degree of the polynomial was very high, though. This was
improved over the years and the best known algorithm is by Dąbrowski and Plandowski [13] and it
runs in O(n5) and returns a description of all solutions.

8.1 One variable equations
It is easy to see that word equations equations with only one variable are in P: Constructing a cubic
algorithm is almost trivial, small improvements are needed to guarantee a quadratic running time.
First non-trivial bound was given by Obono, Goralcik and Maksimenko, who devised an O(n logn)
algorithm [49]. This was improved by Dąbrowksi and Plandowski [14] to O(n+ #X logn), where #X

is the number of occurrences of the variable in the equation. Furthermore they showed that there
are at most O(logn) distinct solutions and at most one infinite family of solutions. Intuitively, the
O(#X logn) summand in the running time comes from the time needed to find and test these O(logn)
solutions.

The latter work was not completely model-independent, as it assumed that the alphabet Σ is finite
or that it can be identified with numbers (the Obono, Goralcik and Maksimenko [49] algorithm assumes
pointer-machine model). A more general solution was presented by Laine and Plandowski [28], who
improved the bound on the number of solutions to O(log #X) (plus the infinite family) and gave an
O(n log #X) algorithm that runs in a pointer machine model (i.e. letters can be only compared and
no arithmetical operations on them are allowed); roughly one candidate for the solution is found and
tested in linear time.

On the other hand, no equations with more than 3 solutions (except the infinite family) were
known and it was conjectured that this is tight, i.e. that one variable word equations have at most 3
solutions (plus the infinite family). This was recently shown [48]. It is not known, whether this affects
running time of any of the algorithms.

The compression-based algorithm for word equation can be specialised to one-variable case and
its running time is then O(n log #X); the running time can be improved to linear, at the expense of
heavy usage of stringology data structures and combinatorial analysis [22].

8.2 One-variable equations: structure
Without loss of generality in a word equation A = B one of A and B begins with a variable and the
other with a letter:

• if they both begin with the same symbol (be it letter or variable), we can remove this symbol
from them, without affecting the set of solutions;

43
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• if they begin with different letters, this equation clearly has no solution.

The same applies to the last symbols of A and B. Thus, in the following we assume that the equation
is of the form

A0XA1 . . . AnA−1XAnA = XB1 . . . BnB−1XBnB ,

where Ai, Bi ∈ Σ∗ and nA (nB) denote the number of X occurrences in A (B, respectively). Note that
exactly one of AnA , BnB is empty and A0 is non-empty. It the number of occurrences of variables at
both sides are different then it is easy to show that there is at most one solution and it can be easily
found (exercise). Similarly, if AnA ̸= ϵ then the equation can be split into two equivalent ones (and
then joined in the reverse order, slightly more challenging exercise). Thus in the following we assume
that the equation is of the form

A0XA1 . . . AnX−1X = XB1 . . . BnX−1XBnX . (8.1)

We first present the traditional approach to one-variable equations.

Lemma 8.1. Given a word x = uiu′, where u′ ⪯ u, testing whether it is a solution of a one-variable
word equations can be done in time O(|u|+ n) (in a pointer machine model).

A proof is left as a simple exercise.

8.3 Via word combinatorics

8.3.1 Basic case

Lemma 8.2. Given a word equation Xp = qX, if it is satisfiable then:

• p, q are conjugate and consequently also the primitive roots of p, q are conjugate, that is, there
are u, v such that uv, vu are primitive and p = (vu)k and q = (uv)k for some k ≥ 1;

• the set of solutions is (uv)∗u.

Given p, q the u, v can be calculated in linear time.

Proof is left as an exercise

8.3.2 |A0| ≤ |B1|

Let B0 ⪯ B1, where |B0| = |A0|; then A0X = XB0. Hence by Lemma 8.2 the A0 and B0 are conjugate.
We can calculate their primitives roots and so obtain u, v such that A0 = (uv)m, B0 = (vu)m and
s(X) = (uv)ju for some j and uv is primitive.

Lemma 8.3. Given two words u, v such that uv is primitive solutions of (8.1) such that s(X) = (uv)iu
can be found in time O(|uv|+ n).

Moreover, let sj be defined as sj(X) = (uv)ju. Then among s1, . . . , sn, . . . either none, one or all
are solutions. This can be tested in linear time.

Proof. We treat s0(X) = u separately. Using Lemma 8.1 it is easy to test, whether it is a solution, in
linear time.

We will calculate the (uv)-prefix of the solution word, let us begin with the left-hand side. We
distinguish two cases: A0 is and is not a power of uv; note that from case assumption we know that
it actually is a power of uv, but the Lemma is later used also in more general setting, so we consider
this case as well.

A0 is not a power of uv
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Claim 8.3.1. Let i ≥ 1. If A0 is not a power of uv then the uv-prefix of si(A) is the same as
the uv-prefix of A0uv.
Observe first that uv⊑si(X) and so A0uv⊑si(A). Let A0 = (uv)ku′ where uv is not a prefix of
u′ ̸= ϵ. If |u′| ≥ |uv| then we are done as the uv-prefix is (uv)k. If the uv-prefix is (uv)k+1 then
it is in A0uv and we are done. If it is at least (uv)k+2 then it includes u′ and it is continued by
some v′ such that u′v′ = uv. But then the ending v′ of the k + 1st uv and the beginning u′ of
the k+ 2nd uv should also form uv, as they are equal to the last uv in A0uv, contradiction with
u′v′ = v′u′ = uv which is primitive.

A0 is a power of uv If A0 is a power of uv then for all consecutive Ai which are of the form v(uv)∗

this prefix spans over them. Let Aj be the first which is not in v(uv)∗.

Claim 8.3.2. Let i ≥ 1. Let A0 be a power of uv and all Aj′ for j′ < j are from the set (vu)∗v
and Aj is not. Then the uv-prefix of si(A) is the same as the uv-prefix of si(A0XA1 · · ·XAjuv).

The argument is as in the case of Claim 8.3.1. Note that if there is no such j then the uv prefix
span through the whole left-hand side.

The length of this prefix can be easily calculated in terms of i and j (and constants depending on A)
We do a similar calculation for the right hand side, this time expressed in i and j′, where Bj′ is

the first of Bs that is not from the set (vu)∗v. A similar statement to Claim 8.3.2 holds.
Since the uv-prefixes of both sides must be equal, we obtain an equation for i, j, j′. Either it is not

satisfiable (and there is no solution of this form) or it has exactly one solution or all numbers are a
solution. In the second case we get one candidate s(X) = (uv)iu and it can be tested in linear time,
Lemma 8.1. In the last case, we recursively deal with the remaining part of the equation (note that
some care is needed at the ends, as the prefix could extend beyond the word).

Lemma 8.4. Given an equation (8.1) with |A0| ≤ |B1| in linear time we can return the set of
solutions. It consists of 0, 1, 2 or infinite number of solutions.

8.3.3 |s(X)| ≥ |A0| − |B1| > 0
We consider first the solutions in which |s(X)| ≥ |A0| − |B1| > 0. Let A′ be a prefix of A0 of length
|A0| − |B1|. Note that A′⊑s(X). Thus A0s(X) = s(X)B1A

′. The rest of the argument is as in the
case above; in particular, s(X) = (uv)ku, where uv is the primitive root of A0.

Lemma 8.5. Given an equation (8.1) with |A0| > |B1| in linear time we can return the set of
solutions such that |s(X)| ≥ |A0| − |B1|. It consists of 0, 1, 2 or infinite number of solutions.

8.3.4 |A0| − |B1| > |s(X)| > 0
The remaining cases are called individual solutions, all of them are of length smaller than |A0| − |B1|.

Let us prepend both sides of the equation with B1. Then the right-hand sides begins with (B1X)2

and the left with B1A0X. As |B1s(X)| ≤ |A0| it follows that (B1X)2⊑B1A0A0.
Let P be the primitive root of B1s(X). Then there are u, v such that P = vu and

B1 = (vu)jv and s(X) = (uv)iu (8.2)

Moreover, P 2⊑B1A0A0. There are at most O(log |B1A0A0|) such P and all of them can be found in
linear O(|B1A0A0|) time, see Theorem 6.17.

Now, for each such candidate P we can compare it with B1 and obtain appropriate u, v. Then
for each family of candidate solutions si(X) = (uv)iu we separately test s0 in linear time and for the
others we can use Lemma 8.3 to test others in linear time. This in total yields O(n logn) running
time for the algorithm (and this is roughly the solution of Obono, Goralcik and Maksimenko [49]).

This can be sped up: on one hand we show that in total linear time for each P we can reject all
but two candidate solutions, thus we are left with O(logn) candidate solutions. Then, assuming that
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the alphabet is constant or contained in {1, 2, . . . , nc} for a constant c so that RadixSort can be used
on it, we can test a single candidate solution in O(nX) time, see Section 8.3.5.

From the assumption on the length of the solution we get that

|A0| > |s(x)|+ |B1| ≥ |vu| = |P |

Let us consider the vu prefix of B1A0A0. We first show that at most one of them spans through the
whole B1A0A0.
Lemma 8.6. Suppose that the (vu)-prefix of B1A0A0 contains at least |vu| letters in the second A0.
Then uv is the primitive root of A0.
Proof. We know that |A0| > |uv| by the case assumption. Since B1 ends with v, the A0 begins with uv
and this is not the whole A0. Now, the second A0 also begins with uv; the argument as in Claim 8.3.1
shows that the vu prefix cannot extend over the whole |uv| first letters of the second occurrence of
A0, contradiction. Thus A0 is the power of uv, so it is its primitive root.

We verify this case (i.e. uv being the primitive root of A0) separately using Lemma 8.3.
So in the following we can assume that the vu-prefix of B1A0A0 ends before the first |vu| letters of

the second A0; note that this is the same as the vu prefix of B1A0s(X) as |s(x)| ≥ |uv| and s(X)⊑A0.
Lemma 8.7. Given a set of primitive words P1, . . . , Pk such that for each i P 2

i ⊑B1A0A0, in total
time O(|B1A0A0|) we can establish for all Pi from P1, . . . , Pk the Pi-prefix of B1A0A0.

This can be done using the MP table, and is left as an exercise.
We now calculate the lengths of the P -prefixes of the right-hand side of the equation.

Lemma 8.8. There are at most three different primitive P = vu such that B1 = (vu)jv for j > 0.
Those candidates can be determined in linear time and for them the length of the vu-prefix of s(B)
can be determined in linear time.
Proof. • If B1 has such a representation (vu)jv for j ≥ 2 for two different P and P ′, where

|P | > |P ′|, in particular, P and P ′ are its periods. But then |P | + |P ′| < |B1| and so there is
a common smaller period w, moreover v is a power of v. Then also u is a power of v and this
contradicts the primitivity of P , contradiction.

• If B1 = vuv then in particular |P | ≤ |B1| < 2|P |. But when P1, . . . , Pi are all primitive square
prefixes of B1A0A0 then |Pj+2| ≥ 2|Pj |.

In the second case the P satisfying this condition can be determined based only on the length:
|P | ≤ |B1| < 2|P | and there are at most two such P s.

In the first case we need to use Lemma 8.7: using it we can establish the P for which the P -prefix
of B1 includes more than one P s.

Then for each of those (at most 3) P s we can establish the vu prefix of s(B) in linear time: using
an argument as in Claim 8.3.2 we are to look for the first Bk which is not in (vu)∗v, which can be
done in linear time, and the vu-prefix of s(B) is the vu-prefix of s(B1X · · ·XBkvu) (or without the
extra vu, when Bk is the last one).

Then the length of the vu prefix on the left-hand side is fixed and on the right-hand side it depends
on k|s(X)|, in particular, it uniquely determines the length of s(X).

So we are left with the case in which B1 = v. Note that this does not uniquely determines P , as
u is not known. In this case we look for the first Bk ̸= v. There are two cases: either the first such
Bk ∈ (vu)+v or not. In the first case we use the same argument as in Lemma 8.8 to conclude that this
can be for at most three different P s and thus the vu-prefix can be also determined in linear time, as
in Lemma 8.8.

So the last remaining case is that Bk ̸= v and it is not of the form (vu)j′
v for any v. Then an argu-

ment as in Claim 8.3.2 shows that the vu-prefix of s(B) is the same as vu-prefix of s(XB1XB2X · · ·XBkuv)
(the special case that Bk is the last is handled separately). For a given P we can establish this by
looking at the MP table of Bkuv. But as uv⊑A0, it can be established from the MP table of BkA0,
moreover, all those calculations take in total O(BkA0) time. After that we can establish the length of
the prefix on the right-hand side and determine the length of s(X), as in Lemma 8.7.
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8.3.5 Verification of candidate solutions

Lemma 8.9. Using a suffix tree LCP data structure, one singular solution can be verified in O(#X)
time; those data structures can be constructed in time O(n) time.

8.4 Via recompression

If (8.1) is violated for any reason, we greedily repair it by cutting identical letters (or variables) from
both sides of the equation. We say that A0 is the first word of the equation and BnX is the last word.
We additionally assume that none of words Ai, Bj is empty. We later (after Lemma 2.7) justify why
this is indeed without loss of generality.

Note that if s(X) ̸= ϵ, then using (8.1) we can always determine the first (a) and last (b) letter of
s(X) in O(1) time. In fact, we can determine the length of the a-prefix and b-suffix of s(X).

Lemma 8.10. For every solution s of a word equation such that s(X) ̸= ϵ the first letter of s(X) is
the first letter of A0 and the last the last letter of BnX .

If A0 ∈ a+ then s(X) ∈ a+ for each solution s of A = B.
If the first letter of A0 is a and A0 /∈ a+ then there is at most one solution s(X) ∈ a+, existence

of such a solution can be tested (and its length returned) in O(|A| + |B|) time. Furthermore, for
s(X) /∈ a+ the lengths of the a-prefixes of s(X) and A0 are the same.

Two comments are in place:

• Symmetric version of Lemma 8.10 holds for the suffix of s(X).

• It is later shown that finding all solutions from a+ can be done in linear time, see Lemma 8.17.

A simple proof is left as an exercise.
By TestSimpleSolution(a) we denote a procedure, described in Lemma 8.10, that for A0 /∈ a∗

establishes the unique possible solution s(X) = aℓ, tests it and returns ℓ if this indeed is a solution.

8.4.1 Representation of solutions

Consider any solution s of A = B. We claim that s(X) is uniquely determined by its length and so
when describing solution of A = B it is enough to give their lengths.

Lemma 8.11. Each solution s of equation of the form (8.1) is of the form s(X) = (A0)kA, where A
is a prefix of A0 and k ≥ 0. In particular, it is uniquely defined by its length.

Proof. If |s(X)| ≤ |A0| then s(X) is a prefix of A0. When |s(X)| > |A0| then s(A) begins with A0s(X)
while s(B) begins with s(X) and thus s(X) has a period A0. Consequently, it is of the form Ak0A,
where A is a prefix of A0.

8.4.2 Weight

Each letter in the current instance of our algorithm OneVarWordEq represents some string (in a com-
pressed form) of the input equation, we store its weight which is the length of such a string. Further-
more, when we replace X with aℓX (or Xaℓ) we keep track of the sum of weights of all letters removed
so far from X. In this way, for each solution of the current equation we know what is the length of
the corresponding solution of the original equation (it is the sum of weights of letters removed so far
from X and the weight of the current solution). Therefore, in the following, we will not explain how
we recreate the solutions of the original equation from the solution of the current one. Concerning
the running time needed to calculate the length of the original solution: our algorithm OneVarWordEq
reports only solutions of the form aℓ, so we just need to multiply ℓ with the weight of a and add the
weights of the removed suffix and prefix.
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8.4.3 Preserving solutions

All subprocedures of the presented algorithm should preserve solutions, i.e. there should be a one-to-
one correspondence between solution before and after the application of the subprocedure. However,
when we replace X with aℓX (or Xbr), some solutions may be lost in the process and so they should
be reported. We formalise these notions.

Definition 8.12 (Preserving solutions). A subprocedure preserves solutions when given an equation
A = B it returns A′ = B′ such that for some strings u and v (calculated by the subprocedure)

• some solutions of A = B are reported by the subprocedure;

• for each unreported solution s of A = B there is a solution s′ of A′ = B′, where s(X) = us′(X)v
and s(A) = us′(A′)v;

• for each solution s′ of A′ = B′ the s(X) = us′(X)v is an unreported solution of A = B and
additionally s(A) = us′(A′)v.

The intuitive meaning of these conditions is that during transformation of the equation, either we
report a solution or the new equation has a corresponding solution (and no new ‘extra’ solutions).

By hc→ab(w) we denote the string obtained from w by replacing each c by ab, which corresponds
to the inverse of pair compression. We say that a subprocedure implements pair compression for
ab, if it satisfies the conditions from Definition 8.12, but with s(X) = uhc→ab(s′(X))v and s(A) =
uhc→ab(s′(A′))v replacing s(X) = us′(X)v and s(A) = us′(A′)v.

Similarly, by h{aℓ→aℓ}ℓ>1(w) we denote the string w with letters aℓ replaced with blocks aℓ, for
each ℓ > 1; note that this requires that we know, which letters ‘are’ aℓ and what is the value of ℓ,
but this is always clear from the context. A notion of implementing blocks compression for a letter a
is defined similarly as the notion of implementing pair compression. The intuitive meaning of both
those notions is the same as in case of preserving solutions: we not loose, nor gain any solutions.

8.4.4 Specialisation of procedures

We now specialise the general algorithms to our specific setting. Pair compression and block compres-
sion work exactly as before. However, during popping we need to additionally verify some solutions,
which may be lost.

Algorithm 8 Pop(a, b)
1: if b is the first letter of s(X) then
2: if TestSimpleSolution(b) returns 1 then ▷ s(X) = b is a solution
3: report solution s(X) = b

4: replace each X in A = B by bX
▷ Implicitly change s(X) = bw to s(X) = w

5: if a is the last letter of s(X) then
6: if TestSimpleSolution(a) returns 1 then ▷ s(X) = a is a solution
7: report solution s(X) = a

8: replace each X in A = B by Xa
▷ Implicitly change s(X) = w′a to s(X) = w′

Lemma 8.13. Pop(a, b) preserves solutions and after its application the pair ab is noncrossing.

The only new part is the preservation of solutions. But this easily follows from Lemma 8.10.
Thus first uncrossing a pair ab and then compressing it as a noncrossing pair implements the pair

compression.
There is one issue: the number of non-crossing pairs can be large, however, a simple preprocessing,

which basically applies Pop, is enough to reduce the number of crossing pairs to 2.
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Algorithm 9 PreProc Ensures that there are at most 2 crossing pairs
1: let a, b be the first and last letter of s(X)
2: run Pop(a, b)

Lemma 8.14. PreProc preserves solution and after its application there are at most two crossing
pairs.

Proof. It is enough to show that there are at most 2 crossing pairs, as the rest follows from Lemma 2.7.
Let a and b be the first and last letters of s(X), and a′, b′ such letters after the application of PreProc.
Then each X is preceded with a and succeeded with b in A′ = B′. So the only crossing pairs are aa′

and b′b (note that this might be the same pair or part of a letter-block, i.e. a = a′ or b = b′).

Note that in order to claim that the lengths of a-prefix of s(X) and A0 are the same, see
Lemma 8.10, we need to assume that s(X) is a not block of letters. This is fine though, as this
condition holds when we apply Algorithm 10.

Algorithm 10 Pop Cutting prefixes and suffixes; assumes that A0 is not a block of letters
Require: A0 is not a block of letters, the BnX is not a block of letters

1: let a be the first letter of s(X)
2: report solution found by TestSimpleSolution(a) ▷ Excludes s(X) ∈ a+ from further considerations.
3: let ℓ > 0 be the length of the a-prefix of A0

▷ By Lemma 8.10 s(X) has the same a-prefix
4: replace each X in A = B by aℓX ▷ aℓ is stored in a compressed form,

▷ implicitly change s(X) = aℓw to s(X) = w
5: let b be the last letter of s(X)
6: report solution found by TestSimpleSolution(b) ▷ Exclude s(X) ∈ b+ from further considerations.
7: let r > 0 be the length of the b-suffix of the BnX

▷ By Lemma 8.10 s(X) has the same b-suffix
8: replace each X in A = B by Xbr ▷ br is stored in a compressed form,

▷ implicitly change s(X) = wbr to s(X) = w

Lemma 8.15. Let a be the first letter of the first word and b the last of the last word. If the first word
is not a block of as and the last not a block of bs then Pop preserves solutions and after its application
there are no crossing blocks of letters.

Thus we can implement the block compression by first uncrossing all letters and then compressing
them all.

8.4.5 The algorithm

The following algorithm OneVarWordEq is basically a specialisation of the general algorithm for testing
the satisfiability of word equations [23] and is built up from procedures presented in the previous
section.
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Algorithm 11 OneVarWordEq Reports solutions of a given one-variable word equation
1: while the first block and the last block are not blocks of a letter do
2: Pairs ← pairs occurring in s(A) = s(B)
3: BlockComp ▷ Compress blocks, in O(|A|+ |B|) time.
4: PreProc ▷ There are only two crossing pairs, see Lemma 8.14
5: Crossing ← list of crossing pairs from Pairs ▷ There are two such pairs
6: Non-Crossing ← list of non-crossing pairs from Pairs
7: for each ab ∈ Non-Crossing do ▷ Compress non-crossing pairs, in time O(|A|+ |B|)
8: PairCompNCr(a, b)
9: for ab ∈ Crossing do ▷ Compress the 2 crossing pairs, in time O(|A|+ |B|)

10: PairComp(a, b)
11: TestSolution ▷ Test solutions from a∗, see Lemma 8.17

We say that a word Ai (Bi) is short if it consists of at most 100 letters and long otherwise. To
avoid usage of strange constants and its multiplicities, we shall use K = 100 to denote this value and
we shall usually say that K = O(1).

Recall, that for any two consecutive letters a, b at the beginning of the phase in s(A) for any
solution s. At least one of those letters is compressed in this phase.

Lemma 8.16. Consider the length of the (A, i)-word (or (B, j)-word). If it is long then its length is
reduced by 1/4 in this phase. If it is short then after the phase it still is. The length of each unreported
solution is reduced by at least 1/4 in a phase.

Additionally, if the first (last) word is short and has at least 2 letters then its length is shortened
by at least 1 in a phase.

Proof. We shall first deal with the words and then comment how this argument extends to the solu-
tions. Consider two consecutive letters a, b in any word at the beginning of a phase. By Lemma ??
at least one of those letters is compressed in this phase. Hence each uncompressed letter in a word
(except perhaps the last letter) can be associated with the two letters to the right that are compressed.
This means that in a word of length k during the phase at least 2(k−1)

3 letters are compressed i.e. its
length is reduced by at least k−1

3 letters.
On the other hand, letters are introduced into words by popping them from variables. Let symbol

denote a single letter or block aℓ that is popped into a word. We investigate, how many symbols are
introduced in this way in one phase. At most one symbol is popped to the left and one to the right by
BlockComp in line 3, the same holds for PreProc in line 4. Moreover, one symbol is popped to the left
and one to the right in line 10; since this line is executed twice, this yields 8 symbols in total. Note
that the symbols popped by BlockComp are replaced by single letters, so the claim in fact holds for
letters as well.

So, consider any word Ai ∈ Σ∗ (the proof for Bj is the same), at the beginning of the phase and
let A′

i be the corresponding word at the end of the phase. There were at most 8 symbols introduced
into A′

i (some of them might be compressed later). On the other hand, by Lemma ??, at least |Ai|−1
3

letters were removed Ai due to compression. Hence

|A′
i| ≤ |Ai| −

|Ai| − 1
3 + 8 ≤ 2|Ai|

3 + 81
3 .

It is easy to check that when Ai is short, i.e. |Ai| ≤ K = 100, then A′
i is short as well and when Ai is

long, i.e. |Ai| > K then |A′
i| ≤ 3

4 |Ai|.
It is left to show that the first word shortens by at least one letter in each phase. Consider that if

a letter a is left-popped from X then we created B0 and in order to preserve (8.1) the first letters of
B0 and A0 are removed. Thus, A0 gained one letter on the right and lost one on the left, so its length
stayed the same. Furthermore the right-popping does not affect the first word at all (as X is not to its
left); the same analysis applies to cutting the prefixes and suffixes. Hence the length of the first word
is never increased by popping letters. Moreover, if at least one compression (be it block compression
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or pair compression) is performed inside the first word, its length drops. So consider the first word at
the end of the phase let it be A0. Note that there is no letter representing a compressed pair or block
in A0: consider for the sake of contradiction the first such letter that occurred in the first word. It
could not occur through a compression inside the first word (as we assumed that it did not happen),
cutting prefixes does not introduce compressed letters, nor does popping letters. So in A0 there are
no compressed letters. But this cannot happen.

Now, consider a solution s(X). We know that s(X) is either a prefix of A0 or of the form Aℓ0A,
where A is a prefix of A0, see Lemma 8.11. In the former case, s(X) is compressed as a substring of
A0. In the latter observe that argument follows in the same way, as long as we try to compress every
pair of letters in s(X). So consider such a pair ab. If it is inside A0 then we are done. Otherwise, a is
the last letter of A0 and b the first. Then this pair occurs also on the crossing between A0 and X in
A, i.e. ab is one of the crossing pairs. In particular, we try to compress it. So, the claim of the lemma
holds for s(X) as well.

Lemma 8.17. For a ∈ Σ we can report all solutions in which s(X) = aℓ for some natural ℓ in
O(|A| + |B|) time. There is either exactly one ℓ for which s(X) = aℓ is a solution or s(X) = aℓ is a
solution for each ℓ or there is no solution of this form.

Note that we do not assume that the first or last word is a block of as.
A proof is left as an exercise.

8.4.6 Running time

Concerning the running time, we first show that one phase runs in linear time, which follows by
standard approach, and then that in total the running time is O(n+ #X logn). To this end we assign
in a fixed phase to each (A, i)-word and (B, j)-word cost proportional to their lengths in this phase.
For a fixed (A, i)-word the sum of costs assigned while it was long forms a geometric sequence, so
sums up to at most constant more than the initial length of (A, i)-word; on the other hand the cost
assigned when (A, i)-word is short is O(1) per phase and there are O(logn) phases.

Lemma 8.18. One phase of OneVarWordEq can be performed in O(|A|+ |B|) time.

Proof. For grouping of pairs and blocks we use RadixSort, to this end it is needed that the alphabet
of (used) letters can be identified with consecutive numbers, i.e. with an interval of at most |A|+ |B|
integers. In the first phase of OneVarWordEq this follows from the assumption on the input. 1 At the
end of this proof we describe how to bring back this property at the end of the phase.

To perform BlockComp we want for each letter a occurring in the equation to have lists of all
maximal a-blocks occurring inA = B (note that after Pop there are no crossing blocks, see Lemma 2.8).
This is done by reading A = B and listing triples (a, k, p), where k is the length of a maximal block
of as and p is a pointer to the beginning of this occurrence. Notice, that the maximal block of a’s
may consist also of prefixes/suffixes that were cut from X by Pop. However, by Lemma 8.10 such a
prefix is of length at most |A0| ≤ |A| + |B| (and similar analysis applies for the suffix). Then each
maximal block includes at most one such prefix and one such suffix thus the length of the a maximal
block is at most 3(|A| + |B|). Hence, the triples (a, k, p) can be sorted by their first two coordinates
using RadixSort in total time O(|A|+ |B|).

After the sorting, we go through the list of maximal blocks. For a fixed letter a, we use the pointers
to localise a’s blocks in the rules and we replace each of its maximal block of length ℓ > 1 by a fresh
letter. Since the blocks of a are sorted, all blocks of the same length are consecutive on the list, and
replacing them by the same letter is easily done.

To compress all non-crossing pairs, i.e. to perform the loop in line 8, we do a similar thing as for
blocks: we read both A and B, whenever we read a pair ab where a ̸= b and both a and b are not
letters that replaced blocks during the blocks compression, we add a triple (a, b, p) to the temporary
list, where p is a pointer to this position. Then we sort all these pairs according to lexicographic

1In fact, this assumption can be weakened a little: it is enough to assume that Σ ⊆ {1, 2, . . . , poly(|A| + |B|)}: in such
case we can use RadixSort to sort Σ in time O(|A| + |B|) and then replace Σ with set of consecutive natural numbers.
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order on first two coordinates, we use RadixSort for that. Since in each phase we number the letters
occurring in A = B using consecutive numbers, this can be done in time O(|A|+ |B|). The occurrences
of the crossing pairs can be removed from the list: by Lemma 8.14 there are at most two crossing
pairs and they can be easily established (by looking at A0XA1). So we read the sorted list of pairs
occurrences and we remove from it the ones that correspond to a crossing pair. Lastly, we go through
this list and replaces pairs, as in the case of blocks. Note that when we try to replace ab it might
be that this pair is no longer there as one of its letters was already replaced, in such a case we do
nothing. This situation is easy to identify: before replacing the pair we check whether it is indeed ab
that we expect there, as we know a and b, this is done in costant time.

We can compress each of the crossing pairs naively in O(|A| + |B|) time by simply first applying
the popping and then reading the equation form the left to the right and replacing occurrences of this
fixed pair.

It is left to describe, how to enumerate (with consecutive numbers) letters in Σ at the end of each
phase. Firstly notice that we can easily enumerate all letters introduced in this phase and identify
them (at the end of this phase) with {1, . . . ,m}, where m is the number of introduced letters (note
that none of them were removed during the OneVarWordEq). Next by the assumption the letters in Σ
(from the beginning of this phase) are already identified with a subset of {1, . . . , |A|+ |B|}, we want
to renumber them, so that the subset of letters from Σ that are present at the end of the phase is
identified with {m+1, . . . ,m+m′} for an appropriate m′. To this end we read the equation, whenever
we spot a letter a that was present at the beginning of the phase we add a pair (a, p) where p is a
pointer to this occurrence. We sort the list in time O(|A|+ |B|). From this list we can obtain a list of
present letters together with list of pointers to their occurrences in the equation. Using those pointers
the renumbering is easy to perform in O(|A|+ |B|) time.

So the total running time is O(|A|+ |B|).

The amortisation is much easier when we know that both the first and last words are long. This
assumption is not restrictive, as as soon as one of them becomes short, the remaining running time of
OneVarWordEq is linear.

Lemma 8.19. As soon as first or last word becomes short, the rest of the running time of OneVar-
WordEq is O(n).

Proof. One phase takes O(|A|+ |B|) time by Lemma 8.18 (this is at most O(n) by Lemma 8.16) and as
Lemma 8.16 guarantees that both the first word and the last word are shortened by at least one letter
in a phase, there will be at most K = O(1) many phases. Lastly, Lemma 8.17 shows that TestSolution
also runs in O(n).

So it remains to estimate the running time until one of the last or first word becomes short.

Lemma 8.20. The running time of OneVarWordEq till one of first or last word becomes short is
O(n+ nX logn).

Proof. By Lemma 8.18 the time of one iteration of OneVarWordEq is O(|A|+ |B|). We distribute the
cost among the A words and B words: we charge β|Ai| to (A, i)-word and β|Bj | to (B, j)-word, for
appropriate positive β. Fix (A, i)-word, we separately estimate how much was charged to it when it
was a long and short word.

• long: Let ni be the initial length of (A, i)-word. Then by Lemma 8.16 the length in the (k+1)-th
phase it at most (3

4)kni and so these costs are at most βni + 3
4βni + (3

4)2βni + . . . ≤ 4βni.

• short: Since (A, i)-word is short, its length is at most K, so we charge at most Kβ to it. Notice,
that there are O(logn) iterations of the loop in total, as first word is of length at most n and
it shortens by 3

4 in each iteration when it is long and we calculate only the cost when it is long.
Hence we charge in this way O(logn) times, so in total O(logn).

Summing those costs over all phases over all words and phases yields O(n+ nX logn).
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8.5 One variable: linear-time algorithm
The intuition gained from the analysis in the previous section, especially in Lemma 8.20 is that the
main obstacle in obtaining the linear running time is the necessity of dealing with short words, as the
time spend on processing them is difficult to charge. This applies to both the compression performed
within the short words, which does not guarantee any reduction in length, see Lemma 8.16, and
to testing of the candidate solutions, which cannot be charged to the length decrease of the whole
equation.

Observe that by Lemma 8.19 as soon as the first or last word becomes short, the remaining running
time is linear. Hence, in our improvements of the running time we can restrict ourselves to the case,
in which the first and last word are long.

The improvement to linear running time is done by four improvements in algorithm analysis and
employed data structures, which are described in details in the following subsections:

• several equations: Instead of a single equation, we store a system of several equations and look
for a solution of such a system. This allows removal of some words from the equations that
always correspond to each other and thus decreases the overall storing space and testing time.
This is described in Section 8.5.2 and Section 8.5.3.

• small solutions: We identify a class of particularly simple solutions, called small, and show that
a solution is reported within O(1) phases from the moment when it became small. In several
problematic cases of the analysis we are able to show that the solutions involved are small and
so it is easier to charge the time spent on testing them.

• storage: The storage is changed so that all words are represented by a structure of size pro-
portional to the size of the long words. In this way the storage space decreases by a constant
factor in each phase and so the running time (except for testing) is linear. This is explained in
Section 8.5.3

• testing: The testing procedure is modified, so that the time it spends on the short words is
reduced. In particular, we improve the rough estimate that one TestSimpleSolution takes time
proportional to the equation to an estimation that actually counts for each word whether it was
included in the test or not. Section 8.5.4 is devoted to this.

8.5.1 Suffix arrays and lcp arrays
We use a standard data structure for comparisons on strings: a suffix array SA[1 . .m] for a string
w[1 . .m] stores the m non-trivial suffixes of w, that is w[m], w[m−1 . .m], . . . , w[1 . .m] in (increasing)
lexicographical order. In other words, SA[k] = p if and only if w[p . . .m] is the k-th suffix according
to the lexicographical order. It is known that such an array can be constructed in O(m) time [24]
assuming that RadixSort is applicable to letters, i.e. that they are integers from {1, 2, . . . ,mc} for some
constant c. We assume explicitly that this is the case in our problem.

Using a suffix array the equality testing for substrings of w reduces to the longest common prefix
(lcp) query: observe that w[i . . i+ k] = w[j . . j + k] if and only if the common prefix of w[i . .m] and
w[j . .m] is at least k. The first step in constructing a data structure for answering such queries is
the LCP array: for each i = 1, . . . ,m − 1 the LCP [i] stores the length of the longest common prefix
of SA[i] and SA[i + 1]. Given a suffix array, the LCP array can be constructed in linear time [25],
however, the linear-time construction of suffix arrays can be in fact extended to return also the LCP
array [24].

When the LCP array is supplied, the general longest prefix queries reduce to the range mini-
mum queries: the longest common prefix of SA[i] and SA[j] (for i < j) is the minimum among
LCP [i], . . . , LCP [j − 1], and so it is enough to have a data structure that answers the queries about
the minimum in the range in constant time. Such data structures in general case are known and in
case of LCP arrays even simpler constructions were given [2]. The construction time is linear and
query time is O(1) [2]. Hence, after a linear preprocessing, we can calculate the length of the longest
common prefix of two substrings of a given string in O(1) time.
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8.5.2 Several equations
The improved analysis assumes that we do not store a single equation, instead, we store several
equations and look for substitutions that simultaneously satisfy all of them. Hence we have a collection
Ai = Bi of equations, for i = 1, . . . ,m, each of them is of the form described by (8.1); by A = B we
denote the whole system of the equations. In particular, each of those equations specifies the first and
last letter of the solution, length of the a-prefix and suffix etc., exactly in the same way as it does for
a single equation. If there is a conflict, as two equations give different answers regarding the first/last
letter or the length of the a-prefix or b-suffix, then there is no solution at all. Still, we do not check
the consistency of all those answers, instead, we use an arbitrary equation, say A1 = B1, to establish
the first, last letter, etc., and as soon as we find out that there is a conflict, we stop the computation
and terminate immediately.

The system of equations stored by OneVarWordEq is obtained by replacing one equation A′
iA′′

i =
B′
iB′′
i (where A′

i,A′′
i ,B′

i,B′′
i ∈ (Σ ∪ {X})∗) with equivalent two equations A′

i = B′
i and A′′

i = B′′
i (note

that in general the latter two equation are not equivalent to the former one, however, we perform the
replacement only when they are; moreover, we need to trim them so that they satisfy the form (8.1)).

The described way of splitting the equations implies a natural order on the equations in the system:
when A′

iA′′
i = B′

iB′′
i is split to A′

i = B′
i and A′′

i = B′′
i then A′

i = B′
i is before A′′

i = B′′
i (moreover, they

are both before/after each equation before/after which A′
iA′′

i = B′
iB′′
i was). This order is followed

whenever we perform any operations on all words of the equations. We store a list of all equations, in
this order.

We store each of the equations in the same way as described for a single equation in the previous
phase, i.e. for an equation Ai = Bi we store a list of pointers to words on one side and list of pointers
to words on the other side. Additionally, the first word of Ai has a link to the last word of Ai−1 and
the last word of Ai similarly, the last word of Ai has a link to the first word of Ai and the first word
of Ai+1. We also say that Ai (Bj) is first or last if it is in any of the stored equations.

All operations on a single equation introduced in the previous sections (popping letters, cutting
prefixes and suffixes, pair compression, blocks compression) generalise to a system of equations. The
running times are addressed in detail later on. Concerning the properties, they are the same, we list
those for which the generalisation or the proof are non-obvious: PreProc should ensure that there
are only two crossing pairs. This is the case, as each X in every equation is replaced by the same
aXb and s(X) is the same for all equations, which is the main fact used in the proof of Lemma 8.14.
Lemma 8.16 ensured that in each phase the length of the first and last word is decreased. Currently
the first words in each equation may be different, however, the analysis in Lemma 8.16 applies to each
of them.

8.5.3 Storing of an equation
To reduce the running time we store duplicates of short word only once. Recall that for each equation
we store lists of pointers pointing to strings that are the explicit words in this equation. We store the
long words in a natural way, i.e. each long word is represented by a separate string. The short words
are stored more efficiently: if two short words in equations are equal we store only one string, to which
both pointers point. In this way all identical short words are stored only once (though each of them
has a separate pointer pointing to it); we call such a representation succinct.

We show that the compression can be performed on the succinct representation, without the need
of reading the actual equation. This allows bounding the running time using the size of the succinct
representation and not the equation.

We distinguish two types of short words: those that are substrings of long words (normal) and
those that are not (overdue). We can charge the cost of processing the normal short words to the time
of processing the long words. The overdue words can be removed from the equation after O(1) phases
after becoming overdue, so their processing time is constant per (A, i)-word (or (B, j)-word).

The rest of this subsection is organised as follows:

• We first give precise details, how we store short and long words, see Section 8.5.3 and prove that
we can perform compression using only succinct representation, see Lemma 8.21.
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• We then define precisely the normal and overdue words, see Section 8.5.3 as well as show that we
can identify new short and overdue words, see Lemma 8.23. Then we show that overdue words
can be removed O(1) phases after becoming overdue, see Lemma 8.24 and 8.25.

• Lastly, in Section 8.5.3, we show that the whole compression time, summed over all phases is
O(n). The analysis is done separately for long words, normal short words and overdue short
words.

As observed in Lemma 8.19, as soon as the first or last word becomes short, the remaining running
time is linear. Thus, when such a word becomes short, we drop our succinct representation and
recreate out of it the simple representation. Such a recreation takes linear time.

Storing details

We give some more details about the storing: All long words are stored on two doubly-linked lists,
one representing the long words on the left-hand sides and the other the long words on the right-hand
sides. Those words are stored on the lists according to the initial order of the words in the input
equation. Furthermore, for each long word we store additionally, whether it is a first or last word of
some equation (note that a short word cannot be first or last). The short words are also organised as
a list, the order on the list is irrelevant. Each short word has a list of its occurrences in the equations,
the list points to the occurrences in the natural order (occurrences on the left-hand sides and on the
right-hand sides are stored separately).

We say that such a representation is succinct and its size is the sum of lengths of words stored in it
(so the sum of sizes of long words, perhaps with multiplicities, plus the sum of sizes of different short
words). Note that we do not include the number of pointers from occurrences of short words. We
later show that in this way we do not need to actually read the whole equation in order to compress
it; it is enough to read the words in the succinct representation, see Lemma 8.22.

We now show that such a storage makes sense, i.e. that if two short words become equal, they
remain equal in the following phases (note again that none of them are first, nor last).

Lemma 8.21. Consider any explicit words A and B in the input equation. Suppose that during
OneVarWordEq they were transformed to A′ = B′, none of which is a first or last word in one of the
equations. Then A = B if and only if A′ = B′.

Proof. By induction on operation performed by OneVarWordEq. Since none of the A′, B′ is the first
or last word in the equation, it means that during the whole OneVarWordEq they had X to the left
and to the right. So whenever a letter was left-popped or right-popped from X, it was prepended or
appended to both A and B; the same applies to cutting prefixes and suffixes. Compression is never
applied to a crossing pair or a crossing block, so after it two strings are equal if and only if they were
before the operation. The removal of letters (in order to preserve (8.1)) is applied only to first and
last words, so it does not apply to words considered here. Partitioning the equation into subequations
does not affect the equality of explicit words.

We now show the main property of succinct representation: the compression (both pair and block)
can be performed on succinct representation in linear time.

Lemma 8.22. The compression in one phase of OneVarWordEq can be performed in time linear in
size of the succinct representation.

Proof. Let us recall what operations we need to perform and what changes are needed when comparing
with the case of one equation, see Lemma 8.18 We comment on the case of pair compression, the case
of blocks compression is done in a similar way.

Observe first, that from Lemma 8.21 it follows that if an explicit short word A occurs twice in the
equations (both times not as a first, nor last word of the equation) it is changed during OneVarWordEq
in the same way at both those instances. This justifies our approach of performing the operations on
the words stored in the list of short words and not separately on each occurrence in the equations.



56 CHAPTER 8. WORD EQUATIONS WITH ONE VARIABLE

First, we perform the preprocessing, to this end we need to know the first (a) and last (b) letter,
this is done by looking at the first and last word. Then we prepend b and append a to each word,
except those that are first or last (first ones get only a and last ones only b). To this end we go through
the list of long words and short words and append appropriate letters, note that each word stores an
information, whether it is first or last, so we always know, whether to prepend or append.

Now we need to list the pairs that occur in the equation, again, this is done by going through the
list. As each pair occurs in one of the words, the total size is proportional to the size of the succinct
representation. Sorting then also is done in linear time (note that the size of the alphabet is at most
the size of the succinct representation: each letter needs to occur somewhere).

To establish the crossing pair, it is enough to look at AiXAi+1, where Ai is any of the first words,
after establishing this we filter out the crossing pair by going through the sorted list. Lastly, we perform
the compression, using pointers to localise the occurrences of ab to be replaced. The compression of
crossing pairs is done while reading the whole succinct representation, so also in linear time.

Normal and overdue short words

The short words stored in the tables are of two types: normal and overdue. The normal words are
substrings of the long words or A2

0 and consequently the sum of their sizes is proportional to the size
of the long words. A word becomes overdue if at the beginning of the phase it is not a substring of a
long word nor A2

0. It might be that it becomes a substring of such a word later, it does not stop to be
an overdue word in such a case.

Since the normal words are of size O(K) = O(1), the sum of lengths of normal words stored in
short word list is at most O(1) larger than the sum of sizes of the long words. Hence the processing
time of normal short words can be charged to the long words. For the overdue words the analysis
is different: we show that after O(1) phases we can remove them from the equation (splitting the
equations). Thus their processing time is O(1) per (A, i)-word (or (B, j)-word), so summed over all
words it yields O(nX + nB) = O(n) in total.

The new overdue words can be identified in linear time: this is done by constructing a suffix array
for a concatenation of long and short words occurring in the equations.

Lemma 8.23. In time proportional to the size of succinct representation size we can identify the new
overdue words.

Proof. Consider all long words A0, . . . , Am (with or without multiplicities, it does not matter) and
all short (not yet overdue) words A′

1, . . .A′
m′ , without multiplicities; in both cases this is just a listing

of words stored in the representation (except for old overdue words). We construct a suffix array for
the string

A2
0$A1$ . . . Am$A′

1$ . . . A′
m′# .

As it was already observed that the size of the alphabet is linear in the size of the succinct repre-
sentation, inside the proof of Lemma 8.22, the construction of the suffix array can be done in linear
time [24].

Now A′
i is a factor in some Aj (the case of A2

0 is similar, it is omitted to streamline the presentation)
if and only if for some suffix A′′

j of Aj the strings A′′
j $Aj+1 . . . Am$A′

1$ . . . $A′
m′# and A′

i$ . . . $A′
m′#

have a common prefix of length at least |A′
i|. In terms of the constructed suffix array, the entries for

A′
i$ . . . $A′

m′# and A′′
j $Aj+1 . . . $Am$A′

1$ . . . $A′
m′# should have a common prefix of length at least

|A′
i|. Recall that the length of the longest common prefix of two suffixes stored at positions p < p′ in

the suffix array is the minimum of LCP [p], LCP [p+ 1], . . . , LCP [p′ − 1].
For fixed suffix A′

i$ . . . $A′
m′# we want to find A′′

j $Aj+1 . . . $Am$A′
1$ . . . $A′

m′# (where A′′
j is a suffix

of some long word Aj) with which it has the longest common prefix. As the length of the common
prefix of pth and p′th entry in a suffix array is min(LCP [p], LCP [p + 1], . . . , LCP [p′ − 1]), this is
is either the first previous or first next suffix of this form in the suffix array. Thus the appropriate
computation can be done in linear time: we first go down in the suffix array, storing the last spotted
entry corresponding to a suffix of some long Aj , calculating the LCP with consecutive suffixes and
storing them for the suffixes of the form A′

i$ . . . $A′
m′#. We then do the same going from the bottom
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Figure 8.1: A is arranged against B. The periods of length at most |B|− |A| are in ligther grey. Since
A ̸= B, at least one of them is non-empty.

BX

A

Figure 8.2: Subword of Ai is arranged against the whole s(X).

of the suffix array. Lastly, we choose the larger from two stored values; for A′
i$ . . . $A′

m′# it is smaller
than |A′

i| if and only if A′
i just became an overdue word.

Concerning the running time, it linearly depends on the size of the succinct representation and
alphabet size, which is also linear in size of succinct representation, as claimed.

The main property of the overdue words is that they can be removed from the equations in O(1)
phases after becoming overdue. This is shown by a series of lemmata.

First we need to define what does it mean that for solution word A in one side of the equation is
at the same position as its copy on the other side of the equation: we say that for a substitution s
the explicit word Ai (or its subword) is arranged against the explicit word Bj (s(X) for some fixed
occurrence of X) if the position within s(Ak) occupied by this explicit word Ai (or its subword) are
within the positions occupied by explicit word Bj (s(X), respectively) in Bk.

Lemma 8.24. Consider a short word A in a phase in which it becomes overdue. Then for each
solution s(X) either s is small or in every s(Ak) = s(Bk) each explicit word Ai equal to A is arranged
against another explicit word Bj equal to A.

Proof. Consider an equation and a solution s such that in some s(Ak) = s(Bk) an explicit word Ai
(equal to an overdue word A) is not arranged against another explicit word equal to A. There are
three cases:

A is arranged against s(X) Note that in this case A is a substring of s(X). Either s(X) is a substring
of A0 or s(X) = Ak0A

′
0, where A′

0 is a prefix of A0. In the former case A is a factor of A0, which is a
contradiction, in the latter it is a factor of Ak+1

0 . As A0 is long and A short, it follows that |A| < |A0|
and so A is a factor of A2

0, contradiction with the assumption that A is overdue.

A is arranged against some word Since A is an overdue word, this means that Ai is arranged against
a short word Bj . Note that both Ai and Bj are preceded and succeeded by s(X), since Ai ̸= Bj we
conclude that s(X) has a period at most |Bj | − |Ai|, see Fig. 8.1; in particular s is small.

Other case Since Ai is not arranged against any word, nor arranged against s(X), it means that
some substring of Ai is arranged against s(X) and as Ai is preceded and succeeded by s(X), this
means that either s(X) is shorter than Ai or it has a period at most |Ai|, see Figure 8.2 and 8.3,
respectively. In both cases s is small.

Observe that due to Theorem ?? and Lemma 8.24 the (A, i)-words and (B, j)-words that are
overdue can be removed in O(1) phases after becoming overdue: suppose that A becomes an overdue
word in phase ℓ. Any solution, in which an overdue word A is not arranged against another occurrence
of A is small and so it is reported after O(1) phases. Consider an equation Ai = Bi in which A occurs.
Then the first occurrence of A in Ai and the first occurrence of A in Bj are arranged against each
other for each solution s. In particular, we can write Ai = Bi as A′

iXAXA′′
i = B′

iXAXB′′
i , where Ai
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Figure 8.3: Subword of Ai is arranged against s(X). The overlapping s(X) are in in grey, the s(X)
has a period shorter than Ai, the period is depicted in lighter grey.

and Bi do not have A as an explicit word (recall that A is not the first, nor the last word in Ai = Bi).
This equation is equivalent to two equations A′

i = B′
i and A′′

i = B′′
i . This procedure can be applied

recursively to A′′
i = B′′

i . In this way, all occurrences of A are removed and no solutions are lost in the
process. There may be many overdue strings so the process is a little more complicated, however, as
each word can be removed once during the whole algorithm, in total it takes O(n) time.

Lemma 8.25. Consider the set of overdue words introduced in phase ℓ. Then in phase ℓ +O(1) we
can remove all occurrences of these overdue words from the equations.

The obtained set of equations has the same set of solutions. The amortised time spend on removal
of overdue words, over the whole run of OneVarWordEq, is O(#X).

Proof. Consider any word A that become overdue in phase ℓ and any solution s of this equation,
such that in some s(Ai) = s(Bi) the explicit word A is not arranged against another instance of the
same explicit word. Then due to Lemma 8.24 the s(X) is small. Consequently, from Theorem ??
this solution is reported before phase ℓ + c, for some constant c. So any solution s′ in phase ℓ + c
corresponds to a solution s from phase ℓ that had each explicit word A arranged in each s(Ai) = s(Bi)
against another explicit word A. Since all operations in a phase either transform solution, implement
the pair compression of implement the blocks compression for a solution s(X), it follows that in phase
ℓ+c the corresponding overdue words A′ are arranged against each other in s′(A′

i) = s′(B′
i). Moreover,

by Lemma 8.21 each explicit word A′ in this phase corresponds to an explicit word A in phase ℓ, i.e.
there are no ‘new’ copies of A′ (recall that hte fisrt and last words are long).

This observation allows removing all overdue words introduced in phase ℓ. Let C1, C2, . . . , Cm
(in phase ℓ + c) correspond to all overdue words introduced in phase ℓ. By Lemma 8.23 we have
already identified the overdue words. Using the list of short words, for each overdue word C, we have
the list of pointers to occurrences of C in left-hand sides of the equations and right-hand sides of the
equations, those lists are sorted according to the order of occurrences. In phase ℓ + c we go through
those lists, if the first occurrences of A in the left-hand sides and right-hand sides are in different
equations then the equations are not satisfiable, as this would contradict that in each solution both
A is arranged against its copy. Otherwise, they are in the same equation Ai = Bi, which is of the
form A′

iXAXA′′
i = B′

iXAXB′′
i , where A′

i and B′
i do not have any occurrence of A within them. We

split Ai = Bi into two equations A′
i = B′

i and A′′
i = B′′

i and we trim them so that they are in the form
described in (8.1). Clearly each solution of the new system of equation is also a solution of the old
system, on the other hand, in any solution of the old system the copies of A were arranged against its
copy, so the solution also satisfies the created equationss.

Note that as new equations are created, we need to reorganise the pointers from the first/last
words in the equations, however, this is easily done in O(1) time. The overall cost can be charge to
the removed X, which makes in total at most O(#X) cost.

Compression running time

Lemma 8.26. The running time of OneVarWordEq, except for time used to test the solutions, is
O(n).

Proof. By Lemma 8.22 the cost of compression is linear in terms of the size of the succinct represen-
tation by Lemma 8.23 in the same time bounds we can also identify the overdue words. Lastly, by
Lemma 8.24 the total cost of removing the overdue words is O(n). So it is enough to show that the
sum of sizes of the succinct representations summed over all phases is O(n).
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X

X Bj′Bj

Figure 8.4: Let Bj and Bj′ both have their letters arranged against letters from fixed occurrence of
X. Then the X separating them is a proper substring of another X, contradiction.

When the overdue words are excluded, the size of the succinct representation is proportional to
the total length of long words. Since by Lemma 8.16 this sum of lengths decreases by a constant in
each phase, the sum of those costs is linear in n.

Concerning the costs related to the overdue words: Note that an (A, i)-word or (B, j)-word is
overdue for only O(1) phases, after which it is deleted from the equation see Lemma 8.25. So in O(1)
phases it is charged O(K) = O(1) cost, during the whole run of OneVarWordEq. Summing over all
(A, i)-words and (A, i)-words yields O(n) time.

8.5.4 Testing

We already know that thanks to appropriate storing the compression of the equations can be per-
formed in linear time. It remains to explain how to test the solutions fast, i.e. how to perform
TestSimpleSolution when all first and last words are still long.

Recall that TestSimpleSolution checks whether s,which is of the form s(X) = aℓ for some ℓ, is
a solution by comparing s(Ai) and s(Bi) letter by letter, replacing X with aℓ on the fly. We say that
in such a case a letter b in s(Ai) is tested against the corresponding letter in s(Bi). Note that during
the testing we do not take advantage of the smaller size of the succinct representation, so we need to
make a separate analysis. Consider two letters, from Ai and Bj , that are tested against each other. If
one of Ai and Bj is long, this can be amortised against the length of the long word. The same applies
when one of the words Ai+1 or Bj+1 is long. So the only problematic case is when all of those words
are short. To deal with this case efficiently we distinguish between different test types, in which we
exploit different properties of the solutions to speed up the tests. In the end, we show that the total
time spent on testing is linear.

For a substitution s by a mismatch we denote the first position on which s is shown not be a
solution, i.e. sides of the equation have different letters (we use a natural order on the equations);
clearly, a solution has no mismatch. Furthermore, OneVarWordEq stops the testing as soon as it finds
a mismatch, so in the rest of this section, if we use a name test for a comparison of letters, this means
that the compared letters are before the mismatch (or that there is no mismatch at all).

There are two preliminary technical remarks: First we note that when testing a substitution s, for
a fixed occurrence of X there is at most one explicit word whose letters are tested against letters from
this occurrence of X.

Lemma 8.27. Fix a tested substitution s and an occurrence of X in the equation. Then there is at
most one explicit word whose letters are arranged against letters from this fixed occurrence of s(X).

Proof. Without loss of generality assume that X occurs within Aℓ in an equation Aℓ = Bℓ. Suppose
that Bj and Bj′ (for j′ > j) have their letters arranged against a letter from this fixed occurrence of
s(X), see Fig 8.4. But Bj and Bj′ are separated by at least one X in the equation, and whole this X
is also arranged against this fixed occurrence of X, contradiction.

As a second remark, observe that tests include not only explicit letters from s(Aℓ) and s(Bℓ) but
also letters from s(X). In the following we will focus on tests in which at least one letter comes from
an explicit word. It is easy to show that the time spent on other tests is at most as large as time spent
on those tests. This follows from the fact that such other tests boil down to comparison of long blocks
of a and the previous test is of a different type, so we can account the comparison between two long
blocks of a to the previous test. However, our fast testing procedures in some times makes a series of
tests in O(1) time, so this argument can be made precise only after the explanation of the details of
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various testing optimisations. For this reason the proof of Lemma 8.28 is delayed till the end of this
section.

Lemma 8.28. Suppose that we can perform all tests in which at least one letter comes from an explicit
word in O(n) time. Then we can perform all test in O(n) time.

Thus, in the following of this section we consider only the tests in which at least one letter comes
from an explicit word.

Test types

Suppose that for a substitution s a letter from Ai is tested against a letter from s(XBj) or a letter
from Bj is tested against a letter from s(XAi) (the special case, when there is no explicit word after
X is explained later). We say that this test is:

• protected: if at least one of Ai, Ai+1, Bj , Bj+1 is long;

• failed: if Ai, Ai+1, Bj and Bj+1 are short and a mismatch for s is found till the end of Ai+1 or
Bj+1;

• aligned: if Ai = Bj and Ai+1 = Bj+1, all of them are short and the first letter of Ai is tested
against the first letter of Bj ;

• misaligned: if all of Ai, Ai+1, Bj , Bj+1 are short, Ai+1 ̸= Ai or Bj+1 ̸= Bj and this is not an
aligned nor failed test;

• periodical: if Ai+1 = Ai, Bj+1 = Bj , all of them are short and this is not an aligned nor failed
test.

So far this classification does not apply to the case, when a letter from Ai is tested against letter from
X that is not followed by an explicit word. There are two cases:

• If Ai is not followed by X in the equation then Ai is a last word, in particular it is long. Therefore
this test is protected.

• If Ai is followed by X then there is a mismatch till the end of AiX, so this test is failed.

Observe that ‘failed test’ does not mean a mismatch, just a fact that soon there will be a mismatch.
The protected, misaligned and failed tests are done in a letter-by-letter way, while the aligned and
periodical tests are made in larger groups (in O(1) time per group, this of course means that we use
some additional data structures).

It is easy to show that there are no other tests, see Lemma 8.29. We separately calculate the cost
of each type of tests. As some tests are done in groups, we distinguish between number of tests of
a particular type (which is the number of letter-to-letter comparisons) and the time spent on test of
a particular type (which may be smaller, as group of tests are performed in O(1) time); the latter
includes also the time needed to create and sustain the appropriate data structures.

For failed tests note that they take constant time per phase and we know that there are O(logn)
phases. For protected tests, we charge the cost of the protected test to the long word and only O(|C|)
such tests can be charged to one long word C in a phase. On the other hand, each long word is
shortened by a constant factor in a phase, see Lemma 8.16, and so this cost can be charged to those
removed letters and thus the total cost of those tests (over the whole run of OneVarWordEq) is O(n).

In case of the misaligned tests, it can be shown that s in this case is small and that it is tested at
the latest O(1) phases after the last of Ai, Ai+1, Bi, Bi+1 becomes short, so this cost can be charged
to, say, Bi becoming short and only O(1) such tests are charged to this Bi (over the whole run of the
algorithm). Hence the total time of such tests is O(n).

For the aligned tests, consider the consecutive aligned tests, they correspond to comparison of
AiXAi+1 . . . Ai+kX and BjXBj+1 . . . Bj+kX, where Ai+ℓ = Bj+ℓ for ℓ = 1, . . . , k. So to perform
them efficiently, it is enough to identify the maximal (syntactically) equal substrings of the equation
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and from Lemma 8.21 it follows that this corresponds to the (syntactical) equality of substrings in
the original equation. Such an equality can be tested in O(1) using a suffix array constructed for the
input equation (and general lcp queries on it). To bound the total running time it is enough to notice
that the previous test is either misaligned or protected. There are O(n) such tests in total, so the
time spent on aligned tests is also linear.

For the periodical test suppose that we are to test the equality of (suffix of) s((AiX)ℓ) and (prefix
of) s(X(BjX)k). If |Ai| = |Bj | then the test for Ai+1 and Bj+1 is the same as for Ai and Bj and
so can be skipped. If |Ai| > |Bj | then the common part of s((AiX)ℓ) and s(X(BjX)k) have periods
|s(AiX)| and |s(BjX)| and consequently has a period |Ai| − |Bj | ≤ K. So it is enough to test first
common |Ai| − |Bj | letters and check whether |s(AiX)| and |s(BjX)| have period |Ai| − |Bj |, which
can be checked in O(1) time.

This yields that the total time of testing is linear. The details are given in the next subsections.
We begin with showing that indeed each test is either failed, protected, aligned, misaligned or

periodical.

Lemma 8.29. Each test is either failed, protected, misaligned, aligned or periodical. Additionally,
whenever a test in made, in O(1) time we can establish, what type of test this is.

Proof. Without loss of generality, consider a test of a letter from Ai and from s(XBj). If any of Ai+1,
Bj+1, Ai or Bj is long then it is protected (this includes the case in which some of Ai+1, Bj , Bj+1 does
not exist). Concerning the running time, for each explicit word we keep a flag, whether it is short or
long. Furthermore, as each explicit word has a link to its successor and predecessor, we can establish
whether any of Ai+1, Bj+1, Ai or Bj is long in O(1) time.

So consider the case in which all Ai+1, Bj+1, Ai and Bj (if they exist) are short, which also can be
established in O(1) time. It might be that this test is failed (again, some of the words Ai+1, Bj , Bj+1
may not exist), too see this we need to make some look-ahead tests, but this can be done in O(K)
time (we do not treat those look-aheads as tests, so there is not recursion here).

Otherwise, if the first letter of Ai and Bj are tested against each other and Ai = Bj and
Ai+1 = Bj+1 then the test is aligned (clearly this can be established in O(1) time using look-aheads).
Otherwise, if Ai+1 ̸= Ai or Bj+1 ̸= Bj then it is misaligned (again, O(1) time for look-aheads). In the
remaining case Ai+1 = Ai and Bj+1 = Bj , so this is a periodical test.

Failed tests

We show that in total there are O(logn) failed tests. This follows from the fact that there are O(1)
substitutions tested per phase and there are O(logn) phases.

Lemma 8.30. The number of all failed tests is O(logn) over the whole run of OneVarWordEq.

Proof. As noticed, there are O(1) substitutions tested per phase. Suppose that the mismatch is for
the letter from Ai and a letter from XBj (the case of XAi and Bj is symmetrical). Then the failed
tests include at least one letter from XAi−1XAi or XBj−1XBjX, assuming they come from a short
word. There are at most 4K failed tests that include a letter from Ai−1, Ai, Bj−1, Bj (as if the test is
failed then in particular this explicit word is short). Concerning the tests including the occurrences of
X in-between them, observe that by Lemma 8.27 each such X can have tests with at most one short
word, so this gives additional 5K tests. Since K = O(1), we conclude that there are O(1) failed tests
per phase and so O(logn) failed tests in total, as there are O(logn) phases, see Lemma 8.16.

Protected tests

As already claimed, the total number of protected tests is linear in terms of length of long words: to
show this it is enough to charge the cost of the protected test to the appropriate long word and see
that a long word A can be charged only |A| such tests for test including letters from A and O(1) letters
from neighbouring short words, which yields O(|A|) tests. As the length of the long words drops by a
constant factor, summing this up over all phases in which this explicit word is long yields O(n) tests
in total.
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Lemma 8.31. In one phase the total number of protected tests is proportional to the length of the
long words. In particular, there are O(n) such test during the whole run of OneVarWordEq.

Proof. As observed in Lemma 8.28 we can consider only tests in which at least one letter comes from
an explicit word. Suppose that a letter from Ai takes part in the protected test (the argument for a
letter from Bj is similar, it is given later on) and it is tested against a letter from XBj , then one of
Ai, Ai+1, Bj , Bj+1 is long, we charge the cost according to this order, i.e. we charge it to Ai if it is
long, if Ai is not but Ai+1 is long, we charge it to Ai+1, if not then to Bj if it is long and otherwise
to Bj+1. The analysis and charging for a test of a letter from Bj is done in a symmetrical way (note
that when the test includes two explicit letters, we charge it twice, but this is not a problem).

Now, fix some long word Ai, we estimate, how many protected tests can be charged to it. It can
be charged with cost of tests that include its own letters, so |Ai| tests. When Ai−1 is short, it can also
charge tests in which its letters take part. As it is short, it is at most O(K) = O(1) such tests.

Also some words from B can charge the cost of tests to Ai, we can count only the test in which
letters from Ai do not take part. This can happen in two situations: letters tested against XAi and
letters tested against XAi−1 (in which case we additionally assume that Ai−1 is short). We have
already accounted the tests made against Ai−1 and Ai and by Lemma 8.27 for each occurrence of X
there is at most one explicit word whose letters are tested against this occurrence of X. Those that
were charged to Ai come from short words, so there are additionally at most 2K tests of this form.

So in total Ai is charged only O(|Ai|) in a phase. From Lemma 8.16 the sum of lengths of long
words drops by a constant factor in each phase, and as in the input it is at most n, the total sum of
number of protected tests is O(n).

Misaligned tests

On the high level, in this section we want to show that if there is a misaligned test then the tested
solution is small and use this fact for accounting the cost of such tests. However, this statement is
trivial, as we test only solutions of the form ak for some k, which are always small. To make this
statement more meaningful, we generalise the notion of a misaligned test for arbitrary substitutions,
not only the tested one. In this way two explicit words Ai and Bj can be misaligned for a substitution
s. We show three properties of this notion:

M1 If there is a misaligned test for a substitution s for a letter from Ai against letter in XBj or a
letter from Bj against letter from XAi then Ai and Bj are misaligned for s. This is shown in
Lemma 8.32.

M2 If there are misaligned words Ai and Bj for a solution s then s is small, as shown in Lemma 8.33.

M3 If Ai and Bj are misaligned for s in a phase ℓ then s is reported in phase ℓ or the corresponding
words A′

i and B′
j in phase ℓ+ 1 are also misaligned for the corresponding s′, see Lemma 8.34.

Those properties are enough to improve the testing procedure so that one (A, i)-word (or (B, j)-
word) takes part in only O(1) misaligned tests: suppose that Ai becomes small in phase ℓ. Then all
solutions, for which it is misaligned with some Bj , are small by (M2). Hence, by Theorem ??, all
of those solutions are reported (in particular: tested) within the next c phases, for some constant c.
Thus, if Ai takes part in a misaligned test (for s) in phase ℓ′ > ℓ + c then s is not a solution: by
(M1) Ai and appropriate Bj are misaligned and by (M3) they were misaligned also in phase ℓ (for
the corresponding solution s′), and solution s′ was reported before phase ℓ′, by (M2). Hence we can
immediately terminate the test; therefore Ai can take part in misaligned tests in phases ℓ, ℓ+ 1, . . . ,
ℓ + c, i.e. O(1) ones. This plan is elaborated in this section, in particular, some technical details
(omitted in the above description) are given.

We say that Ai and Bj that are blocks from two sides of one equations Aℓ = Bℓ are misaligned for
a substitution s if

• a mismatch for s is not found till the end of Ai+1 or Bj+1;

• all Ai+1, Ai, Bj+1 and Bj are short;
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Figure 8.5: A letter from Bj is arranged against the letter from Ai. The period of s(X) is in grey.

• either Ai ̸= Ai+1 or Bj ̸= Bj+1;

• it does not hold that Ai = Bj and Ai+1 = Bj+1 and the first letter of Ai is at the same position
as the first letter of Bj under substitution s;

• the position of the first letter of Ai in s(Aℓ) is among the position of s(XBj) in s(Bℓ) or,
symmetrically, the position of the first letter of Bj in s(Bℓ) is among the position of s(XAi) in
s(Aℓ).

We show (M1), which shows that the definitions of misaligned blocks and misaligned tests are
reformulations of each other.

Lemma 8.32. If a letter from Ai is tested (for s) against a letter from XBj and this test is misaligned
then Ai and Bj are misaligned for s; similar statement holds for letters from Bj.

Proof. This is just a reformulation of a definition (we consider only the case of letters from Ai, the
argument for letters from Bj is symmetrical):

• Since this is not a failed test, there is no mismatch till the end of Ai+1 and Bj+1.

• As this is not a protected test, all Ai, Ai+1, Bj and Bj+1 are short.

• As this is a misaligned test, either Ai ̸= Ai+1 or Bj ̸= Bj+1.

• As this is not an aligned test, either Ai ̸= Bj or Ai+1 ̸= Bj+1 or the first letter of Ai is not at
the same position as the first letter of Bj (both under s).

• By the choice of Bj , the first position of Ai under s is among the positions of XBj (under s).

We move to showing (M2). It follows by considering s(XAiXAi+1X) and s(XBjXBj+1X). The
large amount of s(X) in it allows showing the periodicity of fragments of s(X) and in the end, that s
is small.

Lemma 8.33. When the Ai and Bj are misaligned for a solution s then s is small.

Proof. Suppose that Ai and Bj are from an equation Aℓ = Bℓ. In the proof we consider only one of
the symmetric cases, in which Ai is begins not later than Bj (i.e. the first letter of Ai is arranged
against the letter from XBj), the other case is shown similalry.

There are two main cases: either some of Ai, Ai+1, Bj and Bj+1 has some of its letters arranged
against an explicit word or all those words are arranged against (some occurrences) of X.

One of the words has some of its letters arranged against an explicit word.

We claim that in this case s has a period of length at most K, in particular, it is small. First of all
observe that it is not possible that each of Ai, Ai+1, Bj and Bj+1 has all of its letters arranged against
letters of an explicit word: since Ai is arranged against XBj this would imply that Ai is arranged
against Bj (in particular, their first letters are at corresponding positions) and (as no mismatch is
found till end of Ai and Bj) so Ai = Bj . Similarly, Ai+1 = Bj+1. This contradicts the assumption
that Ai and Bj are misaligned.

Thus, there is a word among Ai, Ai+1, Bj and Bj+1, say Bj , that is partially arranged against
an explicit word and partially against X (note that this explicit word does not have to be among
Ai, Ai+1, Bj and Bj+1), see Figure 8.5. As each explicit words is proceeded and succeeded by X, it
follows that s(X) has a period at most K.
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X X XAi+1Ai

X X XBj+1

x− pp a p− a b x− p+ a− b

Bj

Figure 8.6: The letters of Ai, Ai+1, Bj and Bj+1 are arranged against the letters from s(X). The
lengths of fragments of text are beneath the figure, between dashed lines. Comparing the positions of
the first and second s(X) yields that p is a period of s(X), second and third that x− p+ a while the
third and fourth that p − a + b is. The borders of s(X) corresponding to the first and third one are
marked in grey.

All words have all their letters arranged against occurrences of X.

In the following we assume that letters from Ai, Ai+1, Bj and Bj+1 are arranged against the letters
from s(X). Observe that due to Lemma 8.27 this means that whole Ai is arranged against s(X)
preceding Bj , the Bj against s(X) preceding Ai+1, whole Ai+1 against s(X) preceding Bj+1 and
whole Bj+1 against s(X) succeeding Ai+1, see Fig. 8.6.

Let a = |Ai|, b = |Bj | and x = |s(X)|, as in Fig. 8.6. There are three cases: a > b, a < b and
a = b, we consider them separately.

Consider first the case in which a > b, see Fig. 8.6. Let p denote the offset between the s(X)
preceding Ai and the one preceding Bj ; then s(X) has a period p. Similarly, when we consider the
s(X) succeeding Ai and the one succeeding Bj we obtain that the offset between them is p − a + b,
which is also a period of s(X). Those offsets correspond to borders (of s(X)) of lengths x − p and
x− p+ a− b, see Fig. 8.6. Then the shorter border (of length x− p) is also a border of the longer one
(of length x − p + a − b), hence the border of length x − p + a − b has a period a − b, so it is of the
form wku, where |w| = a − b and |u| < a − b. Now, the prefix of s(X) of length x − p + a is of the
form wku′, for some u′ of length less than a (as this is a prefix of length x− p+ a− b extended by the
following b letters). When we compare the positions of s(X) preceding Bj and the one succeeding Ai
we obtain that s(X) has a period x− p+ a so the whole s(X) is of the form (wku′)ℓw′, where w′ is a
prefix of wku′, hence s is small: w and u′ are of length at most K, as w′ is a prefix of wku′, either it
is a prefix of wk, so it is of the form wk

′
w′′ where w′′ is a prefix of w, or it includes the whole wk, so

it is of the form wku′′, where u′′ is a prefix of u′.
Consider the symmetric case, in which b > a and again use Fig. 8.6. The same argument as before

shows that p and p− a+ b are periods of s(X) and the corresponding borders are of length x− p and
x − p + a − b. Now, the shorter of them (of length x − p + a − b) is a border of longer of them (of
length x− p), so the prefix of length x− p of s(X) has a period b− a, so it is of the form wku, where
|w| = b − a and |u| < b − a. Hence the prefix of length x − p + a is of the form wku′ for some u′ of
length less than b. As in the previous case, s(X) has a period x − p + a and so the whole s(X) is of
the form (wku′)ℓw′, where w′ is a prefix of wku′, hence s is small.

Consider now the last case, in which |Ai| = |Bj |. If |Ai+1| ≠ |Ai| then |Bj | ≠ |Ai+1| and we can
repeat the same argument as above, with Bj and Ai+1 taking the roles of Ai and Bj , which shows
that s is small. So consider the case in which |Ai+1| = |Ai|. If |Bj | ̸= |Bj+1| then again, repeating
the argument as above for Ai+1 and Bj+1 yields that s is small. So we are left with the case in which
|Ai+1| = |Ai| = |Bj | = |Bj+1|. Then Ai+1 is arranged against the same letters in s(X) as Ai and Bj+1
is arranged against the same letters in s(X) as Bj . As there is no mismatch till the end of Ai+1 and
Bj+1, we conclude that Ai+1 = Ai and Bj+1 = Bj contradicting the assumption that Ai and Bj are
misaligned, so this case is non-existing.

We now show that if Ai and Bj are misaligned for s then they were (for a corresponding solution)
in the previous phase (assuming that all involved words were short). This is an easy consequence of
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the way explicit words are modified (we prepend and append the same letters and compress all explicit
words in the same way).

Lemma 8.34. Suppose that Ai and Bj are misaligned for a solution s. If at the previous phase all
A′
i+1, A′

i, B′
j+1 and B′

j were short then A′
i and B′

j were misaligned for the corresponding solution s′.

Proof. We verify the conditions on misaligned words point by point:

• Since s′ is a solution, there is no mismatch.

• By the assumption, all A′
i+1, A′

i, B′
j+1 and B′

j are short.

• We know that either Ai ̸= Ai+1 or Bj ̸= Bj+1 and so by Lemma 8.21 either A′
i ̸= A′

i+1 or
B′
j ̸= B′

j+1 (observe that none of them is the last nor first, as they are not in the next phase).

• Suppose that A′
i = B′

j , A′
i+1 = B′

j+1 and under s′ the first letters of A′
i and B′

j are arranged
against each other. By Lemma 8.21 it follows that Ai = Bj , Ai+1 = Bj+1. Observe that left-
popping and right popping preserves the fact that the first letters of (A, i)-word and (B, j)-word
are arranged against each other for s′ (as s(A) and s′(A′) are the same words). As s′ is a
solution, the same applies to pair compression and block compression. Hence, the first letters of
Ai and Bj are arranged against each other, contradiction with the assumption that Ai and Bj
are misaligned.

• Suppose that the first letter of Ai is arranged against a letter from s(XBj). Consider, how A′
i

and XB′
j under s′ are transformed to Ai and XBj under s. As in the above item, popping

letters does not influence whether the first letter of (A, i)-word is arranged against letter from
s(X) and (B, j)-word (as s(A) and s′(A′) are the same words). Since s′ is a solution, the same
applies also to pair and block compression. So the position of the first letter of Ai is among the
position of s(XBj) if and only if the first letter of A′

i is arranged against a letter from s′(XB′
j).

The case in which the position of the first letter of Bj is among the position of s(XAi) is shown
in a symmetrical way.

Now we are ready to give the improved procedure for testing and estimate the number of the
misaligned tests in it.

Lemma 8.35. There are O(n) misaligned tests during the whole run of OneVarWordEq.

Proof. Consider a tested solution s and a misaligned test for a letter from Ai against a letter from
XBj (the case of test of letters from Bj tested against XAi the argument is the same). Let ℓ be the
number of the first phase, in which all (A, i)-word, (A, i + 1)-word, (B, j)-word and (B, j + 1)-word
are short. We claim that this misaligned test happens between ℓ-th and ℓ + c phase, where c is the
O(1) constant from Theorem ??.

Let A′
i and B′

j be the corresponding words in the phase ℓ. Using induction on Lemma 8.34 it follows
that A′

i and B′
j are misaligned for s′. Thus by Lemma 8.33 the s′ is small and thus by Theorem ?? it

is reported till phase ℓ+ c. So it can be tested only between phases ℓ and ℓ+ c, as claimed.
This allows an improvement to the testing algorithm: whenever (say in phase ℓ) a letter from Ai

has a misaligned test against a letter from s(XBj) we can check (in O(1) time), in which turn ℓ′ the
last among (A, i)-word, (A, i+ 1)-word, (B, j)-word and (B, j+ 1)-word became small (it is enough to
store for each explicit word the number of phase in which it became small). If ℓ′ + c < ℓ then we can
terminate the test, as we know already that s is not a solution. Otherwise, we continue.

Concerning the estimation of the cost of the misaligned tests (in the setting as above), there are
two cases:

• The misaligned tests that lead to the rejection of s: This can happen once per tested solution
and there are O(logn) tested solution in total (O(1) per phase and there are O(logn) phases).
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• Other misaligned tests: The cost of the test (of a letter from Ai tested against s(XBj)) is charged
to the last one among (A, i)-word, (A, i+ 1)-word, (B, j)-word and (B, j + 1)-word that became
short. By the argument above, this means that this word became short within the last c phases.
Let us calculate, for a fixed (A, i)-word (the argument for (B, j)-word is symmetrical) how many
misaligned tests of this kind can be charged to this word. They can be charged only within c
phases after this word become short. In a fixed phase we test only a constant (i.e. 5) substitutions.
For a fixed substitution, Ai can be charged the cost of tests in which letters from Ai or Ai−1
are involved (providing that Ai or Ai−1 is short), which is at most 2K. They can be charged
also the tests from letters from Bj that is aligned against X preceding Ai−1 or X preceding Ai
(providing that Bj as well as Ai−1 are short). Note that there is only one Bj whose letter are
aligned against X preceding Ai−1 and one for X preceding Ai, see Lemma 8.27, so when they
are short this gives additional 2K tests.
This yields that one (A, i)-word is charged O(K) = O(1) tests in total. Summing over all words
in the instance yields the claim of the lemma.

Aligned tests

Suppose that we make an aligned test, without loss of generality consider the first such test in a
sequence of aligned tests. Let it be between the first letter of Ai and the first letter in Bj (both
of those words are short). For this Ai and Bj we want to perform the whole sequence of successive
aligned tests at once, which corresponds of jumping to Ai+k and Bj+k within the same equation such
that

• Ai+ℓ = Bi+ℓ for 0 ≤ ℓ < k and

• Ai+k ̸= Bj+k or one of them is a last word or Ai+kX or Bj+kX ends one side of the equation.

Note that this corresponds to a syntactical equality of fragments of the equation, which, by Lemma 8.21,
is equivalent to a syntactical equality of fragments of the original equation. We preprocess (in O(n)
time) the input equation (building a suffix array equipped with a structure answering general lcp
queries) so that in O(1) we can return such k as well as the links to Ai+k and Bj+k. In this way we
perform all equality tests for AiXAi+1X . . . Ai+k−1X = BjXBj+1X . . .XBj+k−1X in O(1) time.

To simplify the considerations, when AiX (BjX) ends one side of the equation, we say that this
Ai (Bj , respectively) is almost last word. Observe that in a given equation exactly one side has a last
word and one an almost last word.

Lemma 8.36. In O(n) we can build a data structure which given equal Ai and Bj in O(1) time
returns the smallest k ≥ 1 and links to Ai+k and Bj+k such that Ai+k ̸= Bj+k or one of Ai+k, Bj+k
is a last word or one of Ai+k, Bj+k is an almost last word.

Note that it might be that some of the equal words Ai+ℓ = Bi+ℓ are long, and so their tests should
be protected (also, the tests for some neighbouring words). So in this way we also make some free
protected tests, but this is not a problem. Furthermore, the returned Ai+k and Bj+k are guaranteed
to be in the same equation.

Proof. First of all observe that for Ai and Bj it is easy to find the last word in their equation as well
as the almost last word of the equation: when we begin to read a particular equation, we have the
link to both the last word and the almost last word of this equation and we can keep them during
the testing of this equation. We also know the numbers of those words so we can also calculate the
respective candidate for k. So it is left to calculate the minimal k such that Ai+k ̸= Aj+k.

Let A′
i, B′

j etc. denote the corresponding original words of the input equation. Observe that by
Lemma 8.21 it holds that A′

i+ℓ = B′
j+ℓ if and only if Ai+ℓ = Bj+ℓ as long as none of them is last or

first word. Hence, it is enough to be able to answer such queries for the input equation: if the returned
word is in another equation then we should return the last or almost last word instead.

To this end we build a suffix array [24] for the input equation, i.e. for a string A′
1XA

′
2X . . . A′

nX

XB′
1XB

′
2X . . . B′

nX
$. Now, the lcp query for suffixes A′

i . . . $ and B′
j . . . $ returns the length of the
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longest common prefix. We want to know what is the number of explicit words in the common prefix,
which corresponds to the number of Xs in this common prefix. This information can be easily pre-
processed and stored in the suffix array: for each position ℓ in A′

1XA
′
2X . . . A′

nXXB
′
1XB

′
2X . . . B′

nX
$

we store, how many Xs are before it in the string and store this in the table prefX. Then when
for a suffixes beginning at positions p and p′ we get that their common prefix is of length ℓ, the
prefX[p+ ℓ]− prefX[p] is the number of Xs in the common prefix in such a case. If none of Ai, Ai+1,
. . . , Ai+k nor Bj , Bj+1, . . . , Bj+k is the last word nor it ends the equation (i.e. they are all still in
one equation) by Lemma 8.21 the k is the answer to our query (as Ai = Bj , Ai+1 = Bj+1,. . . and
Ai+k ̸= Bj+k and none of them is a last word, nor none of them ends the equation). To get the actual
links to those words, at the beginning of the computation we make a table, which for each i returns
the pointer to (A, i)-word and (B, i)-word. As we know i, j and k we can obtain the appropriate links
in O(1) time. So it is left to compare the value of k with the value calculated for the last word and
almost last word and choose the one with smaller k and the corresponding pointers.

Using this data structure we perform the aligned tests is in the following way: whenever we make
an aligned test (for the first letter of Ai and the first letter of Bj), we use this structure, obtain k and
jump to the test of the first letter of Ai+k with the first letter of Bj+k and we proceed with testing
from this place on. Concerning the cost, by easy case analysis it can be shown that the test right
before the first of sequence of aligned tests (so the test for the last letters of Ai−1 and Bj−1) is either
protected or misaligned. There are only O(n) such tests (over the whole run of OneVarWordEq), so
the time spend on aligned tests is O(n) as well.

Lemma 8.37. The total cost aligned test as well as the usage of the needed data structure is O(n).

Proof. We formalise the discussion above. In O(1) we get to know that this is an aligned test, see
Lemma 8.29. Then in O(1), see Lemma 8.36, we get the smallest k such that Ai+k ̸= Bj+k or one
of them is an almost last word for this equation or the last word for this equation. We then jump
straight to the test for the first letter of Ai+k and Bj+k.

Consider Ai−1 and Bj−1 we show that the test for their last letters (so the test immediately before
the first aligned one) is protected or misaligned. By Lemma 8.29 it is enough to show that it is not
aligned, nor periodic, nor failed.

• If it were failed then also the test for the first letters of Ai and Bj would be failed.

• It cannot be aligned, as we chose Ai and Bj as the first in a series of aligned tests.

• If it were periodic, then Ai−1 = Ai and Bj−1 = Bj while by assumption Ai = Bj , which implies
that this test is in fact aligned, which was already excluded.

Hence we can associate the O(1) cost of whole sequence of aligned test to the previous test, which
is misaligned or protected. Clearly, one misaligned or protected test can be charged with only one
sequence of aligned tests (as it is the immediate previous test). By Lemma 8.31 and 8.35 in total there
are O(n) misaligned and protected tests. Thus in total all misaligned tests take O(n) time.

Periodical tests

The general approach in case of periodical tests is similar as for the aligned tests: we would like to
perform all consecutive periodical tests in O(K) time and show that the test right before this sequence
of periodic tests is either protected or misaligned. As in case of aligned tests, the crucial part is the
identification of a sequence of consecutive periodical tests. To identify them quickly, we keep for each
short Ai the value k such that Ai+k is the first word that is different from Ai or is the last word or
the almost last word (in the sense as in the previous section: Ai+k is almost last if Ai+kX ends the
side of the equation), as well as the link to this Ai+k. Those are easy to calculate at the beginning of
each phase. Now when we perform a periodical test for a letter from Ai, we test letters from s((AX)k)
against the letters from (suffix of) s(X(BX)ℓ). If |A| = |B| then both strings are periodic with period
|s(AX)| and their equality can be tested in O(|A|) time. If |A| ≠ |B| then we retrieve the values kA
and kB which tell us what is repetition of AX and BX. If one of them is smaller than 3 we make
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the test naively, in time O(|A|+ |B|). If not, we exploit the fact that s((BX)ℓ) has a period |s(BX)|
while s((AX)k) has a period |s(AX)| and so their common fragment (if they are indeed equal) has a
period | |s(AX)| − |s(BX)| | = | |A| − |B| | (note that the outer ‘|’ denote the absolute value). Hence
we check, whether s(AX) and s(BX) have this period and check the common fragment of this length,
which can be done in O(|A|+ |B|) time. The converse implication holds as well: if s(AX) and s(BX)
have period ||A| − |B|| and the first ||A| − |B|| tests are successful then all of them are. Concerning
the overall running time, as in the case of aligned test, the test right before the first periodic test is
either protected or misaligned, so as in the previous section it can be shown that the time spent on
periodical tests is O(n) during the whole OneVarWordEq.

Lemma 8.38. Performing all periodical tests and the required preprocessing takes in total O(n) time.

Proof. Similarly as in the case of aligned tests, see Lemma 8.37, we can easily keep the value k and
the link to Ai+k such that Ai+k is the last or almost last word in this equation, the same applies for
Bj+k. Hence it is left to show how to calculate for each short Ai (and Bj) the k such that Ai+k is the
first word that is different from Ai.

At the end of the phase we list all words Ai that become short in this phase, see Lemma 8.21,
ordered from the left to the right (this is done anyway, when we identify the new short words). Note
that this takes at most the time proportional to the length of all long words from the beginning of the
phase, so O(n) in total. Consider any Ai on this list (the argument for Bj is identical), note that

• if Ai+1 ̸= Ai then Ai should store k = 1 and a pointer to this Ai+1;

• if Ai = Ai+1 then Ai+1 also became short in this phase and so it is on the list and consequently
Ai should store 1 more than Ai+1 and the same pointer as Ai+1.

So we read the list from the right to the left, let Ai be an element on this list. Using the above
condition, we can establish in constant time the value and pointer stored by Ai. This operation is
performed once per (A, i)-word, so in total takes O(n) time.

Consider a periodic test, without loss of generality suppose that a letter from Ai is tested against
a letter from XBj (in particular, Ai begins not later than Bj), let the kA and kB be stored by Ai
and Bj ; as this is a periodical test, both kA and kB are greater than 1. Among Ai+kA

and Bj+kB

consider the one which begins earlier under substitution s: this can be determined in O(1) by simply
comparing the lengths, the length on the A-side of the equation is kA(|Ai| + |s(X)|) while B-side is
kB(|Bj | + |s(X)|) + m, where m is the remainder of s(X) that is compared with Ai. Let k and ℓ be
the smallest numbers such that the common part of s(AiX · · ·XAi+k−1X) and s(BjX · · ·XBj+ℓ−1X)
contain the common part of s(AiX · · ·XAi+kA−1X) and s(BjX · · ·XBj+kB−1X)

Ai+k and Bj+ℓ be the Note that the test for the first letter of this word is not periodic, so when we
jump to it we skip the whole sequence of periodic tests. We show that in O(1) time we can perform
the tests for all letters before this word and that the test right before the first test for Ai is protected
or misaligned.

Let a = |Ai|, b = |Bj | and x = |s(X)|. First consider the simpler case in which a = b. Then the
tests for Ai+1, . . . , Ai+k−1 are identical as for Ai, and so it is enough to perform just the test for Ai
and Bj and then jump right to Ai+k.

So let us now consider the case in which a > b. Observe that when the whole s((BjX)ℓ) is within
s((AiX)3) then this can be tested in constant time in a naive way: the length of s((AiX)3) is 3(a+x)
while the length of s((BjX)ℓ) is ℓ(b + x). Hence 3(a + x) ≥ ℓ(b + x) and so ℓ ≤ 3(a + x)/(b + x) ≤
3 max(a/b, x/x) ≤ 3K, because a/b is at most K. Thus all tests for s((AiX)3) and s((BjX)ℓ) can be
done in O(K) = O(1) time.

So consider the remaining case, see Fig. 8.7 for an illustration, when k > 3. We claim that the
tests for s(AiX · · ·XAi+k−1X) and s(BjX · · ·XBj+ℓ−1X) are successful if and only if

• s(AiX) and s(BjX) have period gcd(a+ x, b+ x) and

• the first gcd(a+x, b+x) tests for s(AiX · · ·XAi+k−1X) and s(BjX · · ·XBj+ℓ−1X) are successful.
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XA XA XA

XB XB XB XB

a+ x a+ x

b+ x b+ x b+ x b+ x

Figure 8.7: The case of a > b. The part of s((XAi)2) that has a period a+ x and b+ x is in grey.

X

Bj

Ai

XBj−1

Ai−1

Figure 8.8: The test right before the first among the sequence of periodic tests. Since Ai begins not
later than Bj , Bj−1 ends not earlier than Ai−1.

⇒⃝ First s(XAiXAi) has period x + a. However, it is covered with s((BjX)ℓ), so it also has period
x+ b. Since x+a+x+ b < 2x+ 2a, it follows that also the gcd(x+a, x+ b) is a period of s(XAiXAi)
and so also of s(AiX) and thus also s(BjX). The second item is obvious.
⇐⃝ Since s(AiX) and s(BjX) have period gcd(a+x, b+x) also s(AiX · · ·XAi+k−1X) and s(BjX · · ·XBj+ℓ−1X)
have this period. As the first gcd(a+x, b+x) tests for s(AiX · · ·XAi+k−1X) and s(BjX · · ·XBj+k−1X)
are successful, it follows that all the tests for their common part are.

So, to perform the test for s(AiX · · ·XAi+k−1X) and s(BjX · · ·XBj+ℓ−1X) it is enough to: cal-
culate p = gcd(a + x, b + x), test whether s(AiX), s(BjX) have period p and then perform the first
p tests for s(AiX · · ·XAi+k−1X) and s(BjX · · ·XBj+ℓ−1X). All of this can be done in O(1), since
p ≤ a−b ≤ K (note also that calculating p can be done in O(1), as gcd(x+a, x+b) = gcd(a−b, x+b)
and a− b ≤ K).

The case with b > a is similar: in the special subcase we consider whether s((AiX)k) is within
s(X(BjX)3). If so then the tests can be done in O(K) time. If not, then we observe that the
s(XBj+1XBj+2) is covered by s((AiX)k). So it the tests are successful, it has period both x + b as
well as x+ a, so it has period gcd(x+ a, x+ b). The rest of the argument is identical.

For the accounting, we would like to show that the test right before the first among the considered
periodic tests is not periodic. Observe, that as Ai begins not later (under s) than Bj it means that
the last letter of Bj−1 is not earlier than the last letter of Ai−1, see Figure 8.8. So the previous test
includes the last letter of Bj−1. It is enough to show that this test is not failed, periodic, nor aligned.

• failed: If it is failed then also the test for the letters in Ai are failed.

• periodic: If it is periodic then this contradicts our choice that the test for the first letter of Ai
is the first in the sequence periodic tests.

• aligned: Since the first letter of Ai is arranged against XBj , in this case the last letter of Bj−1
needs to be arranged against the last letter of Ai−1. Then by the definition of the aligned test,
Bj = Ai and their first letters are at the same position. As by the assumption about the periodic
tests we know that Ai+1 = Ai and Bj+1 = Bj we conclude that the test for the first letter of Ai
is in fact aligned, contradiction.

Hence, by Lemma 8.29, the test for the last letter of Bj−1 is either protected or misaligned. Using
the same accounting as in Lemma 8.37 we conclude that we spent at most O(n) time on all periodic
tests.
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Proof of Lemma 8.28

It is left to show that indeed we do not need to take into the account the time spent on comparing
s(X) with s(X) on the other side of the equation.

proof of Lemma 8.28. Recall that we only test solutions of the form s(X) = ak. Since we make the
comparisons from left to the right in both s(Aℓ) and s(Bℓ) then when we begin comparing letters from
one s(X) with the other s(X), we in fact compare some suffix aℓ of ak with ak. Then we can skip those
aℓ letters in O(1) time. Consider the previous test, which needs to include at least one explicit letter.
Whatever type of test it was or whatever group of tests it was in, some operations were performed
and this took Ω(1) time. So we associate the cost of comparing s(X) with s(X) to the previous test,
increasing the running time by at most a multiplicative constant.

Exercises

Task 43 Consider an equation

A0XA1 . . . AnX−1XAnX = XB1 . . . BnX−1X

with A0 ̸= ϵ ̸= AnX . Show that it has an equivalent equation in which A′
nX

= ϵ and B′
nX
̸= ϵ.

Hint:Firstshowthatthereisasystemofequivalentequations,obtainedbyappropriatesplitting,and
thenconcatenatetheminadifferentway.

Task 44 Show that if a word equation Xp = qX is satisfiable then:

• p, q are conjugate and consequently also the primitive roots of p, q are conjugate, that is, there
are u, v such that uv, vu are primitive and p = (vu)k and q = (uv)k for some k ≥ 1;

• the set of solutions is (uv)∗u.

Given p, q the u, v can be calculated in linear time.

Task 45 Show that for a given a set of primitive words P1, . . . , Pk such that for each i P 2
i ⊑B1A0A0,

in total time O(|B1A0A0|) we can establish for all Pi from P1, . . . , Pk the Pi-prefix of B1A0A0.

Task 46 Show that if a word equation

A0XA1 . . . AnX−1X = XB1 . . . BnX−1XBnX

has an infinite family of solutions si(X) = (uv)iu, then uv is the primitive root of A0 (this more or
less follows from the two first cases of our analysis) and, by symmetry, vu is the primitive root of BnX .

Moreover, this equation is equivalent to a system of equations (as above), in which each equation
additionally satisfies:

A0 ∈ (uv)+

Ai, Bj ∈ v(uv)∗for i > 0, j < nX

BnX ∈ (vu)+

To be more precise, we can partition the above equation into such a system.
To this end consider the uv-prefixes of the sides. What happens, when they terminate?

Task 47 Show that if a word equation

A0XA1 . . . AnX−1X = XB1 . . . BnX−1XBnX

has an infinite family of solutions si(X) = (uv)iu (for each i) then it has no other solution.
Use Task 46 and Task 44 and think big:

• use simplification from Task 46
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• under those assumptions show that XA1X . . . AnX−1X,XB1 . . . BnX−1X ∈ (uv)∗u: treat the
equation as an equation from Task 44

• conclude that without loss of generality A1, . . . , AnX−1, B1, dots,BnX−1 = v

• then A1X . . . AnX−1X has period uv and Xv

• conclude that X ∈ (uv)∗u

• show that

. A proof by case inspection and periodicity is most likely very difficult. Laine and Plandowski [28]
has such a proof, but it seems to have an error.

Task 48 Suppose that given a word w we can construct in O(n) time a structure such that given
two indices i, j in O(1) time returns the length of the longest common prefix of words w[i . . n] and
w[j . . n].

Explain how it can be used to verify in O(n + nX logn) time the O(logn) candidate solutions,
each of which is a prefix of A0, defined as in (8.1).

Task 49 Show that for every solution s of a word equation such that s(X) ̸= ϵ the first letter of s(X)
is the first letter of A0 and the last the last letter of BnX .

If A0 ∈ a+ then s(X) ∈ a+ for each solution s of A = B.
If the first letter of A0 is a and A0 /∈ a+ then there is at most one solution s(X) ∈ a+, existence

of such a solution can be tested (and its length returned) in O(|A| + |B|) time. Furthermore, for
s(X) /∈ a+ the lengths of the a-prefixes of s(X) and A0 are the same.

Task 50 Show that if compression-based algorithm (for word equations) at some point performs a
a-blocks compression (and at least one block is replaced), then the word compressed to a from the
initial instance is primitive.

For simplicity you may consider the algorithm running on a given word, with no variables.

Task 51 RSLP (run-length SLP) is an SLP in which we allow rules X → Y k, where k is a natral
number. The rule size is considered constant.

Show that a compression-based algorithm for one-variable word equation reports a solution defind
using an RSLP of size (and height) O(1) in O(1) rounds.

Task 52 Show that a one-variable word equations, whose constant words between the variables are
defined using SLPs, can be solved in polynomial time.

This should be easy with compression-based algorithm (also tor RSLPs instead of SLPs), for word-
combinatorics based one you need to use some (known) algorithms: pattern matching of SLP-defined
pattern inside SLP-defined word can be done ia polynomial time. Computation of all primitive squares
prefixing an SLP can be done in polynomial time.

Task 53 Show how to solve (in polynomial time) a 1-variable word equation which uses (inside constant
words) expression of a form (uiu′v)j , where i, j are parameters, i.e. we want to have a description of
all solutions, for all possible values of i, j. Here u′ is a prefix of u.

If this helps, you can assume that (uiu′v)j is a prefix of A0.
Again, should be rather easy using compression-based approach. Requires some not-so difficult

claims on primitivity for word-combinatorics based
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Chapter 9

Quadratic word equations

Since in general the satisfiability of word equations is NP-hard, it is natural to try to find a smaller
subclass of this problem, which is decidable in P. Limiting the number of possible variables or the
number of their occurrences are such candidates. In case of quadratic (i.e. each variable occurs at
most twice) equations it is easy to give a (non-deterministic) linear-space algorithm, which preceded
a general PSPACE algorithm.

Algorithm 12 Lentin/Plotkin/Siekman/Matiyasevich algorithm for word equations
1: while The equation u = v is nontrivial do
2: let u = αu′, v = βv′

3: if α = β then
4: set u← u′, v ← v′

5: else if α is a variable then
6: if s(α) = ϵ then ▷ Non-deterministic guess
7: remove α from the equation
8: else if s(β) = ϵ then ▷ Non-deterministic guess
9: remove β from the equation

10: else if s(α) ≥ s(β) then ▷ Non-deterministic guess
11: replace α in the equation with βα
12: else ▷ β is a variable
13: replace β with αβ

14: else if β is a variable then ▷ Symmetric actions
15: else if α, β are different letters then
16: reject

9.1 Analysis

It is easy to see that Algorithm 12 is sound — this follows straight from Lemma 2.3; it is not difficult
to see that it is complete (when we make the choices according to some solution). What is not obvious,
and in fact not true in general, is that it is terminating. However, for quadratic word equations the
length of the equation does not increase: we introduce at most two new symbols, but at the same time
removed exactly two due to reduction. This procedure can be easily written down as a graph with
nodes labelled with possible (systems of equations) and edges between them representing the possible
steps.

It remains unknown, whether quadratic equations are in NP. This is known in case of equations
in free groups [26], but the argument is heavy in terms of geometry, so it will not be presented here.

We say that (quadratic word equations) is regular, when each variable occurs at most once at each
side. Satisfiability of quadratic regular word equations is in NP [9].
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Exercises

Task 54 Run the algorithm for quadratic word equation on

abXcY = Y cXba

Draw the resulting graph of equations considered by the algorithm.

Task 55 Show that the algorithm for quadratic equations in fact yields a description of all solutions
of such na equation.

Task 56 Consider a restricted class of word equations satisfying the following two conditions: regular
and

oriented If two variables X,Y occur on both sides of the equation then they appear in the same
order on both sides (i.e. if X occurs to the left of Y on the left-hand side, the same happens on
the right-hand side and vice-versa).

Show that satisfiability quadratic, regular, oriented word equations is in NP.

Task 57 Extend the algorithm for quadratic word equations so that it also allows regular constraints.



Chapter 10

Word equations with two variables

In this section be n we consistently mean the size of the input equation over two variables.

10.1 Parametrised words
This chapter is based on [13].

0 A 0-parametrised word is a language consisting of a single word p of length O(n); the size of this
parametrised word is |p|.

1 A 1-parametrised word is a language {pjq : j ≥ 0}, where p, q are words, p is not a prefix of q; the
size of this parametrised word is |pq|.

2 A 2-parametrised word is a language {(pj+aq)kpjp′ : j, k ≥ 0}, where p, q, p′ are words, p′⊑p, p is
not a prefix of qand a ∈ N; the size of this parametrised word is |pqp′|.

10.2 Canonisation
We say that a word equation with two variables is in a canonised form if its sides begin with different
variables (so one side with X and the other with Y ) and end with different variables (so in case of
quadratic words ).

Lemma 10.1. Given an equation over two variables it can be transformed into an equation in a canon-
ised form or a superset of solutions for one of the variables which is a union of O(n) 1-parametrised
words or 0-parametrised words can be found. If the equation is transformed then during this transfor-
mation variables are substituted with X ← uXXvX , Y ← uY Y vY such that uXvXuY vY ∈ O(n) and
among uX , uY one is empty and among vX , vY one is empty.

Note that both cases can happen: we have a set of substitutions for a variable to test and a
canonised equation.

Proof. We proceed similarly as in the case of quadratic equations:

• if sides of the equation begin with the same symbol (be it a letter or a variable) then we delete
it;

• if the sides of the equation begin with different variable then we are done;

• if one side of the equation begins with X and the other with AY then we return a set of test
substitutions for X: {A′ : A′⊑A} and otherwise execute the substitution X ← AX. After
removing the leading A from both sides of the equation we are done at this end of the equation.

• if one side of the equation begins with X and the other with AX then we return the following
union of 1-parametrised words of possible substitutions for X: {AjA′ : A′⊑A}.
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• we perform symmetric actions at the end of the equation. If we deleted the equation and
no parametrised solutions were proposed then this equation is always satisfied. If some were
proposed then we are done.

10.3 Simple systems of equations and their solutions
We are interested in simple systems that occur during the main reduction steps; those systems are of
the following forms.

In the following subsections n denotes the length of the input equation and A,B,C,D are words,
such that |ABCD| ∈ O(n).

10.3.1 S1

Assume additionally that CD is a primitive word. Then the system S1 is defined as{
Y AX = XBY
CDY = Y DC

. (S1)

Lemma 10.2. Given a system of equations S1, in time O(n2) we can find a superset of substitutions
for X in all solutions, which is of a union of

• At most one 2-parametric word {(pj+aq)kpjp′ : j, k ≥ 0} where p is primitive and 0 ≤ a ≤ n.

• A set of O(n) 1-parametric words {pjq : j ≥ 0} with p primitive.

• At set of O(n2) 0-parametric words.

This representation is also a superset of substitutions for Y AX.

10.3.2 S2

Let |A| = |B| ≤ |C| = |D|. Then the system S2 is defined as{
Y AX = XBY
Y CX = XDY

, (S2)

and we are interested only in solutions for which s(Y ) < s(X).

Lemma 10.3. Given a system of equations S2, in time O(n2) we can find a superset of substitutions
for X in all solutions with |s(Y )| < |s(X)|, which is of a union of

• At most one 2-parametric word {(pj+aq)kpjp′ : j, k ≥ 0} where p is primitive and 0 ≤ a ≤ n.

• A set of O(n) 1-parametric words {pjq : j ≥ 0} with p primitive.

• At set of O(n logn) 0-parametric words.

This representation is also a superset of substitutions for Y AX.

10.3.3 S3

Let now A ̸= B. Then the system S3 is defined as

Y AX = XBY . (S3)

System S3 is treated as a quadratic equation and the set of all its solutions can be found using
this representation.
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X X XAi+1Ai

X X XBj+1Bj

Figure 10.1: First case: each X matches an X.

X X XAi+1Ai

X X XBj+1BjBj−1

p

Figure 10.2: Second case: end of X matches Bj−1.

10.3.4 S4

Finally, the system S4 is defined as
Y AX = XAY . (S4)

Lemma 10.4. Given a system of equations S4, in time O(n2)

• find a representation of its solutions of the form X = (ZP )jZ, Y = (ZP )kZ, where P is a word
and Z is a variable.

• Find a superset of other solutions of form of O(n) 1-parametric words

{pjq : j ≥ 0}

10.4 Singleton equations
Suppose that (after canonization) the two sides of the equations can be written as

XA1XA2X · · ·XAkY φ(X,Y )Y B1XB2X · · ·BkXψ(X,Y )

such that |A1A2 · · ·Ak| = |B1B2 · · ·Bk|.
Then XA1XA2X · · ·XAk and B1XB2X · · ·BkX (after substituting x for X) commute. In partic-

ular (XA1XA2X · · ·XAk)2 has an occurrence of B1XB2X · · ·BkX.
There are some cases.
Every X in B1XB2X · · ·BkX matches an X above, so also each Bi matches some Aj , see Fig. 10.1.

Note that there are at most k such possible matches. Then there are P (X), Q(X) such that P (X)Q(X)
is primitie (as a word over Σ ∪ {X})

XA1XA2X · · ·XAk = (P (X)Q(X))m

B1XB2X · · ·BkX = (Q(X)P (X))ℓY = (Q(X)P (X))qQ(X)

Some end of X is matched to an element of some Ai or Bj (and the other end is not) see Fig. 10.2
Then it has a short period p of at most n letters (candidates to be checked).

Both ends of some X are within some Ai or Bj , see Fig. 10.3/ Then X is short: it has at most n
letters (candidates to be checked).

Ai+1Ai

Bj+1BjBj−1 X

X X X

X

Figure 10.3: Second case: X is a substring of a constant word.
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X X XAi+1Ai

X X XBj+1Bj

Figure 10.4: First case: each X matches an X.

The main case is that each Ai, Bj is matched into substring of X, see Fig, 10.4. Depending on
lengths of Ai and Bj this yields a system S1 (when some Ai and Bj are of different length) or S2
(when all words are of the same length) or even XA = Y BX, when all words in question are equal.

In the general case we can reduce a general system to something of similar form (If there are many
B’s than A’s then we can take a prefix. The case of more As is a bit more complex.)

Exercises

Task 58 Solve a system S2 of word equations in two unknowns

Y AX = XBY

Y CX = XDY

where (A,B) ̸= (C,D). That is, present a simple superset of its solutions.
By symmetry you may assume that |s(X)| > |s(Y )|.
Consider |s(Y )| < |s(X)| ≤ |s(Y )||A| and |s(X)| > |s(Y )||A| separately. Inb the second case

substitute X = Y AZ.

Task 59 Solve a system S3 of word equations in two unknowns

XAY = Y BX

To this end consider it as a quadratic equation. What can you tell about its graph?
The solution set is described as morphism applied to some words. We want an exact description,

not superset.

Task 60 Solve a system S4 of word equations in two unknowns:

XAY A = Y AXA .

That is, give a reasonable superset of solution.



Chapter 11

One-variable equations in a free group

The problem of word equations in the free group was first investigated by Lyndon [39], who considered
the restricted variant of one-variable equations. He showed that the solution set is a finite union of
sets of the form

{w0w
i1
1 w2w

i2
3 · · ·w

ik
2k−1w2k : i1, . . . , ik ∈ Z} , (11.1)

where w0, . . . , w2k are words over the generators of the free group, we call such sets k-parametric.
In fact, it was first shown using combinatorial arguments that a superset of all solutions is of this
form, and using algebraic methods the superset of all solutions is transformed into the actual set of all
solutions. As a result, k depends on the equation and is a by-product of the algorithm rather than an
explicitly given number. By using a more refined, though purely combinatorial, argument Appel [1]
showed that there exists a superset of solutions that is a finite union of 1-parametric sets and that
one can test for which values such words are indeed solutions. In principle, the proof can be readily
used as an algorithm, but no reasonable bounds can be derived from it. Unfortunately, Appel’s proof
contains an error (see [5] for a discussion). A similar characterization was announced by Lorentz [37],
but the proof was not supplied.

A polynomial-time algorithm solving the one-variable word equations (in the free group) was given
by Bormotov, Gilman and Myasnikov [3]. In principle, their argument is similar to Appel, though
simpler (and without errors), and extra care is taken to guarantee that testing takes polynomial time.
The running time is high, though little effort was made to lower the exponent, we believe that simple
improvements and better analysis should yield O(n5) running time of their algorithm.

No polynomial-time algorithm for two-variable equations (in a free group) is known.

11.1 Preliminaries
To distinguish between the equality in a free group with involution (reversal) and equality in a free
group, we will use ‘=’ for the former and ‘≈’ for the latter.

Any equation in the free group is equivalent to an equation in which the right-hand side is ε, as
u ≈ v is equivalent to uv−1 ≈ ε, thus in the following we consider only equations in such a form.
Moreover, uv ≈ ε is equivalent to vu ≈ ε, which can be seen by multiplying by v from the left and v−1

from the right; hence we can assume that the equation begins with a variable. Let us fix the equation

Xp1u1X
p2u2 · · ·um−1X

pmum ≈ ε (11.2)

for the rest of the paper, each ui is a reduced word in Σ∗, every pi is 1 or −1 and there are no
expressions XεX nor XεX in the equation. Clearly, m is the number of occurrences of the variable
X in the equation, let n = m +∑m

i=1 |ui| be the length of the equation. A reduced word x ∈ Σ∗ is a
solution when xp1u1x

p2 · · ·um−1x
pmum ≈ ε.

11.2 Some combinatorial Lemmata
Lemma 11.1. If u1wu2 = v1wv2 and w is reduced then either w = 1 or v1w⊑u1 or u1w⊑v1, i.e. w
and w cannot overlap.
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Proof left as an exercise.

Lemma 11.2. Let s be a cyclically reduced word. Let W be a set of words and k = ∑
w∈W |w|.

Suppose that sk1 , . . . , skp are pairwise disjoint subwords of words in W and that k1, . . . , kp are pairwise
different integers. Then p ≤

√
4k/|s|+ 1 and if additionally k ≥ |s| then p ≤

√
5k/|s|.

Proof left as an exercise.

11.2.1 Pseudosolutions

We want to specify some properties of reductions of solutions, instead of usual reduction sequences it
is a bit more convenient to talk about pairings that they induce. Given a word w[1 . . n] ∈ Σn, w ≈ ε
its partial reduction pairing (or simply partial pairing). is intuitively speaking, a pairing of indices
of w corresponding to some reduction. Formally, it is a partial function f : [1 . . n] → [1 . . n] such
that if f(i) ̸= ⊥ then f(f(i)) = i (it is a pairing), w[i] = w[f [i]] (it pairs inverse letters) and either
f(i) ∈ {i− 1, i+ 1} or f(i) = j ̸= i and f is defined on the whole interval [min(i, j) + 1,max(i, j)− 1]
and f([min(i, j) + 1,max(i, j) − 1]) = [min(i, j) + 1,max(i, j) − 1] (so the pairing is well nested and
corresponds to a sequence of reductions). A partial pairing is a pairing if it is a total function. When
needed, we will draw partial reduction pairings as on Fig. 11.1–11.9, i.e. by connecting appropriate
intervals of positions. Note that the reduction pairing is not unique, say aaaa has two different
reduction pairings.

It is easy to see that a reduction pairing induces to reduction sequence (perhaps more than one)
and vice-versa, and so a word w has a reduction pairing if and only if w ≈ ε.

Lemma 11.3. A word w has a reduction pairing if and only if w ≈ ε.

Proof. We proceed by a simple induction: if w is reducible then either w = aa for some a ∈ Σ and then
it clearly has a reduction paring or w = w1aaw2 and w1w2 ≈ ε. Create the pairing for w by pairing
those a and a and otherwise using the pairing for w1w2, which is known to exist by the induction
assumption (formally some renumbering of the indices is needed).

In the other direction, if w has a reduction pairing, consider f(1) = i. Then w = aw1aw2, such
that w1 and w2 are paired inside. Thus by induction assumption both w1 ≈ ε and w2 ≈ ε. Thus
w ≈ aa ≈ ε.

Given a (not necessarily reducible) word w = w1w2w3 ∈ Σ∗ we say that w2 is a pseudo-solution
for a partial reduction pairing f if f is defined on whole w2. This is sometimes written as w1w2w3
to make graphically clear, which subword is a pseudosolution. Note that we do allow that w2 ≈ ε, in
which case it is a pseudo-solution, and we do allow that f pairs letters inside w2.

The first fact to show is that for any pairing f if we factorize a reducible word then there is a
pseudo-solution for some of its consecutive subwords. A variant of this Lemma was used Lyndon [39,
Proposition 1], Appel [1, Proposition 1] and by Bormotov, Gilman and Myasnikov [3, Lemma 3] and
it is attributed already to Nielsen [47].

Lemma 11.4. Let ε ≈ s0u1s1u2 · · · sk−1uksk and f be its pairing. Then there is ui that is a pseudo-
solution of ui−1si−1uisiui+1 (for f).

Proof. If there is ui = ε then we are done. So consider the case that each ui ̸= ε. We maintain an
interval of position I such that f(I) ⊆ I and I contains at least one word ui. Initially I = [1 . . |w|].

Take any ui within I and let imin, imax be positions within ui such that f(imin) = min f(ui)
and f(imax) = max f(ui), i.e. [f(imin), f(imax)] is the smallest interval of positions such that ui is
a pseudosolution within it. If f(imin), f(imax) ∈ ui−1si−1uisiui+1 then we are done. If not, then
by symmetry consider f(imin) /∈ ui−1si−1uisiui+1. If f(imin) it is to the right of ui+1 then we take
as the interval [imin + 1, f(imin) − 1]: clearly it contains whole ui+1 and f([imin + 1, f(imin) − 1]) =
[imin + 1, f(imin) − 1] and it is smaller than I. If f(imin) it is to the left of ui−1 then we take
[imin − 1, f(imin) + 1] and analyze it symmetrically. Thus at some point we will find the pseudo-
solution.
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︸ ︷︷ ︸
xu

α u′′u′′︸ ︷︷ ︸
x

︸ ︷︷ ︸
α

︸ ︷︷ ︸
u

︸ ︷︷ ︸
α

α

Figure 11.1: Pseudo-solution for the equation xαuαxu. Case when whole xu is reduced within αuα.

11.3 Superset of solutions
The previous characterization [3] essentially showed that a solution is either a O(1)-represented word
or of the form uiu′v′′vj for some i, j ∈ Z and u′⊑u, v⊒v′′ for some well defined u, v. As we intend to
analyze those solutions using word combinatorics, it is useful to assume that u, v are cyclically reduced
and primitive. Unfortunately, this cannot be extracted directly from the previous characterization, so
we repeat the previous arguments taking some extra care.

Lemma 11.5 (cf. [19, Lemma 15]). For a given equation (11.2), in O(n2) time one can compute a
superset of solutions of the form

S ∪
⋃

(αuIvJβ)∈W

⋃
i,j∈Z
{αuI(i)vJ(j)β}

where S is a set of O(1)-represented words with |S| = O(n2) and for each 0 ≤ i ≤ m − 1 there are
numbers ℓi, ℓ′i ≤ |ui|+ |ui+1| such that W contains exactly ℓi · ℓ′i parametric words satisfying

• α, β, are O(1)-represented, reduced and |α|, |β| ≤ |ui|+ |ui+1|;

• u, v are 2-represented, cyclically reduced, primitive and |u| = ℓi and |v| = ℓ′i.

The main principle of the proof of Lemma 11.5 is that when x is a solution of an equation (11.2),
then after the substitution the obtained word is reducible and thus by Lemma 11.4, one of substituted
x or x is a pseudosolution in xphuhx

ph+1uh+1x
ph+2 , where ph, ph+1, ph+2 ∈ {−1, 1}. Thus we analyze

each possible triple ph, ph+1, ph+2 and show the possible form of the pseudosolution in corresponding
case. Note that by symmetry we can consider ph+1 = 1.

We begin with some preliminary Lemmata.

Lemma 11.6. Let xu⊑x be a pseudo-solution of xαuαxu, where x, αuα are reduced and u is cyclically
reduced. Then

• xu⊑αuα or

• xu ≈ αuiu′ where u′⊑u and i ∈ Z

Proof. If f(xu) ⊆ αuα, see Fig. 11.1, then xu is an inverse of some suffix of αuα, so xu⊑αuα, as
claimed.

In the remaining case observe that we may assume that α⊑xu: consider the reduction pairing
f , observe that either xα reduces the whole α or αxu the whole α: if none of this happens then xu
reduces within αxu, which was considered. But then in either case α⊑x and so α⊑xu or xu⊑α, the
latter was already considered.

Let x′⊑x be the minimal prefix of x such that x′αuαxu ≈ ε. If x′⊑α then again we end in the
case such that f(xu) ⊆ αuα. So α⊑x′. As x′αuαxu ≈ ε we can modify the pairing by first pairing the
suffix α of x′ with α and the α with the prefix α of xu, see Fig. 11.2, and then extend to the rest of
x′αuαxu. Note that x is still a pseudosolution for such a modified pairing.

Observe now that it cannot be that letters in u are paired with both x and xu, as this would imply
that the first and last letter of u are paired with a corresponding letter of x and x, respectively. But
then u would not be cyclically reduced.
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wu

︸ ︷︷ ︸
xu

︸ ︷︷ ︸
x

︸ ︷︷ ︸
α

︸ ︷︷ ︸
u

︸ ︷︷ ︸
α

αu αααw

Figure 11.2: Pseudo-solution for the equation xαuαxu. Case when xu is not reduced within αuα and
u is paired with xu.

α u αw α wu α

︸ ︷︷ ︸
xu

︸ ︷︷ ︸
α

︸ ︷︷ ︸
u

︸ ︷︷ ︸
α

︸ ︷︷ ︸
x

Figure 11.3: Pseudo-solution for the equation xαuαxu. Case when xu is not reduced within αuα and
u is not paired with xu.

Consider first the case when (some) letters of u are paired with xu. Then whole u is paired with
xu and the rest of xu is paired with x (as otherwise f(xu) ⊆ uα, which was already considered), see
Fig. 11.2. Thus xu = αuw for some w and x⊒wα, which implies αw⊑x. Comparing xu = αuw⊑x
with αw⊑x we get that w⊑u or u is period of w and so xu = αuku′′, where u′′⊑u and k ≥ 0; this can
be alternatively represented as xu ≈ αu−k−1u′, where u = u′u′′.

The analysis for the case when some letter of u is paired with x is symmetric: let xu = αw. As
some letter of xu is paired with x then all letters in u are paired and so all of them are paired with x,
see Fig. 11.3, then x⊒w uα, which implies αuw⊑x, and xu = αw⊑x, thus w⊑u or u is a period of w
and so xu = αuku′ for some u′⊑u and k ≥ 0.

Lemma 11.7. Let xv be a pseudo-solution (for some partial pairing f) of xvvxuxv but not in xvvxu
(for the restriction of f). Then xuxv = v′′ v′ for some v′⊑v⊒v′′.

Proof. First, the whole xu is reduced within nf(xvvxu): if not then there would be no further reduction
in nf(xvvxu)xv, as xuxv is reduced, and so whole xv reduces within xvvxu, which is forbidden by
Lemma assumption. If also whole v is reduced within xvvxu then we are left with a prefix x′

v of xv
that should reduce with xv, i.e. x′

v should reduce with x′
v, which cannot happen. So not the whole v

is reduced in nf(xvvxu), see Fig. 11.4. So v = δβxu, where δ is the maximal prefix that reduces with

βδ

︸ ︷︷ ︸
xuxv

︸ ︷︷ ︸
v

δxu ︸ ︷︷ ︸
xv

γ ︸ ︷︷ ︸
β

xu xu ︸ ︷︷ ︸
xv

γγ

︸ ︷︷ ︸
v′′

︸ ︷︷ ︸
v′

︸ ︷︷ ︸
v′

︸ ︷︷ ︸
v′′

Figure 11.4: Pseudosolution for the equation xvvx. The case in which xv reduces within xvvxuxv but
not inside xvvxu. We take into account that not the whole v is reduced in nf(xvvxu).
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the preceding xv and xu reduces with the following xu. Then β reduces with the following xv. Also,
in the first xv the remaining part (i.e. after reduction of δ), call it γ, reduces with the remaining part
of the second xv. So xv = γδ and βγ⊑xv and from Lemma 11.1 we get that γ⊑β (or γ = ε, but this
is covered by γ⊑β). It is left to observe that

xuxv = xuγδ

and γ xu is a suffix of v (as γ⊑β implies β⊒γ) and δ is a prefix of v, so xuxv = v′′ v′ for some prefix
v′ (= γ) of v and suffix v′′ (= δ xu), as claimed.

Lemma 11.8. Let x be a pseudo-solution of xαuαxβvβx, where x, αuα, βvβ are reduced and u, v are
cyclically reduced. Then x = xuxv, where

• xu⊑αuα or

• xu ≈ αuiu′ where u′⊑u and i ∈ Z

similarly

• βv β⊒xv or

• xv ≈ v′′vjβ where v⊒v′′ and j ∈ Z.

Proof. Fix a (partial) reduction pairing f such that whole middle x is paired. Define xu, xv such
that x = xuxv, f(xu) ⊆ x−1αuα and f(xv) ⊆ βvβx−1, i.e. as the prefix of x that is reduced to
the left and suffix that is reduced to the right. Note that this is correct, as x is reduced and so no
pairing is done inside it. Then Lemma 11.6 applied to xαuαxu and xvβvβx yields the claim (note
that u′uk ≈ u′′uk−1).

Lemma 11.9. Let x be a pseudo-solution of xαuαxvx, where x, αuα, v are reduced and u is cyclically
reduced. Then either

• x = v′′ v′, where v′⊑v⊒v′′ or

• x = xuxv where

– xu⊑αuα or
– xu ≈ αuiu′ where u′⊑u and i ∈ Z

and

– nf(αuα v)⊒xv or
– xv ≈ u′′ujα v, where u⊒u′′ and j ∈ Z.

Proof. Fix a (partial) reduction pairing f such that whole middle x is paired. Let xu, xv be such that
x = xuxv and f(xu) ⊆ x−1u and f(xv) ⊆ vx. Consider first the case in which f(xv) ̸⊆ vxu. Then
Lemma 11.7 yields that x = v′′ v′, where v′⊑v⊒v′′, as claimed. Thus we are left with the case when
f(xv) ⊆ vxu, i.e. nf(xuv)⊒xv. Applying Lemma 11.6 to the xαuαxu yields that the form of xu is as
claimed. Substituting the form of xu to nf(xuv)⊒xv yields the form of xv.

Lemma 11.10. Let x be a pseudo-solution of xuxvx, where x, u, v are reduced then either

• x = v′′ v′ or x = u′ u′′ or x = u′′ v′ or x ≈ u′′ u••v or x ≈ uv•v′ where v•⊑v′⊑v⊒v′′,
u′⊑u⊒u′′⊒u••;

• x = xuxv, where

– xu⊑α or xu = αriur
′
u for some i ∈ N, where r′

u⊑ru and uv = αruα and ru is cyclically
reduced;
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xvu′′u′

︸ ︷︷ ︸
x

︸ ︷︷ ︸
xu︸ ︷︷ ︸

x

︸ ︷︷ ︸
u

u′′

Figure 11.5: Pseudosolution for the equation xuxu; word u′′ is maximal reducing with xu. The case
in which xu = u′′.

wuwu ︸ ︷︷ ︸
xu︸ ︷︷ ︸

x

︸ ︷︷ ︸
u

xvu′u′ u′′ u′′︸ ︷︷ ︸
xv︸ ︷︷ ︸

x

xu

Figure 11.6: Pseudosolution for the equation xvuxu; word u′′ is maximal reducing with xu. The case
in which xu ̸= u′′ and so u′′⊑xu.

– β⊒xv or xv = r′′
vr
j
vβ for some j ∈ N where uv = βrvβ and rv⊒r′′

v and wv is cyclically
reduced;

Proof. Fix a partial reduction pairing f such that whole middle x is paired. Define xu and xv such
that x = xuxv and f(xu) ⊆ xu and f(xv) ⊆ vx. Consider f(xu) ⊆ xu = xuxvu; if f(xu) ̸⊆ xvu then
by Lemma 11.7 we get that x = u′ u′′, where u′⊑u⊒u′′. Similarly if f(xv) ̸⊆ vxu then by Lemma 11.7
we get that x = v′′ v′, where v′⊑v⊒v′′. So in the following we may assume that f(xu) ⊆ xvu and
f(xv) ⊆ vxu.

Let u = u′u′′ where f(u′′) ⊆ xu is maximal with this property. Either xu = u′′, see Fig. 11.5, or
u′′⊑xu, see Fig. 11.6. In the latter case, as not whole xu is paired with u′′, some of its letters need to
be paired with the preceding xv and so the whole u′ is paired with this xv as well, see Fig. 11.6, in
particular, xv⊒u′. Then xu = u′′wu for some reduced wu ̸= ε and xv⊒wuu′.

Similarly, define v = v′v′′ where f(v′) ⊆ xv is maximal of this property. Either xv = v′ or xv = wvv′

and v′′wv⊑xu for some reduced wv ̸= ε, see Fig. 11.7.
Taking into account the form of xu and xv, there are in total four subcases:
First, if xu = u′′ and xv = v′ then this is of the desired form in the first.
Consider the case when xu = u′′ and xv = wvv′: this case is left as an exercise: the claim is

that x = xuxv ≈ u′′u••v for some u⊒u′′⊒u••, as listed in the first point. (and v′′wv⊑xu = u′′); in
particular, x = u′′wvv′, see Fig. 11.8.

The case of xu = u′′wu and xv = v′ is symmetric to the above.
Now let us consider the main case: when xu = u′′wu and xv = wvv′, see Fig. 11.9. In particular,

v′′ v′′v′wv wvv′︸ ︷︷ ︸
xv

︸ ︷︷ ︸
v

︸ ︷︷ ︸
xu

Figure 11.7: Pseudosolution for the equation xvvxu; word v′ is maximal reducing with xv. The case
in which xv ̸= v′ and so xv⊒v′.
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v′′v′wv v′
u′′

u′

v′′ wv

v′′ wv

︸ ︷︷ ︸
x

︸ ︷︷ ︸
u

︸ ︷︷ ︸
v

︸ ︷︷ ︸
xu=u′′

︸ ︷︷ ︸
xv ︸ ︷︷ ︸

xu=u′′

Figure 11.8: Pseudosolution for the equation xvuxvxu. The case in which xu = u′′, xv = wvv′ and
v′′wv⊑u′′.

v′′v′wv v′ v′′u′′u′u′ u′′ wuwu wv

︸ ︷︷ ︸
u

︸ ︷︷ ︸
v︸ ︷︷ ︸

x

︸ ︷︷ ︸
x

︸ ︷︷ ︸
x

︸ ︷︷ ︸
xu

︸ ︷︷ ︸
xv

Figure 11.9: Pseudosolution for the equation xuxvx. The main case: xu = u′′wu and xv = wvv′.

x = u′′wuwvv′. Note that by case assumption also xv⊒wu u′ and v′′wv⊑xu, see Fig. 11.10:

v′′wv⊑u′′wu wvv′⊒wuu′

Let us analyze xu = u′′wu. In the following, it is convenient to consider not only the prefix relation
on normal forms. Note that in general s⊑t does not imply nf(s)⊑nf(t) and nf(s)⊑nf(t) does not
imply nf(s′s)⊑nf(s′t). However, if nf(s)⊑nf(t) and the reductions in us leading to nf(us) do not
reduce whole s then nf(us)⊑nf(ut) (left as an exercise).

Note that wvv′⊒wuu′ =⇒ u′wu⊑v′wv:

v′′wv⊑u′′wu

v′v′′v′′wv⊑vu′′wu Multiply by v = v′v′′

nf(v′wv)⊑nf(vu′′wu) Reduce left-hand side
v′wv⊑nf(vu′′wu) nf(v′wv) = v′wv

u′wu⊑nf(vu′′wu) Transitivity
nf(u′′ u′u′wu)⊑nf(uvu′′wu) Multiply by u = u′′ u′

nf(u′′wu)⊑nf(uvu′′wu) Reduce left-hand side
xu⊑nf(uvxu) xu = u′′wu = nf(u′′wu)

Multiplying by v is legal: v′′wv is irreducible and after the multiplication the remaining v′wv is
also irreducible. Similarly, after the multiplication by u the u′′wu is irreducible, so the multiplication
is legal.

Let nf(uv) = αruα, where ru is cyclically reduced. Observe that in αruαxu we can reduce at most
half of letters in αruα, as otherwise nf(αruαxu) has less letters than xu, which is its prefix. Hence
nf(αruαxu) begins with αa, where a is the first letter of ru. If xu⊑α then we are done. Otherwise
xu = αax′′

u and so αruαxu ≈ αruax
′′
u and ax′′

u⊑nf(ruax′′
u). Note that ruax′′

u is reduced: if there is a
reduction in rua then the last letter of ru is a and a is the first letter of ru, contradiction, as ru is
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v′wvu′′ wu

︸ ︷︷ ︸
x

wvv′′ wu u′

Figure 11.10: Pseudosolution for the equation xuxvx. The main case: xu = u′′wu and xv = wvv′. The
depiction of prefixes and suffixes of x.

cyclically reduced. Hence ax′′
u⊑ruax′′

u and so ax′′
u = riur

′
u for some i ≥ 0 and r′

u⊑ru, and so xu = αriur
′
u,

as claimed.
A similar analysis applies to xv.

Lemma 11.11. If s, t are cyclically reduced or st is cyclically reduced and k1, k2, . . . , k2ℓ, k2ℓ+1, for
ℓ ≥ 1, are non-zero integers such that

sk1tk2 · · · sk2ℓ−1tk2ℓ ≈ ε or sk1tk2 · · · sk2ℓ−1tk2ℓsk2ℓ+1 ≈ ε (11.3)

then s, t are powers of the same word.
In particular, if s, t are not powers of the same word then the mapping S 7→ s, T 7→ t defines an

isomorphism between the subgroup generated by s, t and a free group generated by S, T .

The proof almost follows from a known theorem that a subgroup of a free group is a free group.
To be more precise, the proof shows that using a set of finite generators we can either obtain a trivial
word or those generators are free.

11.4 Data structure

Words appearing naturally in our proofs and algorithms are concatenations of a constant number of
subwords (or their involutions) of the input equation. We say that a word w is k-represented, if w is
given as w = (UU)[b1 . . e1] · · · (UU)[bk . . ek], where U = u1 · · ·um is the concatenation of all words from
the equation (11.2). A parametric word s0t

φ1
1 s1 · · · sℓ−1t

φℓ
ℓ sℓ is k-represented, when s0, t1, s1, . . . , tℓ, sℓ

are k0, . . . , k2ℓ represented and k = ∑2ℓ
i=0 ki.

Intuitively, all basic operations that we perform on (parametric) words that are k and ℓ represented
can be performed in O(k + ℓ) time. As k, ℓ are usually small constants this amounts to O(1) time.

We use standard data structures, like suffix arrays [24] and structures for answering longest common
prefix queries on them [25]. As a result, we can answer all basic queries (like normal form, longest
common prefix, power prefix, etc.) about words in the equation in O(1) time; note that this is the
place in which we essentially use that we can perform operations on O(logn)-size numbers in O(1)
time. As an example of usage, we can test whether a word is a solution in O(m) time:

Lemma 11.12. For the equation (11.2) we can construct a data structure, which given two words s,
t that are k and ℓ represented, we can:

• compute the longest prefix of s that has period p in O(k) time,

• compute the s-power prefix and suffix of t in O(k + ℓ) time,

• compute nf(st) in O(k + ℓ) time.

Lemma 11.13. Given a word αuivjβ, where α, β, u, v are O(1)-represented, α, β are reduced and u, v
are cyclically reduced and primitive and i, j are a pair of integer numbers, we can test whether αuivjβ
is a solution of (11.2) in O(m) time.
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11.5 Restricting the superset of solutions

By Lemma 11.5, we know the form of possible solutions, and by Lemma 11.13 we can test a single
candidate solution inO(m) time. In particular, all solutions from the set S in Lemma 11.5 can be tested
in O(n2m) time, as desired. The other solutions are instances of parametric words the form αuIvJβ
for well-defined α, u, v, β. The next step is to bound, for fixed α, u, v, β, the set of values (i, j) such
that αuIvJβ(i, j) could be a solution; this is the main result of the paper.

Idea Suppose we want to find out which words of the form ui are a solution of (11.2). We sub-
stitute uI to the equation and treat its left-hand side as a parametric word w depending on I. If
substituting I = i leads to a trivial word, then it is known that some u-power cancels within the
neighboring u-powers (actually, a variant of this fact was used to characterize the superset of solu-
tions [39, 1, 3], and it is attributed already to Nielsen [47]), more formally:

We want to use Lemma 11.4 to claim that some u-parametric powers need to reduce, however, as
there can be powers of u as constants, this makes the analysis problematic: as an example, consider an
equation auIuℓa ≈ ε, if I = i is a solution and we set s0 = a, u1 = ui, s1 = uℓa (so that u1 corresponds
to uI) then Lemma 11.4 guarantees that ui cancels within uℓ, i.e. 0 ≥ i ≥ −ℓ, even though I = −ℓ is
the only solution. This is caused by u-powers next to u-parametric power, which makes our application
of the Lemma 11.4 nearly useless. To fix this, in auiuℓa we set s0 = a, u1 = ui+ℓ, s1 = a, and then
Lemma 11.4 yields i = −ℓ. On the level of the parametric word this corresponds to considering
auI+ℓa ≈ auIuℓa, i.e. we include u-powers into the u-parametric power next to them.

This is formalized as follows: A parametric word w is u-reduced when u is cyclically reduced,
primitive and w does not have a subword of the form:

• uφ for a constant integer expression φ;

• aa for some letter a (so w is reduced);

• uφuψ for some (non-constant) integer expressions φ,ψ;

• uuφ, uuφ, uφu, uφu for some (non-constant) integer expression φ.

Note that we do not forbid subwords that are powers of u, we forbid parametric subwords that are in
fact subwords, i.e. have constant exponents.

Given a parametric word w we can u-reduce it to obtain a parametric word that is equal (in the
free group) and u-reduced by a simple greedy procedure, i.e. replacing a parametric power with a
constant integer expression as exponent with a power or reduction or joining two u-powers into one
(the running time for specific applications is analyzed separately at appropriate places). When we
replace, say uuφ with uφ+1, then we say that letters in u were u-reduced to uφ+1. Note that there are
different u-reduced equivalent parametric words, so the output of u-reduction is not unique, this has
no effect on the algorithm, though.

If a parametric word w (with all exponents depending on one variable) is u-reduced then from
Lemma 11.4 we infer that w(i) ≈ ε implies |φ(i)| ≤ 3 for some parametric power uφ in w:

Lemma 11.14. Let w = w0u
φ1w1 · · ·uφkwk be a u-reduced parametric word, where w0, . . . , wk are

words and φ1, . . . , φk are integer expressions, all depending on exactly one and same variable. If
w(i) ≈ ε then there is φℓ such that |φℓ(i)| ≤ 3. In particular, w(i) ≈ ε for each i if and only if w = ε.

Proof. We use Lemma 11.4 for a factorization with sj = wj and uj = uφj(i). Then for some ℓ we
have that uφℓ(i) reduces within uφℓ−1(i)wℓ−1u

φℓ(i)wℓu
φℓ+1(i). Suppose that |φℓ(i)| ≥ 4, say φℓ(i) > 0,

the other case is shown in the same way. Consider uφℓ−1(i)wℓ−1u
2uφℓ(i)−4u2wℓu

φℓ+1(i). Then it can be
shown that the reductions in uφℓ−1(i)wℓ−1u

2 and u2wℓu
φℓ+1(i) are both of length less than 2|u|, thus

not the whole u2uwℓ−4u2 is reduced, contradiction.
For the last claim, if w contains u-parametric powers, then clearly there is a finite set of is such

that w(i) ≈ ε. If it does not, then as it is u-reduced, it is also reduced, and so w ≈ ε implies w = ε.
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As φℓ in Lemma 11.14 is a non-constant integer expression then there are at most 7 values of i
such that |φℓ(i)| ≤ 3. Hence it is enough to find appropriate i values. Clearly, there are at most m
integer expressions in w (as this is the number of variables). We can give better estimations, though:
if the expression is not of the form kI then it “used” at least |u| letters from the equation. So there
are n/|u| different expressions and the ones of the form kI; as |ki| ≤ 3 implies |i| ≤ 3, there are
7(1 + n/|u|) candidates for i in total. Lastly, when the solution depends on two variables, it can be
shown that all obtained parametric powers have coefficient ±1, which allow even better estimations:
a parametric power I + c uses at least c|u| letters from the equation and so it can be shown that at
most O(

√
n/|u|) different integer expressions can be formed in such a case.

The actual solution is of the form αuIvJβ. Firstly, the presence of α, β make estimations harder,
as their letters can also be used in the u- and v-reductions. Secondly, there are two parameters, which
makes a simple usage of Lemma 11.14 impossible. However, if w(i, j) ≈ ε then w(I, j) ≈ ε depends on
one variable, so Lemma 11.14 is applicable to it. The analysis yields that we can restrict the possible
value of i or j or (i, j); note that this is non-obvious, as there are infinitely many w(I, j)s. A similar
analysis can be made for w(i, J), and combining those two yields a set of pairs to be tested as well as
O(1) individual is and js that should be tested separately. But for a fixed i (j) we can substitute it
to the equation and use Lemma 11.14 for J (I, respectively).

11.5.1 Restricting the set of (i, j)
Fix some 0 ≤ i0 ≤ m− 1 and the corresponding ui0 , ui0+1 in the equation (11.2). Using Lemma 11.5
we construct a parametric word αuIvJβ, with α, u, v, β depending on ui0 , ui0+1 as well as exponents
pi0 , pi0+1, pi0+2. We substitute X = αuIvJβ to the equation (11.2), obtaining a parametric word on
the left-hand side. We are to find values (i, j) ∈ Z2 for which the value of the obtained parametric
word is equivalent to ε, thus we call such an (i, j) a solution. We want to find a suitable set of pairs
(i, j) and test each one individually, using Lemma 11.13.

The analysis depends on the relation between u and v: i.e. whether u ∈ {v, v}, u ̸∼ v or u ∼ v.

u ̸∼ v

Due to symmetry, we consider the case when |v| ≥ |u|, note that it could be that |u| = |v|. We rotate
the left-hand side of the equation so that it begins and ends with a parametric power: we rotate
αuIvJβw = ε to vJβwαuI = ε or βvJuIαw = ε to uIαwβvJ = ε, depending on the form of the
equation. The equation after the rotation is equisatisfiable to the previous one.

We call each parametric word beginning with vJ or uI and ending with uI or vJ and no parametric
power inside a fragment. The parametric word after the rotation is a concatenation of m fragments.
We use the name h-th fragment to refer to the one corresponding to uh (so h-th from the left); let
fh denote the word that is left from h-th fragment after removing the leading and ending parametric
power; note that fh is of one of the forms βuhα, βuhβ, αuhα, αuhβ. For uI we call the preceding α
the associated word, the same name is used to β succeeding vJ , α succeeding uI and β preceding vJ .
To simplify, we will call it a word associated with the parametric power.

We now preprocess the equation, by replacing the left-hand side with an equivalent parametric
word (i.e. equal according to ≈). As a first step, we replace each fh with nf(fh). Next, observe that
if w is the power of u then uIwuI ≈ w and similarly vJw′vJ ≈ w′ for w′ being a power of v. In the
second step we check each fragment separately, and if possible, replace it as described above. For
fragments that remained unchanged in the second step, we use previous names, i.e. if h-th fragment
vJ nf(fh)uI was not replaced then we still write it as vJ nf(fh)uI and call it h-th fragment. A trivial
fragment is a maximal subword obtained as concatenations of words obtained due to replacements in
the second step.

Lemma 11.15. The preprocessing can be performed in O(m) time. Afterwards the parametric word
is O(m)-represented and it is a concatenation of fragments and trivial fragments.

Each trivial fragment is obtained by replacing some h-th, h + 1-st, . . . , h + k-th fragments by
nf(fh · · · fk+h) moreover | nf(fh · · · fk+h)| ≤ ∑h+k

i=h |ui|; if k > 0 then such a trivial factor is not a
power of u nor v.



11.5. RESTRICTING THE SUPERSET OF SOLUTIONS 89

We now perform the u-reduction (note that the vJ is not touched) and afterwards the v-reduction.
Let the obtained equation be of the form

W ≈ ε , (11.4)

where W is a parametric word. In the following, we are looking for (i, j)s such that w(i, j) ≈ ε, and
so we simply call (i, j) a solution (of (11.4)).

Lemma 11.16. For u ̸∼ v we can perform the u-reduction and v-reduction after the preprocessing
in O(m) time; the obtained parametric word is u-reduced. No two parametric powers are replaced
by one during the u-reduction and v-reduction, in particular, for a given parametric power uφ (vψ)
in (11.4) the φ (ψ) has a coefficient of the variable equal to ±1 and the only letters that are u-reduced
(v-reduced) to this power come either from the associated fragment of uI or uI (vJ or vJ) and the
letters from the adjacent trivial fragment (assuming that there is an adjacent trivial fragment).

Note that the claim that no two parametric powers are replaced by one is not obvious—in principle,
it could be that after the preprocessing a trivial fragment is a power of u (or v) and then it is wholly
u-reduced, which can lead to two adjacent parametric powers of u, which are then replaced with
one. However, this cannot happen, as such a trivial fragment is of the form uk1vk2 · · · for some
0 < |k1|, |k2|, . . . and such a word cannot be a power of u nor v when u ̸∼ v, as the subgroup generated
by u, v is a free group.

We now estimate, how many different u-parametric expressions are there after the reductions.
When we want to distinguish between occurrences of parametric powers with the same exponent (say,
two occurrences of uI+1 counted separately) then we write about parametric powers and when we
want to treat it as one, then we talk about exponents. We provide two estimations, one focuses on
parametric powers and the other on exponents.

Lemma 11.17. There is a set S of O(1) size of integer expressions such that there are O(n/|u|)
occurrences of u-parametric powers in W from (11.4) whose exponents are not in S and O(n/|v|)
occurrences of v-parametric powers whose exponents are not in S. The set S can be computed and the
parametric powers identified in O(m+ n/|u|) time.

The Lemma considers, whether the parametric power used some letters from the trivial fragment
or its associated fragment had uh of length at least |u|. If so, then it is in the O(n/|u|) parametric
powers, as one such power uses at least |u| letters of the input equation (this requires some argument
for the trivial fragments) and otherwise is can be shown that there are only O(1) possible exponents:
say, when we consider the longest suffix of nf(βuhα) that is a u-power, where |uh| < |u|, then there is
a constant number of possibilities how this suffix is formed (fully within α, within nf(uhα), uses some
letters of β) and in each case the fact that |uh| < |u| means that there are only O(1) different uhs that
can be used; note that we need the primitivity of u here. Concerning the algorithm, note that we can
distinguish between these two cases during the preprocessing and mark the appropriate powers.

The next lemma provides a better estimation for the number of different exponents, it essentially
uses the fact that all exponents have coefficients at variables ±1: as there are only two possible
coefficients, we can focus on the constants. Now, to have a constant |c|, we have to use a power uc
from W and to have k different constants one has to use k different powers and so from Lemma 11.2
we conclude that k = O(|W |/|u|). In general, W can be of quadratic length, as we introduce m
copies of α and β into it; the resulting bound is too weak for our purposes. To improve the bound,
consider that when the u-power suffix of, say, βuhα, is uk. It can be shown that there are kα, ku, kβ
such that |k − kα − ku − kβ| ≤ 2 and uku , ukβ are maximal u-powers in uh, β and ukα is the u-
power suffix of α. Using Lemma 11.2, this yields that there are O(

√
n/|u|) different possible values

of ku (over all uh), O(
√
|β|/|u|) = O(

√
|ui0ui0+1|/|u|) of kβ and kα is fixed, so there are at most

O(
√
n/|u| ·

√
|ui0ui0+1|/|u|) = O(

√
n|ui0ui0+1|/|u|) possible values of k.

The actual argument is more involved, as it is also possible that the u-parametric power includes
letters from the trivial fragments, which requires some extra arguments, nevertheless the general
approach is similar.
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Lemma 11.18. After the u-reduction and v-reduction there are O(
√
n|ui0ui0+1|/|u|) different integer

expressions as exponents in parametric powers of u and O(
√
n|ui0ui0+1|/|v|) of v in the equation. The

(sorted) lists of such expressions can be computed in O(m+n/|u|) and O(m+n/|v|) time, respectively.

We can use Lemma 11.4 together with bounds on the number of different exponents in parametric
powers from Lemma 11.18 to limit the possible candidates (i, j) for a solution. However, these bounds
are either on i or on j. And as soon as we fix, say, J = j and substitute it to W , the obtained
parametric word W (I, j) (or W (i, J)) is more complex than W , in particular, we do not have the
bounds of Lemma 11.18 for it, so the set of possible candidates for i for a given W (I, j) is linear,
which is too much for the desired running time.

Instead, we analyze (as a mental experiment) W (I, j): Fix j ∈ Z such that W (i, j) ≈ ε for some i.
Compute W (I, j), u-reduce it, call the resulting parametric word WJ=j . If WJ=j = ε, then clearly for
each i the (i, j) is a solution of (11.4) (and vice-versa, see Lemma 11.14). It can be shown that in this
case for some vψ in WJ=j it holds that |ψ(j)| < 6: at least some two u-parametric powers in W should
be merged in WJ=j , in W they are separated by a v-parametric power, say vψ. All letters of vψ(j)

are u-reduced, then standard arguments using periodicity show that |ψ(j)| < 6 so we can compute
all candidates for such js and test for each one whether indeed WJ=j = ε, this is formally stated in
Lemma 11.21.

If WJ=j depends on I then from Lemma 11.14 for some of the (new) u-parametric powers uφ it
holds that |φ(i)| < 6. Consider, how this φ was created. It could be that it is (almost) unaffected by
the second u-reduction and so it is (almost) one of the u-parametric powers in W , see Lemma 11.22
for precise formulation and sketch of proof, in which case we can use Lemma 11.18. Intuitively, uφ is
affected if the whole two parametric powers in W were used to create uφ. Then it can be shown that
some v-parametric power vψ from W turned into v-power vψ(j) satisfies |ψ(j)| < 6 and is u-reduced to
uφ, the argument is as before, when WJ=j ≈ ε. Moreover, this occurrence of vψ also determines uφ;
hence the choice of ψ determines O(1) candidates for j, uniquely identifies φ and i satisfies |φ(i)| < 6,
i.e. there are O(1) candidates for (i, j). Then Lemma 11.17 is applied to this vψ: if it is one of n/|v|
occurrences of v-parametric powers then we get O(1) candidates for (i, j) (for this ψ), so O(n/|v|) in
total, over all choices of such ψ. Otherwise, ψ it is one of O(1) integer expressions (Lemma 11.17) and
so j is from O(1)-size set and we can compute and consider WJ=j for each one of them separately.

A similar analysis applies also to i ∈ Z substituted for I. The results are formalized in the Lemma 11.19
below, its proof is spread across a couple of Lemmata.

Lemma 11.19. Given equation (11.4) we can compute in O(mn/|u|) time sets SI , SJ , SZ,J ⊆ Z and
SI,J ⊆ Z2, where |SI | = O(

√
n|ui0ui0+1|/|u|), |SJ | = O(1), |SZ,J |, |SI,J | = O(n/|u|), such that: if

(i, j) is a solution of (11.4) then at least one of the following holds:

• i ∈ SI or

• j ∈ SJ or

• j ∈ SZ,J and for each i′ the (i′, j) is a solution or

• (i, j) ∈ SI,J .

Similarly, given equation (11.4) we can compute in O(mn/|v|) time sets S′
I , S

′
J , S

′
I,Z ⊆ Z and S′

I,J ⊆
Z2, where |S′

I | = O(1), |S′
J | = O(

√
n|ui0ui0+1|/|v|) |S′

I,Z|, |S′
I,J | = O(n/|v|) such that at if (i, j) is a

solution of (11.4) then least one of the following holds:

• i ∈ S′
I or;

• i ∈ S′
I,Z and for each j′ ∈ Z the (i, j′) is a solution or;

• j ∈ S′
J or;

• (i, j) ∈ S′
I,J .
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As noted above, the main distinction is whether the uφ in WJ=j was “affected” or not during the
second u-reduction. Let us formalize this. Given an occurrence of a parametric power uφ in WJ=j
consider the largest subword w of W such that each letter in w(I, j) is either reduced or u-reduced to
this uφ; note that this may depend on the order of reductions, we fix an arbitrary order. We say that
parametric powers in w are merged to uφ. We extend this notion also to the case when WJ=j = ε, in
which case W = w and every parametric power is merged to the same parametric power u0. A similar
notion is defined also for parametric powers of v. Note that a parametric power is not merged to two
different parametric powers uφ and uφ

′ .

Lemma 11.20. For any parametric power in W there is at most one parametric power in WJ=j to
which it was merged; the same holds for WI=i.

We say that a u-parametric power uφ in WJ=j was affected by substitution J = j if

• more than one parametric power was merged to uφ or

• for the unique u-parametric power uφ′ merged to uφ there is a v-parametric power vψ′ such that
|ψ′(j)| < 6 and there is no u-parametric power between uφ

′ and vψ
′ .

The intuition behind the first condition is that when we merge two u-powers then we create a com-
pletely new parametric power, for the second condition, when |ψ′(j)| < 6 then vψ′(j) no longer behaves
like vψ′ and can either be wholly merged to a u-power or be canceled by a trivial fragment, which
can also lead to a large modification of the neighbouring u-parametric power. Note that the second
condition could be made more restrictive, but the current formulation is good enough for our purposes.

We first investigate the case, when the parametric power was affected by a substitution.

Lemma 11.21. In O(mn/|v|) time we can compute and sort sets SJ , SE,J , where |SJ | = O(1) and
|SE,J | = O(n/|v|), such that for each occurrence of a u-parametric power uφ in WJ=j affected by the
substitution J = j either j ∈ SJ or (φ, j) ∈ SE,J .

Similarly, in time O(mn/|u|) we can compute and sort sets S′
I , SI,E, where |S′

I | = O(1) and
|SI,E | = O(n/|u|), such that for each occurrence of a v-parametric power vψ in WI=i affected by the
substitution I = i either i ∈ S′

I or (i, ψ) ∈ SI,E.

The sketch of the argument was given above Lemma 11.19. Concerning the running time, the
appropriate exponents are identified during the u-reduction and v-reduction, which are performed in
given times using the data structure.

We now consider the case when uφ was not affected. Essentially, we claim that uφ is almost
the same as some uφ′ in W . The difference is that it can u-reduce letters from v-parametric powers
that become v-powers. However, as such v-power is not wholly merged (as it is not affected), only
its proper suffix or prefix can be u-reduced and by primitivity and by case assumption u ̸∼ v and
|v| ≥ |u|, this suffix is of length at most |v| + |u|. Thus, while in principle there are infinitely many
possibilities for vψ(j) when j ∈ Z, it is enough to consider a constant number of different candidates
(roughly: v2, v, ε, v, v2) and we can procure all of them so that an analysis similar to the one in
Lemma 11.18 can be carried out: essentially we replace a fragment vJfhuI with 5 “fragments” vcfhuI
for c ∈ {−2,−1, 0, 1, 2}. In this argument, we used the assumption that |v| ≥ |u| (the u-reduction is of
length at most |v|+ |u| ≤ 2|v|), but it turns out that in the case v-parametric powers the argument is
even simpler: the v-reduced prefix of u-parametric power is of length at most 2|v|, so the v-parametric
power is modified by an additive O(1) summand.

Lemma 11.22. We can compute and sort in O(m+ n/|u|) time a set of O(
√
n|ui0ui0+1|/|u|) integer

expressions E such that for every j if uφ is a parametric power in WJ=j not affected by substitution
J = j then φ ∈ E.

A similar set of O(
√
n|ui0ui0+1|/|v|) integer expressions can be computed for the not affected v-

parametric powers after the second v-reduction in O(m+ n/|v|) time.

Note that the second u (or v) reduction is performed only for some chosen values of i and j, and
not for each possible one.
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Lemmata 11.17, 11.18, 11.21 and 11.22 are enough to prove Lemma 11.19, by a simple case
distinction, as described in text preceding Lemma 11.17.

What is left to show is how to compute candidate solutions, when one of I, J , say J , is already
fixed, as in the claim of Lemma 11.19. The analysis is similar as in the case of two parameters,
however, we cannot guarantee that after the u-reduction the coefficient at the u-parametric powers
are ±1. On the positive side, as there is only one integer variable, we can apply Lemma 11.14 directly.
The additional logarithmic in the running time is due to sorting, which now cannot be done using
counting sort, as the involved numbers may be large.

Lemma 11.23. For any given j in O(m) time we can decide, whether for each i ∈ Z the αuivjβ is
a solution of (11.2) and if not then in O(m+ n logm/|u|) time compute a superset (of size O(n/|u|))
of is such that αuivjβ is a solution.

A similar claim holds for any fixed i (with superset size O(n/|v|) and running time O(m +
n logm/|v|)).

Exercises

Task 61 Show that if u1wu2 = v1wv2 and w is reduced then either w = 1 or v1w⊑u1 or u1w⊑v1, i.e.
w and w cannot overlap.

Task 62 Consider the case of x being a pseudo-solution of xuxvx, where xu = u′′ and xv = wvv′:
(and v′′wv⊑xu = u′′); in particular, x = u′′wvv′.

Show that x = xuxv = nf(u′′u••v) for some u⊒u′′⊒u••; note that there is a reduction in u′′u••

Task 63 Let xu = u′′wu, xv = wvv′ (in particular, x = u′′wuwvv′) and also xv⊒wu u′ and v′′wv⊑xu.
All above are in nf; this corresponds to the main case of pseudo-solution of xuxvx.

Justify the argument (especially the steps involving nf)

v′′wv⊑u′′wu

v′v′′v′′wv⊑vu′′wu

nf(v′wv)⊑nf(vu′′wu)
v′wv⊑nf(vu′′wu)
u′wu⊑nf(vu′′wu)

nf(u′′ u′u′wu)⊑nf(uvu′′wu)
nf(u′′wu)⊑nf(uvu′′wu)

xu⊑nf(uvxu)

Task 64 Let s be a cyclically reduced word. Let W be a set of words and k = ∑
w∈W |w|. Suppose

that sk1 , . . . , skp are pairwise disjoint subwords of words in W and that k1, . . . , kp are pairwise different
integers. Show that p ≤

√
4k/|s|+ 1.



Chapter 12

Approaches to dimension

In this chapter we will try (and fail to great extent) to define a notion of dimension for systems of
word equations, in a way similar to linear algebra of (algebraic or analytic) geometry.

12.1 Independent systems of equations

This section is based on [21], though with a different construction (original one seems to have a problem
with correctness).

Definition 12.1. Two systems of equations E and E ′ (perhaps infinite) are equivalent if: for each
substitution s it is a solution of E if and only if it is a solution of E ′ (note that the number of variables
can be infinite).

Example 12.1. Consider the following system E of equations:

ei : xyiz = zyix, i = 1, 2, . . .

The equations e1 : xyz = zyx and e2 : xy2z = zy2x are independent, since x = a, y = b, and
z = aba is a solution of the first one but not of the second one, and x = a, y = b, and z = abba is a
solution of the second one but not of the first one.

The system E is equivalent to its subsystem E′ = {e1, e2}. For this, we can suppose by symmetry
that |x| > |z| in a solution of e1. Therefore, x = zw1 = w2z for some words w1 and w2.

From e1 and e2, we obtain:

w1y = yw2,

w1y
2 = y2w2,

and, consequently,

yw2y = w1y
2 = y2w2,

i.e., yw2 = w2y, and similarly w1y = yw1. Since |w1| = |w2|, we have w1 = w2, and therefore, for
i ≥ 2,

xyiz = zw1y
iz = zyiw1z = zyix

as required.
We prove that every system of equations in a free semigroup over a finite set of variables has an

equivalent finite subsystem. Note that this system may include constants (from a finite alphabet).

Theorem 12.2 (Ehrenfeucht’s Conjecture). Every infinite system of word equations E in a finite
number of variables over a finite alphabet has a finite subsystem E ′ ⊆ E that is equivalent to E.

93
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It is easy to see that the assumption on finite number of variables and on finite alphabet are
essential (left as an exercise).

We will reduce this problem to a one on polynomials (with coefficients in Z) and use Hilbert’s
theorem: The proof first encodes the word equations as equations between matrices, see Task 8. Those
can be reduced to polynomials. Solutions of word equations correspond to ideals of polynomials, and
for that we know that polynomials with integer coefficients have finitely generated ideals (we will
simplify the presentation and avoid the name of ideal later on).

Theorem 12.3 (Hilbert’s basis theorem). Let Pi, for i > 1, be polynomials in Z[X⃗]. There exists
a finite subset P1, P2, . . . , Pt of these polynomials such that every Pi can be expressed as a linear
combination

Pi =
t∑

j=1
QijPj ,

where Qij ∈ Z[X⃗].

We will use it in the following form.

Theorem 12.4. Let {Pi = 0 : i > 1} be a system of polynomial equations, where Pi ∈ Z[X⃗]. There
exists an equivalent finite subsystem {Pi = 0 : i = 1, 2, . . . , ℓ}.

For simplicity we will use two-letter alphabet, but this is not restrictive (exercise).
Now, recall the construction of Task 8: The mapping is defined as

φ(a) =
[
1 1
0 1

]
and φ(b) =

[
1 0
1 1

]
.

and it is extended to Σ∗ as a homomorphism.

Theorem 12.5. φ is an isomorphism between Σ∗ with concatenation and matrices with natural coef-
ficients and determinant 1 with multiplication.

Now, for each variable X we introduce for integer variables x11, x12, x21, x22 with the intention
that they represent a matrix

φ(X) =
[
x11 x12
x21 x22

]

We rewrite the system of equations, by replacing every constant c with φ(c) and X with φ(X), i.e.
u = v is replaced with φ(u) = φ(v), or, equivalently, with

φ(u)− φ(v) =
[
0 0
0 0

]

Now, after computing the left-hand side, we get a polynomial (in several variables). So the satisfiability
of the original system of equations is equivalent to the satisfiability of the system of polynomial
equations in natural numbers. We now add new polynomial to ensure that each integer variable is
non-negative (task, reduces to number theory) and apply Theorem 12.4. This yields a finite subsystem
of polynomial equations and we consider the corresponding (finite) subsystem of word equations, which
is equivalent to the input one.

Remark. Note that we proved a combinatorial result for semigroups, i.e. noncommutative structure
with one operation by reducing it to a result for commutative rings, i.e. commutattive structure with
two operations.
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12.2 Defect Theorem
Definition 12.6. A finite set A ⊆ Σ∗ of words is a code, if every word w ∈ Σ∗ has at most one
factorization, i.e.

∀w ̸= w′ ∈ A wA∗ ∩ w′A∗ = ∅ .

Similarly, a finite A ⊆ Σ+ is an ω-code, if the above holds for all w ∈ ΣN, that is,

∀w ̸= w′ ∈ A wAN ∩ w′AN = ∅ .

Finally, A ⊆ Σ+ is a prefix code, if

∀w ̸= w′ ∈ A w ∩ w′Σ∗ = ∅ .

It is easy to show that a prefix code is an ω-code, and an ω-code is a code (exercise).

Theorem 12.7 (Defect Theorem). If a set of words A ⊆ Σ∗ is a not a code then there is B ⊆ Σ∗

such that |B| < |A| and A ⊆ B∗.

The Theorem is in fact stronger (it restricts the form of B), but it requires some technical tools
and definitions.

Possible applications: results similar and stronger than the periodicity Lemma:
Example 12.2. Suppose that u, v ∈ Σ∗ satisfy a nontrivial equation (that is a one which does not
reduce to ϵ = ϵ after removing of the same prefixes/suffixes from both of them). Then there is a word
w ∈ Σ∗ such that u, v ∈ w∗.

For instance, this implies the Periodicity Lemma, with the equation being uv = vu. But it works
for any other equation, say uuvv = vvuu.

12.2.1 Semigroups and bases
In the following we consider subgroups without neutral element, so in case of subsets of Σ∗: without
ϵ.

For a subsemigroup A ⊆ Σ+ its base is a minimal (in terms of inclusion) subset B such that
A = B+ ∪ . It is easy to see that B consists exactly of those elements of A that cannot be represented
as a concatenation of two other elements of A. Hence

B(S) = S \ S2

In particular, the base is unique.
The rank of S is defined as

rank(S) = |B(S)|.

A semigroup A is free, when it is isomorphic ot Σ+ for some finite Σ.
A subsemigroup S of Σ+ is free if its base B(S) is a code (exercise).
S is free if and only if it satisfies the following (Schützenberger’s) condition (more difficult exercise):

∀u ∈ Σ+ : Su ∩ S ̸= ∅ and uS ∩ S ̸= ∅ =⇒ u ∈ S. (12.1)

A subsemigroup S of Σ+ is said to be right unitary, if its base is a prefix code.
S is right unitary if and only if

∀u ∈ S, v ∈ Σ+ : uv ∈ S =⇒ v ∈ S. (12.2)

A subsemigroup S of Σ+ is called ω-free, if its base is an ω-code. It can be shown that S is an
ω-free subsemigroup if and only if it is free and satisfies

∀u ∈ S, s ∈ SN, w ∈ Σ+ : uw ∈ S,ws ∈ SN =⇒ w ∈ S. (12.3)

Those characterizations allow:
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Theorem 12.8. Any nonempty intersection of free (resp. right unitary) subsemigroups of Σ+ is free
(resp. right unitary).

For any subset A ⊆ Σ+, there exists the least free subsemigroup F (A) containing A, there exists
the least right unitary subsemigroup P (A) containing A, and the least ω-free subsemigroup containing
A, namely

F (A) = {S : A ⊆ S ⊆ Σ+, S is free},
P (A) = {S : A ⊆ S ⊆ Σ+, S is right unitary},
W (A) = {S : A ⊆ S ⊆ Σ+, S is ω-free}.

These semigroups are called the free hull, the prefix hull and the ω-free hull of A, respectively.
In the following we give an “algorithm” which transforms a given set (generating a semigroup) into

a base of free hull/prefix hull/ω-free hull. The algorithm is greedy and computes the closure according
to conditions (12.1)–(12.3) (and removes the non-needed generators).

Let A be a finite subset of Σ+, define the sets of words that violate conditions (12.1)–(12.3):

Cf (A) = {(u, v) ∈ A×A : u ̸= v, uA∗ ∩ vA∗ ̸= ∅},
Cp(A) = {(u, v) ∈ A×A : u ∩ vΣ+ ̸= ∅ or v ∩ uΣ+ ̸= ∅},
Cω(A) = {(u, v) ∈ A×A : u ̸= v, uAN ∩ vAN ̸= ∅}.

By (12.1)–(12.3): A is a prefix code (resp. a code or an ω-code) if and only if Cp(A) = ∅ (resp.
Cf (A) = ∅ or Cω(A) = ∅). Notice that

Cf (A) ⊆ Cω(A) ⊆ Cp(A)

for all finite A.
Let • ∈ {p, f, ω}.

Algorithm 13 P• computing a base of appropriate hull of A ⊆ Σ+

1: while C•(A) ̸= ∅ do
2: let (u, v) ∈ C$(Aj), where u = vw
3: if w ∈ A then
4: A← A \ v
5: else
6: A← (A \ u) ∪ w

return A

It is easy to see that the sum of lengths of elements in A only decreases, so the procedure will
terminate.

We want to show that the elements added to A by P• are indeed in appropriate hull.

Lemma 12.9. Let (u, v) ∈ C•(Aj), where u = vw. Then w is in appropriate hull of A.

Proof. For • = p observe that by (12.2), when vw, v ∈ P (A) then also w ∈ P (A).
For • = f since (u, v) ∈ Cf (A), we have words u′, v′ ∈ A∗ such that

uu′, vv′ ∈ A+ ⊆ P (A)

Then
wu′ = v′, vw = u ∈ A+ ⊆ P (A)

and by (12.1), also w ∈ P (A).
The argument for • = ω is as in the second case, with condition (12.3).

Hence the appropriate hull of A remain the same during the whole procedure. Since we terminate
in a base, this yields that the procedure returns the base of appropriate hull.

From the procedures P• it follows that the base elements of P (A), W (A), and F (A) are suffixes of
words of A. In the case • = f , the reverses of the words in A can be considered so that the elements
of F (A) are also prefixes of words of A. Note that the base is defined uniquely!
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Theorem 12.10. Let A ⊆ Σ+ be a finite set. Then

1. rank(F (A)) ≤ card(A) with equality if and only if A is a code.

2. rank(P (A)) ≤ card(A).

3. rank(W (A)) ≤ card(A) with equality if and only if A is an ω-code.

Proof. The inequality is clear, as the procedure can only decrease the size of A. We show that if A is
not a code then at some point the procedure will remove an element.

So suppose that A is not a code, u, v ∈ Aj with us = vt and u = vw for some s, t ∈ A∗ and
w ∈ Σ+. Clearly, if (u, v) is not chosen by the procedure, then exactly the same equation still holds
(note that new A, call it A′, satisfies A+ ⊆ A′+). If c was chosen in a different pair then the equation
still holds and is still no-trivial (it has different first elements). If u was chosen in a different pair, but
split into v′w′ where v′ ̸= v then again the equation has different first elements. If v′ = v then this
is in fact the same pair (u, v). If w is removed then we are done. If not, then consider that the old
equation

us = vt =⇒ vws = vt =⇒ ws = t

yet t cannot begin with element w it is not in A and the new w are always after v).
The argument is the same in the third case.

Exercises

Task 65- Write a polynomial with integer coefficients (in several variables x, x1, . . .) such that for
each natural n ≥ 0 there is an integer solution (n, n1, . . .) and for each solution (n, n1, . . .) we have
n ≥ 0.

This is used to guarantee that the solutions in the proof of Ehrenfeucht’s conjecture are indeed
positive.

Hint:Lagrange’sfour-squaretheorem.

Task 66 Show that a semigroup S ⊆ Σ∗ is right-unitary (its base is a prefix code) if and only if

∀u ∈ S, v ∈ Σ+ : uv ∈ S =⇒ v ∈ S.

Do not use the algorithm for computing the base (as its uses this condition).

Task 67(2 points) Show that a semigroup S ⊆ Σ∗ is free (its base is a code) if and only if

∀u ∈ Σ+ : Su ∩ S ̸= ∅ and uS ∩ S ̸= ∅ =⇒ u ∈ S.

Do not use the algorithm for computing the base (as its uses this condition).

Task 68 Show that a base B(S) of a semigroup S is a code if and only if S isomorphic to Γ∗ for some
finite Γ.

Task 69 Give a polynomial-time algorithm for verifying, whether (finite) A ⊆ Σ∗ is a code.

Hint:Automata;fixingtwowordsthatshouldgiveacounterexamplemayhelp.

Task 70 Give a polynomial-time algorithm for verifying, whether (finite) A ⊆ Σ∗ is an ω-code.

Hint:Automataoverinfinitestringsareoneoption;usingsomeperiodicityisanother.Oryoucan
useautomataoverfinitewordsdirectly.

Task 71 Show that the base of smallest semigroup containing A, so B(F (A)), consists of suffixes of
some words from A. Show that they are in fact borders of words from A.

Hint:Easyforsuffixes.Forborders:useatricktoshowthattheyareprefixesandthenthefactthat
thebaseisunique.
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Chapter 13

Equations without constants and related
topics

13.1 Lyndon-Schützenberge Theorem
The presentation is based on [15].

The main goal is to prove the following Theorem, originally stated for the free groups [38], so in a
slightly stronger form.

Theorem 13.1 (Lyndon-Schützenberge). Let m,n, k ≥ 2 be natural numbers. Then all solutions of
the equation

XmY n = Zk

are periodic, i.e. for each solution s there is a word ws such that s(X), s(Y ), s(Z) ∈ w∗
s for each

solution s.

We will show the theorem in a less general case of word equations.

Definition 13.2. A word w is bordered, if there exists ϵ ̸= v ̸= w such that w = vw′′ = w′v for some
w′, w′′.

Lemma 13.3. A word w is bordered if and only if there exists v, w′ with ϵ ̸= v ̸= w such that w = vw′v.
A word w is bordered if and only if there exists a word u with |u| < |w| and a natural number k

such that w is a subword of uk.

A simple proof is left as an exercise.

Lemma 13.4. If w is a conjugate to am then there are words p, q such that a = pq and w = (qp)m.

Definition 13.5. Let ≤ denote a linear-order on letters, which is extended to strings as a lexico-
graphical order.

A primitive word w is a Lyndon word (according to the order ≤), if it is the lexicographically
minimal one among the cyclic shifts of w.

Lemma 13.6. Lyndon word is not bordered.

A simple proof is left as an exercise.

Lemma 13.7. Let u, v be primitive words and w a word such that |w| ≤ |v|. If they satisfy an equation

um = vkw

for some k,m ≥ 2 then either

• u = v and w ∈ {ϵ, v} or
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• m = k = 2 and there exist p, q such that their primitive roots are different and there are natural
s, ℓ such that u = (pq)s+ℓp(pq)ℓ, v = (pq)s+ℓp and w = (qp)ℓ(pq)ℓ.

Proof. If u = v then clearly w ∈ {ϵ, v}. Moreover, if w ∈ {ϵ, v} then um is equal to vk or vk+1 and so
has periods u, v and thus from periodicity Lemma we obtain that v, u are powers of the same primitive
words, so the assumption yields that v = u.

So it is left to consider the case in which w /∈ {ϵ, v}. First, observe that both u and v are periods
of vk, so if |u|+ |v| ≤

∣∣∣vk∣∣∣ then they are both the periods of it which, together with the primitivity of
u, v, leads to a conclusion that u = v. Thus we can assume that

|u|+ |v| >
∣∣∣vk∣∣∣ .

Then on one hand we have

m|u| = |um|

=
∣∣∣vkw∣∣∣

≤ (k + 1)|v|

and on the other

|u| >
∣∣∣vk∣∣∣− |v|

= (k − 1)|v|

Multiplying the second inequality by m and comparing them we obtain

(k + 1)|v| > m(k − 1)|v|

After simplification

2 > (m− 1)(k − 1) ,

which can hold only when m = k = 2.
Thus we arrive at the desired equation

u2 = v2w .

Since u ̸= v we have that u = vv′ for some v′⊑v, let also v = v′v′′. Then

u = v′v′′v′

and on the other hand, from the second copy of u

u = v′′w

So |w| = 2 |v′| and so looking at the two expressions for w we get that

w = w′v′

for some w′⊑w. Looking again at u we finally obtain

u = v′v′′v′ = v′′w′v′

After removing the suffix v′ we see that
v′v′′ = v′′w′

Now from Lemma 8.2 this means that there exist p, q such that v′ = (pq)ℓ, w′ = (qp)ℓ and v′′ = (pq)sp
for some natural numbers ℓ, s. This yields the required form of v, u, w. Proving that the primitive
roots of p, q are different, that u ̸= v and w /∈ {ϵ, v} is left as an easy exercise.
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Lemma 13.8. Let u, v be primitive words and v′⊏v be a prefix of v. If they satisfy an equation

um = vkv′

for some k,m ≥ 2 then u = v and v′ = ϵ.
A similar statement holds when v′ is a suffix and the equation is

um = v′vk

Proof. • If it does not hold that m = k = 2 then this follows directly from Lemma 13.7.

• If u = v (and k = m = 2) then equation u2 = v2v′ implies that v′ = ϵ.

• If k = m = 2 and u ̸= v then from Lemma 13.7 we obtain the form of v, u, v′ and it is easy to
verify that this form implies that v′ is not a prefix of v, contradiction.

Thus u = v and v′ = ϵ.

Now we are ready to move to the main proof

proof of Theorem 13.1. Let a, b, c be words satisfying an equation

ambn = ck

for some m,n, k ≥ 2. We intend to show that there exist w such that a, b, c ∈ w∗.
If any of those words is not primitive then we can replace it with its primitive root (and increase

the power appropriately).
If ϵ ∈ {a, b, c} then the claim is clear: if c = ϵ then also a = b = c = ϵ and we are done. If, say,

a = ϵ then we get bn = ck and from Lemma 13.8 it follows that b = c; the proof is the same for b = ϵ.
If a = b then again we use Lemma 13.8 to conclude that a = b = c. If a = c then we can cancel

out powers of a and obtain bn = ck−m: if k −m ≤ 1 then the claim is clear. If k −m ≥ 2 then again
we use Lemma 13.8 to conclude that a = b = c. The proof is analogous for b = c.

Thus we are left with the main case, when a, b, c are pairwise different and non-empty. Let am = csc′

and bn = c′′ck−s−1 for some c′, c′′ such that c′c′′ = c. If s ≥ 2 or k − s − 1 ≥ 2 then we can use
Lemma 13.8 and conclude that a = c or b = c, which ends the argument. Thus assume s ≤ 1 and
k − s− 1 ≤ 1, thus k ≤ 3 (and by the assumption k ≥ 2). Moreover, if k = 3 then from k − s− 1 ≤ 1
we obtain that s = 1. Let us consider the two cases: k = 3, s = 1 and k = 2 separately.

First, let k = 3 and s = 1. Since am = cc′ and bn = c′′c then in particular |a|, |b| < |c|. Look at

c2 = c′c′′c′c′′ = amc′′ = c′bn

note that the overlap of am and bn in this representation is c′′c′, i.e. it is of length |c|. Now, each
conjugate of c occurs in cc and so it appears either in am or in bn. But then, from Lemma 13.3, we
obtain that each conjugate of c is bordered. But this cannot be, as c is primitive and so some of its
conjugates is a Lyndon word and such a word cannot be bordered, see Lemma 13.6.

So let us investigate the case k = 2. Thus we are looking at the equation

ambn = c2

Without loss of generality we can take a, b, c such that |c| is the smallest possible.
If |an| = |bm| then an = bm and so from Lemma 13.6 we get that a = b and we are done. So consider

the case when |an| > |bm|, which implies |an| > |c| (the other case is symmetric, or we can make it by
reversing both sides of the equation). Then am = cc′ for some c′⊑c, and c′c = (c′)2bn. Thus am and
(c′)2bn are conjugate. From Lemma 13.4 we obtain that there are p, q such that (qp)m = (c′)2bn. Note
that this is also an equation of the type we are investigating. If m = 2 then we have an equation

(c′)2bn = (qp)2

and |qp| = |pq| = |a| < |c| and this is a contradiction with the choice of c.
So we are left with the case m ≥ 3, but we already proved that this implies that b, c′, qp are all

powers of the same word. But as b is a primitive word, they are all powers of b. Also, qp is conjugate
to pq = a and it also is primitive, so we get b = qp and by assumption b = c′′. Also c′ ∈ (qp)∗ and so
c = c′c′′ ∈ (qp)∗, contradiction, as it is primitive.
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13.2 Assigning numerical values technique
This Section is based on [55].

In this section we say that a solution s is periodic if there is a word w such that for each variable
X we have s(X) ∈ w∗.

Consider a system of the form

Xk
0 = Xk

1X
k
2 · · ·Xk

n for k = k1, k2, k3 (13.1)

with 0 < k1 < k2 < k3 being natural numbers.

Theorem 13.9. A system (13.1) has only trivial solutions.

Note that it is easy to define systems of this form with only two equations and they have nonperiodic
solutions.

We do not specify the alphabet, yet if (13.1) has a nonperiodic solution, it has one over the binary
alphabet.

Lemma 13.10. If the system (13.1) has a nonperiodic solution then it has a nonperiodic solution
over a binary alphabet.

A simple proof is left as an exercise.
In the following, we use Γ rather than Σ to denote the finite alphabet and identify Γ with a

subset of R. Given a word w = a1a2 . . . aℓ by ∑(w) we denote a1 + a2 + . . . + aℓ. Also, by pswq(w)
(partial sum word) we denote a sequence q + a1, q + a1 + a2, . . . , q + ∑(w) and think of if as a
piecewise linear function that goes through the points (0, q), (1, q + a1), (2, q + a1 + a2), . . .. If no
lower index is used then by default it is 0, i.e. psw(w) = psw0(w) The idea of the lower index is that
psw(ww′) = psw(w) pswΣ(w)(w′), the piecewise linear functions are concatenated in a natural way.

We sometimes normalise the solution: w is called a 0-word if ∑(w) = 0. We usually assume that
s(X0) is a 0-word. This can be always achieved.

Lemma 13.11. Given a solution s to a system of word equations (13.1) by changing the alphabet Γ
we obtain a different solution such that s(X0) is a 0-word.

Again, a simple proof is left as an exercise.
As a first step towards the main proof we show that if a solution is length-minimal among the

non-periodic solutions then not all of s(X0), s(X1), . . . are 0-words.

Lemma 13.12. Let s be a length-minimal among the nonperiodic solutionso of the system of equa-
tions (13.1). Then not all among s(X0), s(X1),. . . , s(Xn) are 0-words.

Proof. Suppose not. Consider the factorisations of s(Xk1
0 ), s(Xk2

0 ) and s(Xk3
0 ) into 0-words that

cannot be further factorised into 0-words. Let V = {v1, . . . , vℓ} be the set of all obtained such words.
Then s(X0) is a concatenation of some words from this set. We claim that this is the same for each
s(Xi), which is claimed by induction: suppose that each of s(X0), s(X1), . . . , s(Xi) factorises into
words from V . Look at the first occurrence of s(Xi+1) in s(Xk

1X
k
2 · · · ). The corresponding word on

the left hand side factorizes into words form V . Also the prefix factorizes into words from V . So also
s(Xi+1) factorizes into them, as it is a 0-word.

Observe that s(X0) is not a power of one of elements from V : in such a case it would be a periodic
solution and by easy induction also all s(Xi) would be powers of the same word. Thus some of used
words from V is of length graeater than 1. Make a new solution over the alphabet V , which is equal to
the factorisation of each s(Xi) into elements of V . This is a shorter solution and it is nonperiodic.

We now are ready to prove Theorem 13.9

proof of Theorem 13.9. Take the shortest non-periodic solution of the system of word equations (13.1).
By Lemma 13.11 we can assume that ∑(s(X0)) = 0 and by Lemma 13.12 for some other variable Xi

we have that ∑(s(Xi)) ̸= 0.
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Divide the variables into two groups: good and bad. A variable Xi is bad, if ∑(s(Xi)) = 0 =∑(s(X1X2 · · ·Xi−1)) and it is good otherwise. Fix a number a and let us count, how many times it
occurs in psw(s(X0)k). If a occurs m0 times in psw(s(X0)) then it occurs km0 times in psw(s(X0)k),
as s(X0) is a 0-word and so each copy of psw(s(X0)) begins with an offset 0.

The same argument applies to each of the bad variables (with a different value of m, of course).
Let us now fix a as the maximal value of that occurs in psw(s(X1)ks(X2)k · · · s(Xn)k) (over all k ∈
{k1, k2, k3}) and comes from some good variable. For this fixed a it occurs km times on the left
hand side and has km′ occurrences that come from bad variables on the right-hand side. Thus
it has k(m − m′) > 0 occurrences that come from good variables. To obtain a contradiction we
show that for each good variable Xi it has at least as many occurrences that come from s(Xi)k1

as from s(Xi)k2 , which cannot be, as they should all sum (over all good variables) to, respectively,
k1(m−m′) < k2(m−m′).

For this fixed i let s = ∑(s(X1 · · ·Xi−1)), then s ̸= 0 or ∑(s(Xi)) ̸= 0, as this is a good variable.
Define wi = pswkis(s(X

ki
i )). This is the part of the right-hand side that corresponds to the input of

Xi in the equation for ki.
We consider some cases. If ∑(s(Xi)) = 0 then w1, w2, w3 are all 0-words and they begin at height

k1s, k2s, k3s, which are different. Thus w2 cannot have any occurrences of a, as w1 or w3 is above it
and a is at least the maximal value in them. In particular a has not more occurrences in w2 then in
w1.

If s = 0 then ∑(s(Xi)) ̸= 0 and so all w1, . . . , w3 begin at the same point (0) and they all either
increase or decrease with each copy of s(X)i. If they increase then a has no occurrence in w2, as the
last copy of s(Xi) in w3 is higher. If they decrease then the maximal value is attained in the first copy
of s(Xi) and it is identical in w1 and w2.

The other cases are shown in a similar fashion (sometimes we need to consider the sign of s +∑(s(Xi))).

Exercises

Task 72 Show that a Lyndon word is not bordered.

Task 73 Give an algorithm that, given a word w and an order on the alphabet, computes the Lyndon
word conjugate to w.

Task 74 Show that a word w is bordered if and only if it is a subword of uk for some word u, where
|u| < |w|, and some k ≥ 2.

Task 75 Show that if the system (13.1) has a nonperiodic solution then it has a nonperiodic solution
over a binary alphabet.

Task 76 Show that given a solution s to a system of word equations (13.1) by changing the alphabet
Γ ⊆ R we obtain a different solution such that s(X0) is a 0-word.

Task 77 Show that the set of minimal 0-sum words are a prefix code.

Task 78 Show the remaining cases of the proof for Theorem 13.9 not shown in the lecture. The claim
is that the number of occurrences for k2 is not more than the number of occurrences for k1.

We have covered the case when ∑(s(Xi)) = 0 and ∑(s(X1 · · ·Xi−1)) = 0.
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Chapter 14

Parametrasability of solutions

This section is based on [8].
Hmelevskii showed that a solution of 3-variable constant-free equations are finitely parametrisable

and that this does not hold for 4-variable equations (without constants). We show a modern, simplified
proof of this result.

To be more precise we show that solutions of an equation

xyz = zvx

is not finitely parametrisable.

14.1 Parametric Equations

We define word parameters and numerical parameters as parameters whose values are words over the
alphabet Σ, and nonnegative integers, respectively. Let Γ be a new alphabet. A parametric word over
Γ is defined inductively as follows:

1. Every letter in Γ is a parametric word.

2. If Ψ is a parametric word, and k is a numerical parameter and c is a natural constant, then Ψck

is a parametric word.

3. If Ψ1 and Ψ2 are parametric words, then also Ψ1Ψ2 is a parametric word, where Ψ1Ψ2 is obtained
by concatenating Ψ1 and Ψ2.

Note that a parameter can in principle be copied several times.
Given a parametric word Ψ, every assignment φ of values in Σ∗ to the letters of Γ, and of values

in N to the numerical parameters, defines a unique word in Σ∗, called the value of Ψ under φ, and is
denoted by φ(Ψ).

An equation over Σ and with n unknowns is parametrisable if there exists a finite number of n-
tuples of parametric words F1, . . . , Fk over an alphabet Γ such that the solution sets coincides with
the set of values of F1, ldots, Fk (over all assignments φ and of numerical parameters).

Lemma 14.1. Let u = v be a constant-free equation with n unknowns over the alphabet Σ with
|Σ| ≥ 2 and (T1, . . . , Tn) be a parametric solution. Let (V1, . . . , Vn) ∈ (∆∗)n be the n-tuple obtained
from (T1, . . . , Tn) by assigning fixed values to all numerical parameters. Then, (V1, . . . , Vn) is a solution
of the equation u = v over ∆.

Easy prof is left as an exercise.
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14.2 Fibonacci Words and Parametric Equations
Define the Fibonacci as (note, there is an offset in indices by 1 with respect to usual definition, this
was left to be consistent in the presentation)

F0 = a,

F1 = ab,

Fn = Fn−1Fn−2, for all n ≥ 2.

suf2(Fn) =
{
ab, if n is odd,
ba, if n is even,

for all n ≥ 1.

Lemma 14.2. Fibonacci words are 4-th power free, i.e. they do not contain a subword of a form w4.

Proof left as an exercise.
Consider the words Gn obtained from Fn by removing the last two letters.

Gn = FnΣ−2

14.3 Result
Theorem 14.3. The set of solutions of the equation xyz = zvx over an alphabet with at least two
distinct letters is not parametrisable.

Proof. Assume for the sake of contradiction that xyz = zvx is parametrisable.
Then we have a finite number of 4-tuples of parametric words (T1, T2, T3, T4), such that all valuation

of them give exactly the set of solutions of xyz = zvx. In particular, each Ti uses a finite number of
different letters from Γ and parameters. Let (V1, V2, V3, V4) be the 4-tuple obtained from (T1, T2, T3, T4)
by assigning fixed values to each numerical parameter, which are solutions of the equations over Γ,
i.e. V1V2V3 = V3V4V1. We can use the notions of prefix, suffix, alphabet etc. as before.

By symmetry, we can assume that |V1| ≥ |V3|.
We prove now that for such (V1, V2, V3, V4) we have

V2 = V4 or Alph(V1V3) ⊆ Alph(V2V4),

where Alph(V2V4) denotes the set of letters used in V2V4. There are three cases, depending on length
of V1

If |V1| = |V3| then V1 = V3 and V2 = V4, as claimed.
If |V3| < |V1| ≤ |V3V4| = |V2V3|. Then V1 = V3P and V1 = QV3 for some P,W ∈ ∆+ are a of V4

and suffix of V2, respectively. Thus, QV3 = V3P , which implies

Q = SW, P = WS, V3 = (SW )iS, V1 = (SW )i+1S,

Then α ∈ Alph(V1V3) = Alph(SW ) ⊆ Alph(V2V4).
If |V1| > |V3V4|. We can write V1 = V3V4P and V1 = QV2V3, with P,Q ∈ ∆+. Substituting these

relations into the identity V1V2V3 = V3V4V1, we obtain that P = Q. So, in this case (V1, V2, V3, V4) is
a solution of the equation xyz = zvx over ∆ if and only if

PV2V3 = V3V4P and V1 = PV2V3,

i.e., (P, V2, V3, V4) is a solution of the equation xyz = zvx over ∆ and V1 = PV2V3. If V1 = P , i.e.
V2V3 = 1, then V2 = V3 = V4 = ϵ, in particular V2 = V4. Otherwise (i.e. V1 ̸= P ), we reduce the
solution (V1, V2, V3, V4) to (P, V2, V3, V4), with |P | < |V1|, and V1 = PV2V3. We can iterate this step
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until |P | ≤ |V3V4|, which means that we can apply one of the cases above. So, for (P, V2, V3, V4) we
have

V2 = V4 or Alph(PV3) ⊆ Alph(V2V4).
But, since V1 = PV2V3, this implies that for the solution (V1, V2, V3, V4) we have

V2 = V4 or Alph(V1V3) ⊆ Alph(V2V4).

Observe that for the words Gk the tuple

(Gk, ab,Gk−1, ba)

is a solution for the equation xyz = zvx over Σ for every odd k. (Exercise)
Consider now an assignment τ and a parametric solution (T1, T2, T3, T4) such that

(τ(T1), τ(T2), τ(T3), τ(T4)) = (Gk, ab,Gk−1, ba)

for some odd index k. We prove now that the length of τ(T1) is bounded by a constant.
First, since every Gk is a prefix of the Fibonacci word, which is 4-free, and τ(T1) = Gk for some

odd k, we must have that every power of a factor in τ(T1) is less than 4.
Second, consider the 4-tuple (V1, V2, V3, V4) over ∆ obtained from the parametric solution (T1, T2, T3, T4)

by substituting every numerical parameter with its value τ(α). Since τ(Ti) = τ(Vi) for every 1 ≤ i ≤ 4,
we obtain the following relations:

Gk = τ(V1), Gk−1 = τ(V3), ab = τ(V2), ba = τ(V4). (14.1)
Notice now that the values of formulas V2 and V4 under the assignment τ must be ab and ba, re-
spectively, so V2 ̸= V4. Thus, from (14.1) for any α ∈ Alph(V2V4) we have |τ(α)| ≤ 2. But
Alph(V1V3) ⊆ Alph(V2V4). and so the same claim holds also for α ∈ Alph(V1V3). Thus |τ(V1)|
and |τ(V3)| are both bounded by a constant.

So, what we obtained is that for any numerical parameter which appears in T1, τ(α) < 4, and for
any word parameter α which appears in T1, |τ(α)| ≤ 2. Consequently, |τ(T1)| is bounded by some
positive constant, i.e., we cannot generate arbitrarily large solutions (Gk, ab,Gk−1, ba), with k odd.
But this is a contradiction since words Gk can be arbitrarily large.

Exercises

Task 79 Let u = v be a constant-free equation with n unknowns over the alphabet Σ with |Σ| ≥ 2
and (T1, . . . , Tn) be a parametric solution. Let (V1, . . . , Vn) ∈ (∆∗)n be the n-tuple obtained from
(T1, . . . , Tn) by assigning fixed values to all numerical parameters. Show that (V1, . . . , Vn) is a solution
of the equation u = v over ∆.
Task 80 Show that

GkabGk−1 = Gk−1baGk

For odd k.
To this end show that

Gk = Fk−1Gk−2

Gk = Fk−2Gk−1

The first follows from definition and the second follows by easy inductive proof.
Task 81 Consider a parametric word of length n (we count each occurrence of a natural parameter
as length 1). Upper-bound the maximal length of a word that can be obtained from it by substituting
the letters with word over Σ and natural parameters with values, assuming that

• the obtained word is 4-th power free (i.e. does not have a subsword of a form w4)

• we can substitute for each letter in Γ a word of length at most 2.
Note, we can stack exponents, say ((ai)j)k is legal (and has length 4 as a parametric word).



108 CHAPTER 14. PARAMETRASABILITY OF SOLUTIONS



Chapter 15

Infinite Alphabets

We now consider word equations over infinite alphabets. This more or less trivially reduces to the
finite alphabet case when only the equations are allowed; things gets different when we allow regular
constraints, though one needs an appropriate definition of “regular”. This can be formalised using
notions of symbolic/parametric/register automata.

15.1 Models of automata over infinite alphabets

We do not assume that the alphabet Σ is finite.
Satisfiability of equations over such an alphabet trivially reduce to the case of finite alphabets: if

there is a solution, then there is one over the alphabet of letters present in the equation (and perhaps
one more letter).

The situation changes, when we allow “regular constraints,” but we need to define, what is a
regular constraint.

There is no single canonical model of regular languages in this case.

15.1.1 Symbolic automata

We assume that the (infinite) alphabet comes with some logic and we label the transition with a
formula (“guard”) with one free variable. In most cases we assume that the formula is from some
restricted fragment (say, no quantifiers or no alternation of quantifiers, perhaps some more restriction
on the form, like it should be in some normal form). As a least requirement, we should be able to
decide for a symbol a, whether φ(a) holds and whether there is at all a such that φ(a) holds.

By T (x) we will denote the set of allowed formulas. Then the transition function should satisfy

δ ⊆ Q× T (x)×Q

a we can move in the automaton from q to q′ using transition φ(x) by a symbol a when φ(a) holds.
Otherwise, the definition of the automaton and the accepted language is the same.
As usual we denote the language recognized by the automaton by L(A).

15.1.2 Symbolic automata

In parametric automaton we allow the automaton to guess some values before the start of the compu-
tation and use them later on (those are the parameters). Hence T (y⃗, x) has p+ 1 free variables. For
a fixed sequence of parameters instantiations (by p⃗) we can move in the automaton from q to q′ using
transition φ(y⃗, x) by a symbol a when φ(p⃗, a) holds.

We denote the resulting language by Lp⃗(A) and finally

L(A) =
⋃
p⃗

Lp⃗(A)

109
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For instance: such an automaton can recognize language of the form⋃
a∈Σ

a∗

it guesses a at the beginning and the tests each of the following letter for an equality with a.
If T includes the (linear) order relation It can recognize a language of words in which the maximum

occurs twice: it guesses the maximum and then counts that it occurs twice and that nothing larger
than the guessed elements occurs.

More details are given in later Lemma 15.6.

15.1.3 Register automata

The register automaton has k registers, in which it can store some of the values read during the
computation; it can also update those values, but only to the letters just read.

Note that in most cases when one talks about register automata, we assume that the only allow
tests for equality, i.e. the logic is restricted to Boolean combinations of equality relation (on registers
and the read value).

Formally, a confiuration on an autmaton is (q, r⃗), where each ri ∈ Σ ∪ ⊥, where ⊥ represents the
register whose value was not set yet (they are not initilised). Then the transition function satisfies

(p, φ(y⃗, x)q, b⃗) ⊆ Q× T (y⃗, x⃗)×Q× {0, . . . , k}k

where b⃗ defines, whether we should update the register
Then a transition from (p, r⃗) to q, r⃗′ by transition (q, φ(y⃗, x) vecb) and letter a is possible, when

φ(r⃗, a) holds and

r′
i =

{
rbi

when bi > 0
a when bi = 0

To simplify the definition, we assume that register automaton does not compare letters to ⊥ and
does not introduce ⊥ (such actions can be simulated in the state: it can store the information, which
registers are in fact empty).

We think that the number of registers is small (1, 2, . . . , in most cases can be treated as a constant).
For instance, when the logic allows the usage or order, we can verify that the strict is strictly (or

weakly) increasing: we test that the read letter is larger than the register and update the register to
the read letter.

15.2 Word equations with symbolic automata

Here (and in case of register automata) we assume that the theory does not allow quantification.
Consider a set Φ of all atoms in all guards in the regular constraints together with the set of

formulas {x = c} over all letters c ∈ Σ that appear in all equations; and the negations of both types
of formulas.

The type ∆(a) of a ∈ Σ is the set of formulas in Φ satisfied by a, i.e. {φ ∈ Φ : φ(a) holds}. Clearly
there are at most exponentially many different types. A type t is realizable, when t = ∆π(a) and it is
realized by a.

If the constraints are satisfiable then they are satisfiable over a subset Σ0⊆finΣ, where Σ0 is created
by taking (arbitrarily) one element of a realizable type. Note that for each constant c in the equations
there is a formula “x = c” in Φ, in particular ∆(c) is realizable (only by c) and so c ∈ Σ0.

Lemma 15.1. Given a system of constraints let Σ0 ⊆ Σ be obtained by choosing (arbitrarily) for
each realizable type a single element of this type. Then the set of constraints is satisfiable over Σ if
and only if they are satisfiable over Σ0. To be more precise, there is a letter-to-letter homomorphism
ψ : Σ∗ → Σ∗

0 such that if s is a solution of a system of constraints then ψ ◦ s is also a solution.
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Proof. If the constraints are satisfiable over Σ0 then they are clearly satisfiable over Σ (a larger set),
as the same assignment works.

If the constraints are satisfiable for Σ, then we change the assignment. For shortness of notation,
for a type t by at we denote the chosen letter of this type in Σ0, i.e. at ∈ Σ0,∆(at) = t. Given
an assignment satisfying all constraints we replace each symbol a with a∆(a). We claim that such
assignment still satisfies all constraints.

For the regular constraint, suppose that s(X) ∈ L(A), let s′(X) be the assignment value after the
replacement. Then s(X) ∈ L(A): the corresponding letters of s(X) and s′(X) are of the same type,
so they satisfy the same guards in A and so an accepting path for s(X) yields the same accepting
path for s′(X) and vice versa.

For the equations, first observe that |s(X)| = |s′(X)|, as the latter was obtained from the former by
a letter-to-letter replacement. Consider an equation L = R. If the corresponding letters in s(L), s(R)
were both obtained from the variables, then they were replaced at both sides with the same letters.
If symbols at both sides come from the constants, then they are clearly not changed (and still equal).
If one side comes from a constant in the equation, say c, and the other from the variable, say X, then
in s(X) at the corresponding position s(X) has c. As c is a constant in the equation, the “x = c” is
an atom in Φ and so it is in the type ∆(c) and so c is the unique letter (in whole Σ) with this type
and so c in s(X) is replaced with c in s′(X) and so the equation is still satisfied.

Once the domain is restricted to a finite set (Σ0), the equations and regular constraints reduce
to word equations with regular constraints: treat Σ0 as a finite alphabet, for a symbolic automaton
A = (Σ, Q,∆, q0, F ) create an NFA A′ = (Σ0, Q,∆′, q0, F ), over the alphabet Σ0, with the same set
of states Q, same starting state q0 and accepting states F and the relation defined as (q, a, q′) ∈ ∆′ if
and only if there is (q, φ(x), q′) ∈ ∆ such that φ(a) holds, i.e. we can move from q to q′ by a in A′ if
and only if we can make this move in A. Clearly, from the construction

Lemma 15.2. Let Σ0 be a set from Lemma 15.1, A be a symbolic automaton and A′ the automaton
as constructed above. Then

L(A) ∩ Σ∗
0 = L(A′) .

We can rewrite the parametric automata-constraints with regular constraints and consider equa-
tions over the finite alphabet Dπ. From Lemma 15.1 and Lemma 15.2 it follows that the original
constraints have a solution if and only if the constructed system of constraints has a solution. The
extra detail is how to store the letters from Σ0. We can identify letters with their type and store it
as a bitvector (which formula is satisfied in the type). This allows to use the transitions. As in the
case of regular constraints, we do not need to actually store all letters, when a letter is introduced we
need to be able to verify, whether its type is realizable.

Note that there is an extra complexity in checking, whether a type is realizable.

Theorem 15.3. Assuming that T is quantifier-free and is closed under complementation and con-
junction, the word equations over infinite alphabets with constraints given by symbolic automata can
be verified in PSPACE.

15.3 Word equations with parametric automata
Observe that once the parameter assignment π : p⃗ → Σ is fixed, the rest of the construction for
parametric automata is exactly the same as in the case of symbolic automata: the type ∆π(a) of a
(under assignment π) is the set of formulas in Φ satisfied by a, i.e. {φ ∈ Φ : φ(π(p⃗), a) holds}.

Lemma 15.4. Given a system of constraints and a parameter assignment π let Σπ ⊆ D be obtained by
choosing (arbitrarily) for each realizable type a single element of this type. Then the set of constraints
is satisfiable (for π) over Σ if and only if they are satisfiable (for π) over Σπ. To be more precise, there
is a letter-to-letter homomorphism ψ : Σ∗ → Σ∗

π such that if s is a solution of a system of constraints
then ψ ◦ s is also a solution.

Also, the construction of the automaton is similar.
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Lemma 15.5. Given an assignment of parameters π let Σπ be a set from Lemma 15.4, A be a
parametric automaton and A′ the automaton as constructed above. Then

Lπ(A) ∩ Σ∗
π = L(A′) .

It turns out that we do not need the actual π, it is enough to know which types are realisable for
it, which translates to an exponential-size formula. We will use letter τ to denote subset of Φ; the
idea is that τ = {∆π(a) : a ∈ D} ⊆ 2Φ and if different π, π′ give the same sets of realizable types,
then they both yield a satisfying assignment or both not. Hence it is enough to focus on τ and not
on actual π.

Lemma 15.6. Given a system of equations and regular constraints we can non-deterministically
reduce them to a formula of a form

∃p⃗ ∈ Σ+ ∧
t∈τ
∃t∈τat ∈ Σ

∧
φ∈t

φ(p⃗, at) , (15.1)

where τ ⊆ 2Φ is of at most exponential size, and a system of word equations with regular constraints
of linear size and over an |τ |-size alphabet, using auxiliary O(n|τ |) space. The solution of the lat-
ter word equations (for which also (15.1) holds) are solutions of the original system, by appropriate
identifications of symbols.

Proof. We guess the set τ of types of the assignment of parameters π, i.e. τ = {∆π(a) : a ∈ Σ}.
Note that as Φ has linearly many atoms and τ ⊆ 2Φ, then |τ | may be of exponential size, in general.
The (15.1) verifies the guess: we validate whether there are values of p⃗ such that for each type t ∈ τ
there is a value a such that ∆π(a) = t.

Let Σπ be a set having one symbol per every type in τ , as in Lemma 15.4; note that this includes
all constants in the equations constraints. The algorithm will not have access to particular values,
instead we store each t ∈ τ , say as a bitvector describing which atoms in Φ this letter satisfies. In
particular, |Σπ| = |τ | and it is at most exponential. In the following we will consider only solutions
over Σπ.

For each a ∈ Σπ we can validate, which transitions in A it can take: the transition is labelled by
a guard which is a conjunction of atoms from Φ and either each such atom is in ∆π(a) or not. Hence
we can treat A as an NFA for Σπ. We do not need to construct nor store it, we can use A: when we
want to make a transition by φ(p⃗, a) we look up, whether each atom of φ is in ∆π(a) or not. Similarly,
the constraint A(X) is restricted to X ∈ Lπ(A) and for X ∈ Σ∗

π this is a usual regular constraint.
We treat equations constraints as word equations over alphabet Σπ.
Concerning the correctness of the reduction: if the system of word equations (with regular con-

straints) is satisfiable and the formula (15.1) is also satisfiable, then there is a satisfying assignment
s over Σπ and Σ∗

π in particular, there is an assignment of parameters for which there are letters of
the given types (note that in principle it could be that s induces more types, i.e. there is a value a
such that ∆s(a) /∈ τ and so it is not represented in Σπ, but this is fine: enlarging the alphabet cannot
invalidate a solution), i.e. the transitions for at in the automata after the reduction are the same as in
the corresponding parametric automata for the assignment π, this is guaranteed by the satisfiability
of (15.1) and the way we construct the instance, see Lemma 15.5.

On the other hand, when there is a solution of the input constraints, there is one for some assign-
ment of parameters π. Hence, by Lemma 15.4, there is a solution over Σπ. The algorithm guesses
τ = {∆π(a) : a ∈ Σ} and (15.1) is true for it. Then by Lemma 15.4 there is a solution over Σπ as
constructed in the reduction and by Lemma 15.5 the regular constraints define the same subsets of
Σ∗
π both when interpreted as parametric automata and NFAs.

Theorem 15.7. If theory T is in PSPACE then sequence constraints are in EXPSPACE.

15.4 Undecidability for register automata constraints
First, observe that we can assume that we have a finite number of chosen constants, called a, b, c,
among letters in Σ: to this end we introduce variables a, b, c — one for each constant, and regular
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constraint L = {xy : x, y ∈ Σ, x ̸= y, |x| = |y| = 1}, which can be clearly realized by a register
automaton, and writing constraints A(ab),A(ac),A(bc); formally this is realized by new sequence
variables.

We give a construction, which results in X,X ′, X ′′ satisfying the following conditions:

1. X ′′ = aX and X ′′ begins with a and has all letters different;

2. X ′ = (aX)|X|.

In the following we will use simple variants of this construction to encode (positive) integer arithmetic
with addition and multiplication, with X as above representing an integer variable with value |X|.

For a variable X introduce a variable X ′′ and write a constraint X ′′ = aX and an automaton
constraint that X ′′ has no other occurrence of a. Write constraint X ′′X ′ = X ′X ′′. This implies that
there is aw ∈ Σ+ such that X ′′ = (aw)k, X ′ = (aw)ℓ for some k, ℓ. Since X ′′ has only a single a, k = 1
and so X ′ = (aX)ℓ.

We construct another register automaton and put a constraint on X ′a (formally this requires a
new variable); there is a special case when X ′ = a, which is trivially handled separately; hence in the
following we assume that |w| > 0. The register automaton reads the first letter of X ′a = (aX)ka, i.e.
a, and stores it in the register r1. Then it enters a loop: it reads a value, stores it in r2 and scans the
input until it finds another occurrence of value from r2. If in the meantime it finds no letter a (stored
in r1), then it rejects. After finding another copy of r2 it goes to the next element, stores it in r2 and
continues the loop (the r1 is not altered).

The loop ends when after finding the copy of r2 the next letter is a, in which case we accept (and
reject in all other cases).

Lemma 15.8. The construction above yields X,X ′, X ′′ satisfying conditions 1, 2.

Proof. By the construction we have that X = w with a not being a letter in w. It was argued that
X ′ = (aw)ℓ for some ℓ.

We call the automaton action between storing for the i-th time the letter in r2 and finding its next
occurrence an i-th pass.

Suppose that aw consists of different letters. By simple induction in i-th pass we store the i-th
letter of w in the register and read till i-th letter in the i+ 1-st copy of w (and store the next letter).
Hence, in w-th pass we reach the last letter of |w|-th copy of aw, which is followed by a, so we accept
after reading (aw)|w|a, as claimed. We reject in each other case, so in particular for other powers
(aw)na, where n ̸= |w|.

If X = w and w contains a letter twice, say at positions i < j then at the i-th pass we will reject,
as there is no a between those positions.

Lemma 15.9. Using register automata constraints and sequence constraints we can enforce that sub-
stitution for X,Y, Z has all letters different and |X|+ |Y | = |Z|

Simply write XY = Z and use the constraint from Lemma 15.8 to Z, which in particular implies
that all letters in X,Y are different (and other than a).

We can use a variant of construction from Lemma 15.8 to simulate multiplication: roughly, we use
three variables X,Y, Z and consider an equation (aXbY cZ)W = W (aXbY cZ) and make three types
of checks in parallel. For Z we use the same construction as before, for Y we “reset” after each |Y |
full passes and for X we make one pass for each full pass of Y . This will ensure that |Z| = |X| · |Y |.

Lemma 15.10. Using register automata constraints and sequence constraints we can enforce that
substitution for X,Y, Z has all letters different and |X| · |Y | = |Z|

Proof. The proof is similar as in Lemma 15.8: Choose constant a, b, c, take new variables X ′, Y ′, Z ′,W ,
using regular constraints enforce that a, b, c do not appear in X,Y, Z. Impose a sequence constraint

(aXbY cZ)W = W (aXbY cZ)

as in Lemma 15.8 this implies that W = (aXbY cZ)k for some k.
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We construct a register automaton, which has three “components”, working in parallel; each is
similar to the automaton from Lemma 15.8. Formally the constraint is on sequence abcWa, so that
constants a, b, c are known to it and there is an a-terminator at the end.

The first component works as Lemma 15.8 for Z: i.e. it scans consecutive copies of Z, but it ignores
letters between a, c (including c, excluding a). Hence, it enforces that k = |Z|.

The second component works similarly for Y (ignoring letters between c and b), but once it finds c
directly after a letter it stores in the register, it waits for a to appear, on which it goes to an accepting
state and then restarts, i.e. it waits for b and then starts the computation again. Hence it is in an
accepting state for each (aXbY cZ)ℓ|Y |a. We refer to the computation between accepting states as full
pass, i.e. one full pass corresponds to |Y | copies of Y read.

The third component performs the computation for X, but does one pass for X and then waits for
the component responsible for Y to go to an accepting state, in which case it makes another pass, and
so on. Hence, it makes one pass per full pass for Y . Once an accepting state is reached, it remains
there until another full pas of Y is completed. Afterwards, it goes to a rejecting state. In this way,
we ensure that k = |X| · |Y |, hence |Z| = |X| · |Y |.

Lemmata 15.8, 15.9, 15.10 straightforwardly allow encoding the Hilbert’s tenth problem, and so
show the undecidability of sequence constraints and register constraints over infinite domains.

Exercises

Task 82 Show that the deterministic register automata are weaker than the non-deterministic ones.
Take into the account the number of registers: ideally, you should show that there is a language
recognised by 1-register nondeterministic automaton and not by k-register deterministic one.

It is enough to consider the logic using (boolean combinations of) equality tests between read letter
and registers.

Hint:Languageofwordssuchthatthelastletterhasoccurredbeforeseemsagoodcandidate.

Task 83 Show that the symbolic automata are determinizable, i.e. given a non-deterministic symbolic
automaton we can construct a deterministic one recognizing the same language.

Conclude that parametric automata are determinizable.
Task 84 Show that the hierarchy of languages recognized by k-parametric automata is strict, i.e. that
for each k there is a language recognized by k-parametric automaton but not by any k− 1-parametric
automaton. A language ⋃

a1,...,ak

{a1, . . . , ak}∗

is a good candidate.
Task 85 Show that the hierarchy of languages recognized by k-register automata is strict, i.e. that
for each k there is a language recognized by deterministic k-register automaton but not by any k− 1-
register automaton. A language ⋃

a1,...,ak

(a1 · · · ak)∗

is a good candidate.
Task 86 Show there are languages recognized by deterministic 1-register automaton and not by
parametric automata (with any number of parameters).

Consider the logic using (boolean combinations of) equality tests (between read letter and regis-
ters/parameters).

Note that there is a subtlety that the parameters are guessed at the beginning but it could in
principle hold that, say, for two accepted words w,ww′ they are accepted for different parameters
values.

Hint:Alanguageofwords⋃a(aa)∗isoneofgoodcandidates.



Chapter 16

Linear Monadic Second Order Unification

This Chapter is more or less based on [35], but hopefully much simplified. We present a simplified
variant of linear monadic second order unification, in which we require that the substitutions for a
variable are linear (so each parameter is used at most once) and we work over signature of letters of
arity at most 1. So comparing to word equations, we have letters and one extra nullary symbol that
is always at the end (we shall denote it by “⊥” and ignore it). The variables do not represent words,
but rather λ-functions, in the sense that X is now a function λx.wx, where we require that wx is built
solely of symbols and possibly x used once and at the end, it may be followed by the ⊥, though. The
difference is that X can ignore its argument and simply terminate the hole term.
Example 16.1.

Xa⊥ = Y b⊥

There is a valid solution X = λx.a⊥ and Y = λy.a⊥. Note that there are also other solutions. Note
that the equation Xa = Y b is not satisfiable as a word equation.

Lemma 16.1. If an equation u = v is satisfiable as a word equation then the equation u⊥ = v⊥ is
satisfiable as linear monadic second order unification problem.

One other difference is that our encoding into one equation no longer works as a substitution may
drop some other substitutions.

Since there are more solutions, intuitively it should be easier to solve such an equation. In some
sense this is the case: this problem is in NP.

Theorem 16.2. Satisfiability of a linear monadic second order unification is in NP.

Our approach is as previously, i.e. we will apply the local compression rules and keep the size of
the instance small. The additional twist is that whenever possible we shall try to replace the left-most
variables with closed functions, i.e. the ones that ignore their argument.

We begin with stating that our subprocedures for word equations indeed work in this setting. We
need a twist, though: Pop are also allowed to replace a variable by a “⊥”.

Lemma 16.3. Pop, BlockCompNCr, PairCompNCr are sound and complete for the linear monadic
second order unification.

The proof for compression operations is the same as for word equations, for popping operations
some analysis is needed, as we may pop to the right from a variable that should be replaced with
a closed function. Some properties of the algorithm are needed to show that this is sound: if we
remove the variable from the left-hand side then either we substitute it with a word or with word
ended with ‘⊥’ and we know which case this is.

Additionally, the exponential bound on the exponent of periodicity holds also in case of linear
monadic second order unification.

Lemma 16.4. Let s be the length-minimal solution of linear monadic second order unification and
let wk be a substring of s(X). Then k ≤ 2cn for some constant c, where n is the sum of length of the
equations.

115
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A simple reduction to the word equation case is left as an exercise.
Hence, at any point we can ensure, in non-deterministic polynomial time, that the size of the

instance is at most cn2 for a suitable c: if not then we run compression and uncrossing until it is
reduced to cn2.

Simplifying assumptions Without loss of generality we can assume that:

• for each equation at least one of its sides begins with a variable;

• for each equation both of its sides contain a variable.

What may be surprising, is that removing letters from the left-sides of the equations is fine but
removing variables is not. We consider only the case of left sides, as we are only interested in that.

Lemma 16.5. The systems {ui = vi}i∈I ∪ {au = av} and {ui = vi}i∈I ∪ {u = v} are equisatisfiable
for a letter a.

The systems {ui = vi}i∈I∪{Xu = Xv} and {ui = vi}i∈I∪{u = v} are in general not equisatisfiable
for a variable X.

A simple proof is left as an exercise.
Our (nondeterministic) algorithm shall eliminate one variable (i.e. remove all occurrences of) using

polynomially many steps, each of those steps increases the size of the instance by O(n). This guar-
antees that the whole algorithm runs in NP: after the removal the instance is of polynomial size. In
polynomially many steps we reduce it to size O(n2) and then iterate again, with less variables.
Example 16.2. Suppose that we have only one equation u = v. If after applying Lemma 16.5 we end
up with an equation X. . . = Y. . . then we can substitute s(X) = s(Y ) = ⊥; similarly, if the equation
is X. . . = wY. . . where X ̸= Y and w is a word then we can take s(X) = w⊥ and s(Y ) = ⊥ So the
only remaining case is X. . . = wX. . . . But in this case s(X) is periodic with a period that is shorter
than w. We can guess it, guess the exponent and make the substitution.

The situation becomes more complex when there are more equations involved, also we need to
keep the instance small and this is the main result presented here.

Dependency Graph
Definition 16.6. For a system of linear second order unification define a dependence graph. Its
vertices are labelled with variables that have at least one occurrence in the equations and there is an
edge X w−→ Y for each equation XU = wY V , where w is a (perhaps empty) word.

Note that if there is an equation XU = Y V then we add edges X ϵ−→ Y and Y
ϵ−→ X.

Lemma 16.7. If there is an edge from X
w−→ Y then for each solution s of this system either

• s(X) = w′ where w′ is a prefix of w or

• s(X) has a prefix w (this includes s(X) = w⊥).

In particular, if X w−→ Y and X w′
−→ Y ′ then either

• w is a prefix of w′ or

• w′ is a prefix of w or

• s(X) is a prefix of w′ and w.

A simple proof is left as an exercise.

Corollary 16.8. If there are two edges from X labelled with nonempty words then for each solution
s they have the same first letter or s(X) = ⊥ or s(X) = ϵ.
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Define a relation on the variables: X < Y if there is a path from X to Y whose labels concatenate
to a non-empty word. Also, define the relation of equivalence: X ∼ Y if there is a path from X to Y
whose all edges are labelled with ϵ. As such edges are bi-directional, this is an equivalence relation.
Note that < is transitive and it is well defined also on equivalence classes of ∼, but it is not a partial
order, as it may contain cycles.

Lemma 16.9. If X is a minimal element of <, so are all its equivalent variables.

Lemma 16.10. Let X1, . . . , Xm be the equivalence class of ∼. Then in each solution either one of
them is ϵ or they all begin with the same letter (which may be ⊥).

The proof is obvious.

Lemma 16.11. Let s be a solution, and let X1, . . . , Xm be all variables equivalent to X1, assume
that s(Xi) /∈ {ϵ,⊥} for each i and let a be the first letter of s(X1). Then after left-popping a from all
X1, . . . , Xm either one variable is removed or

• all X1, . . . , Xm are still equivalent and

• each edge Xi
w−→ Y for w ̸= ϵ is replaced with Xi

a−1w−−−→ Y .

• each edge Y w−→ Xi for w ̸= ϵ is replaced with Y wa−−→ Xi.

The proof follows by a simple case inspection of edges, depending on the occurrences of variables
Xi on both sides of the equation.

Lemma 16.12. If relation < on a component of a graph (i.e. one equivalence of ∼) is empty, then
there is a solution in which s(X) = ⊥ for each variable in this component.

Lemma 16.13. If relation < on the graph is acyclic, X is one of minimal nodes and there is an
edge X aw−−→ Y , then either there is a solution s(X) ∈ {ϵ,⊥} or left popping (appropriate) a from all
variables in the equivalence class of X yields an instance with smaller sum of label lengths over all
edges.

Proof. If there is no outgoing edge from the nodes in the equivalance class, then this equivalance class
form a component in the dependency graph and we apply Lemma 16.12.

Otherwise, there is an outging edge, say its first letter is a, let us left-pop this a. By Lemma 16.11:

• the labels on edges Xi
ϵ−→ Xj remain the same

• the labels on edges Xi
w−→ Y shorten by one letter (there is at least one such edge)

• by assumption there are no edges Y w−→ Xi for w ̸= ϵ.

• all other edges remain as they were.

Hence indeed the total length of labels decreases.

Note that we change the < order and the ∼ in this way, as new ϵ edges may have been introduced:
for instance, when X

aw−−→ Y and X
a−→ Z then after left-popping a from X we have X ϵ−→ Z. In

particular, we may have introduce new cycles in < relation: in the example above it could be that
there is an edge from Y to Z, so after popping there is a cycle from Z to Z with a non-empty label.

Lemma 16.14. If the < has a cycle and the concatenation of labels on a path from X to X is w,
then using O(|w|) compression steps we obtain an instance in which we either remove a variable or
obtain an instance in which the concatenation of the labels from X to X is ak for some k.



118 CHAPTER 16. LINEAR MONADIC SECOND ORDER UNIFICATION

Proof. Suppose that w is made as concatenation of w1, . . . , wk. Compressing pairs within each wi can
be done as before. If a is the last letter of some wi and b is the first letter of some wj (and all ws
in between are ϵ) left left-popping b from the equivalence class of appropriate variable moves b to wi,
as requested: there is a sequence of variables X1, X2, . . . , Xk and variables Z, Y such that there are
equations

Z . . . = wiaX1 . . .

X1 . . . = X2 . . .

...
Xk−1 . . . = Xk . . .

Xk . . . = bwi+1Y . . .

Now left-popping b from all Xis yields

Z . . . = wiabX1 . . .

bX1 . . . = bX2 . . .

...
bXk−1 . . . = bXk . . .

bXk . . . = bwi+1Y . . .

which is simplified to

Z . . . = wiabX1 . . .

X1 . . . = X2 . . .

...
Xk−1 . . . = Xk . . .

Xk . . . = wi+1Y . . .

In particular, ab can be compressed.
When we make the block compression, popping a single a does not affect the edges labelled with

aℓ (including ϵ). However, the whole sequence has an end, so we will pop at most the length of the
a-block times, moving the block to a single label.

Lemma 16.15. If there is a cycle in the dependency graph from X to X such that each of its edges
is labelled with a power of a (perhaps ϵ) then there is a variable Y ∼ X ′, where X ′ is on this cycle,
such that s(Y ) ∈ a∗{ϵ,⊥}.

Proof. Some of the consecutive variables on the cycle may be equivalent, by taking the first of each
equivalence class we can identify variables X1, . . . , Xk such that there are X ′

1, . . . X
′
k where

• Xi ∼ X ′
i

• X ′
i
aℓi−−→ Xi

Then

• each of the variables in the equivalence classes of X1, . . . , Xk begins with a or

• there is a variable Y in n the equivalence classes of X1, . . . , Xk such that s(Y ) ∈ {ϵ,⊥}.

In the first case we can left-pop a from each of the variables of the equivalance class and by Lemma 16.11
the invariant still holds. Hence at some point this will terminate and we obtain Y with s(Y ) ∈ {ϵ,⊥},
so initially s(Y ) ∈ {aℓ, aℓ⊥}, as claimed.
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The algorithm
We can now move to the algorithm. A phase ends when one variable is removed. At the beginning of
the phase the equation is reduced to size O(n2) using Pop, BlockCompNCr, PairCompNCr appropriate
amount of times (each application reduces the size by at least 1, till appropriate size is reached).

If there is no edge labelled with non-empty word, then By Lemma 16.12 we can set s(X) = ⊥ for
each variable.

If the graph is acyclic then by Lemma 16.13 we can pop letters from minimal nodes and this
shortens the total length of labels. So either we remove a variable or the graph stops being acyclic.

If there is a cycle, then by Lemma 16.14 we can, using O(|w|) compressions, where w is the label
on the cycle, remove a variable or make a cycle with label ak.

Then by Lemma 16.15 there is a variable which has a substitution in ak{ϵ,⊥} and by Lemma 16.4
the k is at most exponential.

Exercises

Task 87 Show that the variant of monadic second order unification considered here is NP-hard.

Task 88 Prove Lemma 16.4.

Task 89 Prove Lemma 16.5.

Task 90 Prove Lemma 16.7.
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Chapter 17

Terms and Unification

17.1 Labelled trees

We deal with rooted, ordered trees, usually denoted with letters t or s. Nodes are labelled with
elements from a ranked alphabet Σ, i.e. each letter a ∈ Σ has a fixed arity ar(f); those elements are
usually called letters. A tree (term) is well-formed if a node labelled with f has exactly ar(f) children;
we consider only well-formed trees, which can be equivalently seen as ground terms over Σ. In this
setting Σ is usually called a signature and its elements function symbols.

17.2 What the variables represent

For trees (terms) usually the notion of equations is not used and instead we talk about the unification.
It is natural to ask, what the variables should represent. In the basic scenario, each variable

x ∈ X represents a (well-formed) tree. In such a case the corresponding unification problem is called
(first-order) term unification.

Definition 17.1. In (first order) term unification we are given a collection of equations ei
?= fi, where

each side is a Σ ∪ X labelled tree, where all elements of X have arity 0.
A solution is a mapping from X to a set of well-formed Σ-labelled trees that turns each formal

equation into an equality; application of a solution to e simple replaces x with s(x).

It is easy to show that this problem is in P.

Theorem 17.2. The satisfiability of an instance of first order term unification is in P. In fact it can
be solved in linear time.

A simple proof is left as an exercise.
As a philosophical note: the unification problem here is solved in a top-down fashion.

17.3 Patterns

We consider not necessarily well-formed fragments of trees. Thus we want to define ‘trees with holes’
that represent missing arguments. Let Y = {•, •1, •2, . . .} be an infinite set of symbols of arity 0, we
think of each of them as a place of a missing argument. Its elements are collectively called parameters.
A pattern is a tree over a signature Σ∪Y, where each element of Y is treated as a constant. A pattern
is linear, if each parameter occurs at most once in a pattern; linear patterns are also called ground
contexts. The usual convention is that the used parameters are •1, •2, . . . , •k, or •, when there is only 1
parameter; for linear patterns we usually assume that the occurrences (according to preorder traversal
of the pattern ) of the parameters in the pattern is •1, •2, . . . , •k. We often refer to parameter nodes
and non-parameter nodes to refer to nodes labelled with parameters and non-parameters, respectively.
A pattern using r parameters is called r-pattern.

121



122 CHAPTER 17. TERMS AND UNIFICATION

17.4 Second order unification
In second order unification we allow second order variables, denoted by capital letters X,Y, . . . and
coming from a set V. Each such a variable X has arity ar(X). A second order term is a term built
with Σ ∪ V. A second order unification consists of a sequence of equations of second-order terms. A
substitution s assigns to each variable X a pattern s(X) whose parameters are from •1, •2, . . . , •ar(X);
note that some parameters may be unused.

We define s(t) for a second order term in a natural way:

• s(f)(t1, . . . , tk) = f(s(t1), . . . , s(tk)) when f ∈ Σ

• s(X)(t1, . . . , tk) = (s(X))[•1/s(t1), . . . , •k/s(tk)]

where (s(X))[•1/s(t1), . . . , •k/s(tk)] means the term s(X) with each parameter •i replaced with s(ti).
A substitution is a solution if it turns each formal equality into tree equality of terms.

Exercises

Task 91 Show that the term unification (so the case in which the variables can represent only well-
formed terms) can be solved in linear time, in the sense that we can say, whether it has a solution or
not. Some assumptions on the model may be needed.
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General second order unification

In general, the second order unification is undecidable

Theorem 18.1. Second order unification is undecidable.

We encode the Satisfiability of Diophantine equations. The signature consists of constants c, c′,
unary symbol a and binary symbol g.

We encode a number n as a pattern an(•); we use n to denote an(•). Thus each second order
variable N has an equation

a(N(c)) = N(a(c))
It is easy to check that each solution of such an equation is of the form an(•).

Without loss of generality each Diophantine equation is of a form m+ n = p, m · n = p or n = 1.
The first is easily encodable as

M(N(c)) = P (c)
the last as

N(c) = a(c)
It remains to describe how to encode multiplication.
Note that we can encode sequences of terms using g: a sequence t1, t2, . . . , tk is encoded as

[t1, t2, . . . , tk] which is g(t1, g(t2, · · · g(tk−1,tk))).
We introduce an auxiliary second-order variable G(•1, •2, •3).
The equations in question are

G(c, c′, [[P (c), N(c′)], c]) = [[c, c′], G(M(c), 1(c′), c)]
G(c′, c, [[P (c′), N(c)], c]) = [[c′, c], G(M(c′), 1(c), c)]

We claim that they hold for M,N,P if and only if mn = p.
The intended solution is as follows: define tk = [m · k•1, k•2]. Then the substitution for G is

[t0, t1, t2, . . . , tn−1, •3]

while the substitution for N is n, for M is m and for P is p, where nm = p. We check that his is a
solution only of the first equation, the second one is similar.

G(c, c′, [[P (c), N(c′)], c]) = [[0(c), 0(c′)], [m(c), 1(c′)], . . . , [m · (n− 1)(c), (n− 1)(c′)], [p(c), n(c′)], c]]

On the other hand, the value of the right hand side is

[[c, c′], G(M(c), 1(c′), c)] =
[[c, c′], [0(m)(c), 0(1)(c′)], [m(m)(c), 1(1)(c′)], . . . , [(n− 1)m(m)(c), n− 1(1)(c′)], c]

Using a simple fact that l(ℓ′) = ℓ+ ℓ′ we get

= [[c, c′], [m(c), 1(c′)], [2m(c), 2(c′)], . . . , [nm(c), n(c′)], c]
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So both sides are equal.
We proceed in the other direction. Suppose thatN,M,P,G are such that they satosfy the equations

G(c, c′, [[P (c), N(c′)], c]) = [[c, c′], G(M(c), 1(c′), c)]
G(c′, c, [[P (c′), N(c)], c]) = [[c′, c], G(M(c′), 1(c), c)]

Note that we know that N = n, M = m and P = p. We want to show that nm = p.
Clearly G is a list. We compare the elements of those list one by one and use the fact hat the

equation “offset” those values by 1 position in the list. Furthermore, the two equations swithc places
of c and c′ so we cannot have anything “constant”, everythin need to come from parameters. By

G(c, c′, [[P (c), N(c′)], c]) = [[c, c′], G(M(c), 1(c′), c)]

we conclude that
G = [[c, c′] . . .] or G = [[•1, •2] . . .] or G = [•3 ]

The first option is not possible due to the second equation, the third is a terminating condition that
we consider later on. So let the second option hold, i.e.

G = [[•1, •2] . . .]

We apply this to the right-hand side of the first equation and conclude that the value is

[[•1, •2], [M(c), 1(c′)] . . .]

Looking at the left-hand side we try to conclude what is the second element of the list. Again, due to
c — c′ symmetry this has to be [M(•1), 1(•2)] or •3. We iterate this process, obtaining that

G = [t0, t1, t2, . . .]

Since it is finite, at some point we need to choose that the last element is •3. But then G is already
of the form we considered before and it is easy to conclude that since this is a solution, then nm = p,
as desired.



Chapter 19

Context Unification

19.1 Introduction

19.1.1 Context unification

Solving equations, whether they are over groups, fields, semigroups, terms or any other objects, was
always a central point in mathematics and the corresponding decision problems received a lot of
attention in the theoretical computer science community. Solving equations can be equally seen as
unification problem, as we are to unify two objects (with some variables).

Context unification is one of prominent problems of this kind, let us first introduce the objects we
will work on.

Given a signature, i.e. a set of function symbols of given arities, we define a ground context in a
usual way, i.e. as well formed term. A ground context is a ground term with exactly one occurrence of
a special constant that represents a missing argument; one should think of it as a ‘hole’ or a variable
to be instantiated by a ground term later on. Ground contexts can be applied to ground terms, which
results in a replacement of the special constant by the given ground term; similarly we can define
a composition of two ground contexts, which is again a ground context. Hence we can built terms
using ground contexts, treating them as function symbols of arity 1.

In context unification problem we are given a signature, a set of term variables (which shall denote
ground terms) and a set of context variables (which shall denote ground contexts). Using those
variables we can built terms: we simply treat each context variable as a function symbol of arity one
and each term variable as a constant. A context equation is an equation between two such terms and
a solution of a context equation assigns to each context variable a ground context (over the given
input signature) and to each variable a ground term (over the same signature) such that both sides
of the equation evaluate to the same (ground) term. The context unification is the decision problem,
whether a context equation has a solution; the name comes from the fact that an equation can be
equally seen as an unification: in some sense we unify the two contexts on the sides of the equation.

Context unification was introduced by Comon [6, 7] (who also coined the name) and independently
by Schmidt-Schauß [56]. It found usage in analysis of rewrite systems with membership constraints [6,
7], analysis of natural language [46, 45], distributive unification [57], bi-rewriting systems [31].

In a broader sense, context unification is a special case of second-order unification, in which the
argument of the second-order variable X can be used unbounded number of times in the substitution
term for X (also, there may be many parameters for a second order variable, this is however not an
essential difference). On the other hand, when the underlying signature is restricted to the case when
only unary function symbols and constants are allowed, the context equation is in fact a word equation
(in this well-known problem we are given an equation u = v, where u and v are strings of letters and
variables and we are to substitute the variables with strings so that this formal equation is turned
into a true equality of strings). The second order unification is known to be undecidable [20] (even in
very restricted cases [16, 30, 32]), however, the proofs do not apply to the case of context unification
as they essentially use the fact that the argument may be used many times in the substitution term.
On the other hand, the satisfiability of word equations is known to be decidable (in PSPACE [50])
and up to recently there were essentially only three different algorithms for this problem [40, 52, 50];
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whether these algorithms generalise to context unification remains an open question. Hence context
unification is both upper and lower-bounded by two well-studied problems.

The problem gained considerable attention in the term rewriting community [53], mainly for two
reasons: on one hand it is the only known natural problem which is subsumed by second order
unification (which is undecidable) and subsumes word equations (which are decidable) and on the
other hand it has several ties to other problems, see Section 19.1.2. There was a large body of work
focused on context unification and several partial results were obtained:

• a fragment in which any occurrence of the same context variable is always applied to the same
term is decidable [7];

• stratified context unification, in which for any occurrence of a fixed second-order variable X the
string of second-order variables from this occurrence to the root of the containing term is the
same, is decidable [58] (this problem is even known to be NP-complete [36]);

• a fragment in which every variable and context variable occurs at most twice (such equations
are usually called quadratic) is decidable [30];

• a fragment in which there are only two context variables is decidable [61];

• the notion of exponent of periodicity, which is crucial in algorithms for solving word equations,
is generalised to context unification and so is the exponential bound on it [60];

• context unification reduces to its fragment in which the signature contains only one binary
symbol and constants [34];

• context unification with one context variable is known to be in NP [17] and some of its fragments
are in P [18]. It remains an open question, whether the whole problem is in P.

Note that in most cases the corresponding variants of the general second order unification remain
undecidable, which gave hope that context unification is indeed decidable.

19.1.2 Extensions and connections to other problems

The context unification was shown to be equivalent to ‘equality up to constraint’ problem [46] (which
is a common generalisation of equality constraints, subtree constraints and one-step rewriting con-
straints). In fact one-step rewriting constraints, which is a problem extensively studied on its own,
are equivalent to stratified context unification [45]. It is known that the first-order theory of one-step
rewriting constraints is undecidable [64, 43, 67]. The case of general context unification was improved
by Vorobyov, who showed that its ∀ ∃8-equational theory is Π0

1-hard [68].
Some fragments of second order unification are known to reduce to context unification: the bounded

second order unification assumes that the number of occurrences of the argument of the second-order
variable in the substitution term is bounded by a constant; note that it can be zero and this is the
crucial difference with context unification; cf. monadic second order unification, which can be seen as a
similar variant of word equations, which is known to be NP-complete [35]. This fragment on one hand
easily reduces to context unification and on the other hand it is known to be decidable [59] (in fact its
generalisation to higher-order unification is decidable as well [62] and it is known that bounded second
order unification is NP-complete [36]). In particular, the work presented here imply the decidability
of bounded second order unification, but the obtained computational complexity is worse.

The context unification can be also extended by allowing some additional constraints on variables
and context variables, a natural one allows the usage of the tree-regular constraints (i.e. we assume
that the substitution for the variables and context variable come from a certain regular set of trees).
It is known that such an extension is equivalent to the linear second order unification [33], defined by
Levy [30]: in essence, the linear second order unification allows bounding variables on different levels
of the function, which makes direct translations to context unification infeasible, however, usage of
regular constraints gives enough additional power to actually encode such more complicated bounding.
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Note that the reductions are not polynomial and the equivalence is stated only on the decidability
level.

The usage of regular constraints is very popular in case of word equations, in particular it is used
in generalisations of the algorithm for word equation to the group case and essentially all known
algorithms for this problem can be generalised to word equations with regular constraints [63, 11, 12].

19.1.3 Context unification and word equations

A word can be seen as a term over signature containing only unary symbols (plus some constant
at the bottom) and vice versa. Thus the two compression operations for word equations generalise
naturally to subterms containing only unary function symbols. Hence the recompression for terms
uses the two already mentioned operations (which are applicable only to function symbols of arity
one 1) but it also introduces another local compression rule, designed specifically for terms: we re-
place a term f(t1, . . . , ti−1, c, ti+1, . . . , tm) (where c is a constant) with f ′(t1, . . . , ti−1, ti+1, . . . , tm),
where f ′ is a fresh function symbol (i.e. not used the context equation, it can however be in Σ).
While such a compression introduces new function symbols, it does not increase the maximal arity
of functions in the signature, which proves to be important (as the space consumption depends on
this maximal arity). This new rule requires also a generalisation of the variable replacements (x by
ax or xb): when X denotes a context, we sometimes replace it with a(X), where a is a unary letter,
or X(f(x1, x2, . . . , xi−1, •, xi, . . . , xm)), where x1, x2, . . . , xm are new variables denoting full terms and
‘•’ denotes the place in which we apply the argument.

As in the case of word equations, the key observation is that while the variable replacements
increase the size of the context equation (proportionally to the number of occurrences of variables
in the context equation), the replacement rules guarantee that the size of the context equation is
decreased by a constant factor (for proper nondeterministic choices). Those two effects cancel each
out and the size of the context equation remains polynomial.

19.2 Compression of trees

19.2.1 Patterns

We want to replace (linear) patterns of a tree with new letters. In this section the pattern is by default
a linear pattern.

We often refer to parameter nodes and non-parameter nodes to refer to nodes labelled with pa-
rameters and non-parameters, respectively. A pattern p occurs (at a node v) in a tree t if p can be
obtained by taking a subtree t′ of t rooted at v and replacing some of subtrees of t′ by appropriate
parameters. This is also called an occurrence of p in t. A pattern p is a subpattern of t if p occurs in
t.

Given a tree t, its r-subpattern p occurrence and a pattern p′ we can naturally replace p with
p′: we delete the part of t corresponding to p with removed parameters and plug p′ with removed
parameters instead and reattach all the subtrees in the same order; as the number of parameters is
the same, this is well-defined. We can perform several replacements at the same time, as long as
occurrences of patterns do not share non-parameter nodes. In this terminology, our algorithm will
replace occurrences of subpatterns of t in t.

We focus on some specific patterns: A chain is a pattern that consists only of unary letters. We
consider chains consisting only of two different unary letters, called pairs, and a-chains, which consists
solely of letters a. A chain t′ that is a subpattern of t is a chain subpattern of t, an occurrence of a
chain subpattern aℓ is a-maximal if it cannot be extended by a nor up nor down. A pattern of a form
f(•1, •2, . . . , •i−1, c, •i, . . . , •ar(f)−1) is denoted by (f, i, c) for short.

1Note that by work of Levy [34] it is enough to consider context unification with constants and a single binary symbol.
However, our algorithm will transforms the input instance and it can introduce unary symbols. So even if the input
has no unary letters, we cannot guarantee that the current context equation stored by the algorithm also does not have
such letters. Moreover, it remains unknown, whether such an approach can used in presence of regular constraints or for
describing set of all solutions.
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We treat chains as strings and write them in the string notation (in particular, we drop the
parameters) and ‘concatenate’ them, i.e. for two chains s(•) and s′(•) we write them as s, s′ and ss′

denotes the chain obtained by replacing the parameter in s by s′. We use those conventions also for
1-patterns.

19.2.2 Local compression of trees
We perform three types of subpattern compression on a tree t:

a-chain compression For a unary letter a we replace each a-maximal chain subpattern aℓ for ℓ > 1
by a new unary letter aℓ.

ab compression For two unary letters a and b we replace each subpattern ab with a new unary letter
c.

(f, i, c) compression For a constant c and letter f of arity ar(f) = m ≥ i ≥ 1, we replace each
subpattern (f, i, c), i.e. f(•1, •2, . . . , •i−1, c, •i, . . . , •m−1) with f ′(•1, •2, . . . , •i−1, •i, . . . , •m−1)
where f ′ is a fresh letter of arity m− 1 added to Σ (intuitively: the constant c on i-th place is
‘absorbed’ by its father labelled with f).

They are all collectively called subpattern compression. When we want to specify the type but not
the actual subpattern compressed, we use the names pair compression, chain compression and leaf com-
pression. These operations are also called TreePattComp(ab, t), TreePattComp(a, t) and TreePattComp((f, i, c), t).

Observe that the a-chain compression and ab compression are direct translations of the operations
used in the recompression-based algorithm for word equations [23]. To be more precise, both those
compressions affect only chains, return chains as well, and when a chain is treated as a string the
result of those compressions corresponds to the result of the corresponding operation on strings. On
the other hand, the leaf compression is a new operation that is designed specifically to deal with trees.

In the next sections the following observation, which bounds the maximal arity of the letters
introduced during the compression steps, proves useful.

Lemma 19.1. If the maximal degree of nodes in t is k then in t′ that is obtained after subpattern

Proof. Observe that the chain compression replaces chain of unary nodes with a single unary node.
Similarly, pair compression replaces chains of length two with single unary letters. Lastly, leaf com-
pression can only reduce the arity of a node (or keep it the same).

19.3 Context unification
In this section we define context unification problem and the notions necessary to state it. The presen-
tation here is slightly different than the usual one, c.f. [61], as we use the ‘pattern’ terminology rather
than ‘context’ one (which is more general). Our terminology is less standard for context unification,
but more popular in tree-compression approach. The differences are just in naming conventions and
at appropriate places we also mention the alternative names of used concepts.

By V we denote an infinite set of context variables X, Y , Z, . . . . We also use individual term
variables x, y, z, . . . taken from X . When we do not want to distinguish between a context variable
or term variable, we call it variable and denote by a small greek letter, like α.

Definition 19.2. The terms over Σ, X , V are ground terms with alphabet Σ ∪ X ∪ V in which we
extend ar to X ∪ V by ar(X) = 1 and ar(x) = 0 for each X ∈ V and x ∈ X .

A context equation is an equation of the form u = v where both u and v are terms.

We call the letters from Σ that occur in a context equation the explicit letters and talk about
explicit occurrences of letters in a context equation. Since X represents a pattern, we write it in the
string notation.

We are interested in the solutions of the context equations, i.e. substitutions that replace variables
with ground terms and context variables with ground contexts, such that a formal equality u = v is
turned into a true equality of ground terms. More formally:
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Definition 19.3. A substitution is a mapping s that assigns a 1-pattern s(X) to each context variable
X ∈ V and a ground term s(x) to each variable x ∈ X . The mapping s is naturally extended to
arbitrary terms as follows:

• s(a) := a for each constant a ∈ Σ;

• s(f(t1, . . . , tn)) := f(s(t1), . . . , s(tm)) for an m-ary f ∈ Σ;

• s(X(t)) := s(X)(s(t)) for X ∈ X .

A substitution s is a solution of the context equation u = v if s(u) = s(v). The size of a solution
s of an equation u = v is |s(u)|, which is simply the total number of nodes in s(u). A solution is
size-minimal, if for every other solution s′ it holds that |s(u)| ≤ |s′(u)|. A solution s is non-empty if
s(X) is not a parameter for each X ∈ X from the context equation u = v.

The 1-patterns substituted for context variables are also called ground contexts in the literature
(hence the name context variable) and the parameter is also called ‘a hole’ of a context.

In the following, we are interested only in non-empty solutions. Notice that this is not restricting,
as for the input instance we can guess, which context variables have empty substitution in the solution
and remove them.

For a ground term s(u) and an occurrence of a letter a in it we say that this occurrence comes
from u it is was obtained as s(a) in Definition 19.3 and that it comes from X (or x) if it was obtained
from s(X) (or s(x), respectively) in Definition 19.3.
Example 19.1. Consider a signature Σ = {f, c, c′} with ar(f) = 2 and ar(c) = ar(c′) = 0 and an
equationX(c) = Y (c′) over it. It has a solution (which is easily seen to be size-minimal) s(X) = f(•, c′)
and s(Y ) = f(c, •) and in fact each solution needs to use f , which does not occur in the context
equation. Furthermore, if we consider this equation over a signature that does not have any letter of
arity greater than 1 then the equation is not satisfiable.

Restrictions on signature It is easy to observe that if Σ has no constant then there is no solution (as
no term can be formed). Moreover, if Σ contains only letters of arity 0 and 1 then the input equation
u = v is essentially a word equation, with a tweak at the end

• if u, v end with different constants then we reject;

• if u, v end with the same variable then we remove it;

• if u (v) ends with a variable then we replace it with a fresh context variable, if it ends with a
constant then we remove this constant.

It is easy to see that this procedure returns an equivalent word equation, and satisfiability of word
equations is known to be in PSPACE [51, 23], also when regular constraints are allowed [11, 12].

Thus, in the following we always assume that the signature contains a constant and a letter of
arity at least 2.

19.4 Compressions on the equation
We first do not consider problems that arise due to the growing signature: when we perform a subpat-
tern compression we simply add the appropriate letter to the signature and consider the solutions over
this new signature. We resolve this technical problem after stating the correctness of the algorithm,
in Section 19.9.5.

A very general class of operations is sound:

Lemma 19.4. The following operations are sound:

1. Replacing all occurrences of a variable α with tα throughout the u = v, where t is a 1-pattern or
a term.
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2. Replacing all occurrences of a context variable X with Xf(x1, x2, . . . , xi−1, •, xi+1, . . . , xar(f))
throughout the u = v where x1, . . . , xar(f) are fresh term variables and ar(f) ≥ 1.

3. Replacing all occurrences of a context variable X (variable x) with a 1-pattern p (term t, respec-
tively).

4. subpattern compression performed on u = v.

Proof. The proof follows a simple principle: if the obtained equation u′ = v′ has a solution s′ then we
can define a solution s of the original context equation by reversing the performed operation.

In 1, if s′ is a solution of the new equation then s(α) = s′(t)s′(α) is a solution.
Similarly, in 2, if s′ is a solution of the new equation then s(X) = s′(X)(f(s′(x1)), s′(x2), . . .,

s′(xi−1), •, s′(xi+1), . . . , s′(xar(f)))) is a solution of the original equation.
In 3 if s′ is a solution of the new equation, we define s in the same way, but set s(α) = t.
In 4, consider first the leaf compression. Let f ′ denote the letter that replaced f with child c

at positions i during the (f, i, c) compression. Let s′ be a solution of the new equation, we define
a solution s: if s′(α) contains the occurrences of a letter f ′, then we replace the whole subterm
f ′(t1, t2, . . . , ti−1, ti+1, . . . , tk) in s′(α) with f(t1, . . . , ti−1, c, ti+1, . . . , tk). For pair compression, if the
letter c that replaced ab occurs in s(α)then we replace it with a pair ab. Similarly, for chain compression
s is obtained from s′ by replacing each occurrence of a letter aℓ with a chain aℓ (for all ℓ ≥ 2).

It is easy to see that in each of those cases the defined substituion is a valid solution of the original
equation.

The notion of explicit/implicit/crossing subpattern is generalised from word equtions to context
unification in a natural way.

Definition 19.5. For an equation u = v and a substitution s we say that an occurrence of a subpattern
p in s(u) (or s(v)) is

explicit with respect to s all non-parameter letters in this occurrence come from explicit letters
in u = v;

implicit with respect to s all non-parameter letters in this occurrence come from s(α)for a single
occurrence of a variable α;

crossing with respect to s otherwise.

We say that ab (a; (f, i, c)) is a crossing pair (has a crossing chain; is a crossing father-i-leaf
subpattern) with respect to s if it has at least one crossing occurrence (there is a crossing occurrence
of an aℓ chain; has at least one crossing occurrence) with respect to s. Otherwise ab (a, (f, i, c)) is a
non-crossing pair (has no crossing chain; is a non-crossing father-i-leaf subpattern) with respect to s.

Similarly as in case of word equations, the compression of non-crossing subpatterns is simply
performed on the equation.

Lemma 19.6. PattCompNCr is sound.
If u = v has a solution s such that one of the following holds:

• ab is non-crossing with respect to s

• a has no crossing chains with respect to s

• (f, i, c) is non-crossing with respect to s

then the corresponding algorithm PattCompNCr(ab, ‘u = v’) or PattCompNCr(a, ‘u = v’) or PattCompNCr((f, i, c), ‘u = v’)
is complete. To be more precise, the returned equation u′ = v′ has a solution s′ such that s′(u′) =
TreePattComp(ab, s(u)) (or s′(u′) = TreePattComp(a, s(u)) or s′(u′) = TreePattComp((f, i, c), s(u)),
depending on the chosen compression). This solution is over a signature expanded by letters repre-
senting introduced during the subpattern compression.
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Proof. By Lemma 19.4 PattCompNCr is sound.
Concerning the completeness, we give the proof in the case of pair compression, it is the same also

in the case of chain compression and leaf compression.
Suppose that u = v has a solution s such that a, b is non-crossing with respect to s. We define

a substitution s′ for the obtained equation u′ = v′ such that s′(u′) = TreePattComp(ab, s(u)) and
symmetrically s′(v′) = TreePattComp(ab, s(v)). Since s(u) = s(v) this shows that s′ is indeed a
solution of u′ = v′ and so the second claim of the lemma holds.

The definition is straightforward: s′(α) is obtained by performing the a, b compression on s(α)formally
s′(α) = TreePattComp(ab, s(α)).

Consider an occurrence of a pattern ab in s(u) and where this chain subpattern comes from:
they both come from explicit letters Then PattCompNCr(ab, ‘u = v’) will perform the ab com-

pression on them, i.e. replace them with a letter c.

they both come from s(X) or s(x) Then this occurrence of ab is replaced by the definition of s′.

one of them comes from an explicit letter and one from s(X) or s(x) But then ab is cross-
ing with respect to s, contradicting the assumption.

As the argument applies to every occurrence of chain subpattern ab, this shows that s′(u′) = TreePattComp(ab, s(u)).
As already said, the proof in case of chain compression and leaf compression is the same, which ends
the proof of the lemma.

19.5 Uncrossing
The uncrossing of pairs and chains is done similalry as in the case of word equations, so let us move
to the uncrossing of father-i-leaf pairs.

19.6 Uncrossing father-leaf subpattern
We now show how to uncross a father-i-leaf subpattern (f, i, c). As a first step, we give a more
operational characterisation of the crossing father-i-leaf subpatterns. It is easy to observe that father-
i-leaf subpattern (f, i, c) is crossing (with respect to a non-empty s) if and only if one of the following
holds for some context variables X and y

(CFL 1) f with an i-th son y occurs in u = v and s(y) = c or

(CFL 2) Xc occurs in u = v and the last letter of s(X) is f and • is its i-th child or

(CFL 3) Xy occurs in u = v, s(y) = c and f is the last letter of s(X) and • is its i-th child.
Lemma 19.7. Let s be non-empty. Then (f, i, c) is a crossing father-i-leaf subpattern if and only if
one of (CFL1)–(CFL3) holds, for some context variables X and term variable y.

As in the case of pairs and chains, the proof follows by a simple case inspection.
The modifications needed to uncross the father-leaf subpattern are in fact the only new uncrossing

operations, when compared with the recompression technique for strings, however, they are similar
to the one in the case of uncrossing a pair: We want to ‘pop-up’ c and ‘pop-down’ f . The former
operation is trivial, but the details of the latter are not, let us present the intuition.

• In (CFL1) we pop up the letter c from x, which in this case means that we replace each x with
c = s(x). Since x is no longer in the context equation, we can restrict the solution so that it
does not assign any value to x.

• In (CFL2) we pop down the letter f : let s(X) = sf(t1, . . . , ti−1, •, ti, . . . , tm−1), where s is
a 1-pattern and each ti is a ground term and ar(f) = m. Then we replace each X with
Xf(x1, x2, . . . , xi−1, •, xi, . . . , xm−1), where x1, . . . , xm−1 are fresh variables. In this way we
implicitly modify the solution s(X) = s(f(t1, t2, . . . , ti−1, •, ti, . . . , tm−1)) to s′(X) = s and add
s′(xj) = tj for j = 1, . . . ,m− 1. If s′(X) is empty, we remove X from the equation.
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• The third case (CFL3) is a combination of (CFL1)–(CFL2), in which we need to pop-down from
X and pop up from y.

Algorithm 14 Uncross((f, i, c), ‘u = v’)
1: for x ∈ X do
2: if s(x) = c then ▷ Guess
3: replace each x in u = v by c ▷ s is no longer defined on x

4: let m← ar(f)
5: for X ∈ V do
6: if f is the last letter of s(X), • is its i-th child and Xc is a subpattern in u = v then ▷ Guess
7: replace each X in u = v by X(f(x1, x2, . . . , xi−1, •, xi+1, . . . , xm))

▷ Implicitly change s(X) = sf(t1, t2, . . . , ti−1, •, ti, . . . , tm−1) to s(X) = s
▷ Add new variables x1, . . . , xm−1 to X and extend s by setting s(xj) = tj

8: if s(X) is empty then ▷ Guess
9: remove X from the equation: replace each X(t) in the equation by t

10: for new variables x ∈ X do
11: if s(x) = c then ▷ Guess
12: replace each x in u = v by c ▷ s is no longer defined on x

There is a subtle difference between uncrossing a pair a, b and uncrossing father-i-leaf subpaterns:
for a pair popping down letter a is unconditional while the corresponding popping down of f from X
is done only when it is really needed: i.e. we want to make some (f, i, c) compression, f is the last
letter of s(X), its i-th child is • and some occurrence of X is applied on c. This assumption turns out
to be crucial to bound the number of introduced variables, see Lemma 19.15.

Lemma 19.8. Let ar(f) ≥ i ≥ 1 and ar(c) = 0, then Uncross((f, i, c), ‘u = v’) is sound.
It is complete, to be more precise, if u = v has a non-empty solution s then for appropriate non-

deterministic choices the returned equation u′ = v′ has a non-empty solution s′ such that s′(u′) = s(u)
and there is no crossing father-i-leaf subpattern (f, i, c) with respect to s′.

Proof. The proof is similar as in the case of Lemma ??, however, some details are different so it is
supplied.

By iterative application of Lemma 19.4 we obtain that Uncross((f, i, c), ‘u = v’) is sound.
Concerning the second part of the lemma, we proceed as in Lemma ??: let Uncross((f, i, c), ‘u = v’)

always make the non-deterministic choices according to the s: we replace x with c when s(x) = c and
when we pop down f(x1, . . . , xi−1, •, xi, . . . , xm−1) from X then indeed f is the last letter of s(X) and
• labels the i-th child of f . We define the new substitution s′:

• The values on old variables do not change, i.e. s′(x) = s(x) for each variable x present in the
context equation both before and after Uncross.

• For a context variable X from which we did not pop a letter we set s′(X) = s(X).

• ForX from which Uncross popped down f(x1, . . . , xi−1, •, xi, . . . , xm−1) let s(X) = sf(t1, . . . , ti−1, •, ti, . . . , tm−1)
(such a representation is possible as Uncross guesses according to s). Then we define s′(X) = s
and s′(xj) = tj for j = 1, . . . , i − 1, i + 1, . . . ,m. Note that when s is a parameter then X is
removed from the equation.

• For x that popped-up a constant we do not need to define s(x) as it is no longer in the context
equation.

It is easy to verify that indeed in each case the defined s′ is a solution of the obtained equation
u′ = v′ and s′(u′) = s(u), as claimed.

So suppose that there is a crossing father-i-leaf subpattern (f, i, c) with respect to the s′, i.e. one of
the (CFL1)–(CFL3) holds. Note that in (CFL1) and (CFL3) there is a variable y such that s′(y) = c,
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however, by our assumption that Uncross always makes the choice according to the s each such a
variable y was replaced with c in the context equation in line 3 or line 12. So it remains to consider
the (CFL2).

So let X be as in (CFL2), i.e. the last letter of s′(X) is f , the • is its ith child and Xc is a
subpattern in u = v. Consider, whether X popped down a letter or not:

X popped a letter down Then for each occurrence of subpattern Xt in the context equation, the
first letter of t is always some g such that ar(g) ≥ 1 (as there was no way to change this), this
is a contradiction with the assumption that Xc is a subpattern in the equation.

X did not pop a letter down Consider the occurrence of a subpattern Xc. Then c was there when
we decided not to pop down a letter from X in line 6. Then Pop((f, i, c), ‘u = v’) should have
popped the last letter of f from X, as in line 6 we were supposed to guess according to s,
contradiction.

19.7 Uncrossing patterns
We can state a general lemma about uncrossing.

Lemma 19.9. Uncross is sound and complete; to be more precise, for a pattern p if u = v has a
non-empty solution s then for appropriate non-deterministic choices the returned equation u′ = v′ has
a non-empty solution s′ such that s′(u′) = s(u) and p is a non-crossing subpattern with respect to s′.

19.8 The algorithm
Now we are ready to describe the whole algorithm for testing the satisfiability of context equations.

As a preprocessing, we investigate the input signature Σ: let k ≥ 2 be the maximal arity of letters
in the equation. Let Σ′, called trimmed signature, be the signature consisting of each letter present in
the equation and additionally one letter of each arity at most k that is not present in the equation (take
letters from the input signature, when possible, take fresh letters otherwise). We use the trimmed
signature instead of the original one, that is, we consider the input equation over this signature; in
particular, we use the notion of trimmed signature only when we emphasize it. Note that this allows
bounding k, even if the original signature was infinite.

We first present a simplified variant of the algorithm ContextEqSatSimp, which at each step extends
the signature by the letters created during the compression steps. Many properties are easier to explain
for such simplification. Only afterwards it is explained how to ensure that the size of the signature is
bounded; for such algorithm ContextEqSat we can show termination.

Algorithm 15 PreProc(‘u = v’,Σ) Preprocessing of the signature
1: Σ′ ← letters in u = v
2: let k ← maximal arity of letters in Σ′

3: for i← 0 . . k do
4: if Σ′ does not have a letter of arity i then
5: fi ← a letter of arity i ▷ Choose letter from Σ′ or Σ, when possible
6: Σ′ ← Σ′ ∪ fi
7: return Σ′

In its main part ContextEqSatSimp iterates the following operation it identifies a pattern to com-
press, i.e. it chooses to perform one of the compressions: ab compression, a-chain compression or
(f, i, c) compression, where a, b, c, f are letters of appropriate arity. It then guesses, whether this pat-
tern is crossing or not. If so, it performs the appropriate uncrossing. Then it performs the compression
and adds the new letter (or letters, for chains compression) to Σ.

The extended algorithm ContextEqSat works in the same way, except that at the beginning of
each iteration it removes from the signature the letters that are neither from the original (trimmed)
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Algorithm 16 ContextEqSatSimp(‘u = v’,Σ) Checking the satisfiability of a context equation u = v

1: Σ← PreProc(‘u = v’,Σ)
2: while |u| > 1 or |v| > 1 do
3: choose a subpattern to compress, all letters in Σ
4: if a-chain compression was chosen then
5: if a has crossing chains then ▷ Guess
6: Pop(a, ‘u = v’)
7: PattCompNCr(a, ‘u = v’)
8: add letters representing compressed subpatterns to Σ
9: if ab compression was chosen then ▷ Proceed similarly

10: if (f, i, c) compression was chosen then ▷ Proceed similarly
11: Solve the problem naively ▷ With sides of size 1, the problem is trivial

signature neither are present in the current context equation; such a signature is called equation’s
signature.

The properties of ContextEqSatSimp and ContextEqSat are summarised below

Theorem 19.10. ContextEqSatSimp and ContextEqSat store an equation of length O(n2k2), where n
is the size of the input equation and k the maximal arity of symbols from the input signature. They
non-deterministically solve context equation, in the sense that:

• if the input equation is not-satisfiable then they never return ‘YES’;

• if the input equation is satisfiable then for some nondeterministic choices in O(n3k3 logN) phases
it returns ‘YES’, where N is the size of size-minimal solution.

Clearly, those algorithms are sound, as a composition of sound procedures.
As a corollary we get an upper bound on the computational complexity of context unification.

Theorem 19.11. Context unification is in PSPACE.

The proofs of both theorems are postponed.

19.9 Analysis of the algorithm
The analysis focus on several points. Firstly, we show that we can trim the input signature, see
Section 19.9.1, without affecting the satisfiability. Then we briefly mention the bounds on the exponent
of periodicity, which helps to bound the space usage of the chain compression, see Section 19.9.2. Then,
in Section 19.9.3 we give a bound on the number of occurrences of variables in the equation and show
some consequences of that. As our main task, we investigate the space consumption of our algorithm,
see Section 19.9.4. Lastly, we show that we can in fact work with solutions over the equation’s
signature, i.e. those containing only letters present in the (trimmed) input signature and letters in the
current equation. In particular we do not need to store letters introduced as a result of compressions.
This is done in Section 19.9.5.

19.9.1 Input signature
Trimming of signature does not affect the satisfiability and the needed space.

Lemma 19.12. Consider a context equation u = v over a signature Σ that contains a constant and
a letter of arity at least 2. Let Σ′ be the trimmed signature. Then u = v has a solution over Σ if and
only if it has a solution over Σ′. Furthermore, the size of the instance and of the smallest solution
increase at most twice.

Proof. Suppose that there is a solution s over Σ. We define s′ over Σ′; for simplicity, denote by fi a
letter in Σ of arity i, for each i = 0, 1, . . . , k. Fix a letter g in Σ \ Σ′, consider its arity.



19.9. ANALYSIS OF THE ALGORITHM 135

i = ar(g) ≤ k We replace each g in each s(α)by fi, obtaining s′. Since g does not occur in the
equation, each g in s(u) and s(v) comes either from some s(α)and so it was replace with fi and
so s′(u) = s′(v).

i = ar(g) > k We replace each term g(t1, t2, . . . , ti) by f2(t1, (f2(t2, (. . . (f2(tm−1, tm)) . . .)))); note that
f2 is available, as k ≥ 2. Again, as g does not occur in the equation, each of its occurrences in
s(u) and s(v) comes from some s(α)and those were replaced in the same way, so s′ is a solution
of u = v.

Iterating over all g ∈ Σ′ \ Σ in s(u) yields a new solution, which is over Σ′. Concerning the size,
note that for ℓ-ary function symbol we introduce at most ℓ new letters. The sum of arities of all
occurrences of letters in s(u) is |s(u)| − 1, thus we at most double the solution and the size of the
size-minimal solution. Concerning the size of the instance, the equation is unchanged but we need to
store additional letters. We introduce at most k new letters and the equations has a letter of arity k,
so has size at least k. So we at most double the size of the instance. a similar argument

In the other direction, suppose that there is a solution over Σ′. Let us construct solution over Σ:
let c′ be a constant in Σ and f ′ a function of arity k in Σ. Then we replace each c in s(x) and s(X) by
c′ and each f(t1, t2, t2, . . . , tm), where m ≤ k by f ′(t1, t2, . . . , tm, c, . . . , c). In the same way as above
we can show that indeed such a substitution is a solution of the equation.

We additionally show a simple observation that the maximal arity of letters in the signature
considered by ContextEqSatSimp does not change. Thus, in the following, we shall just use ‘k’ to
denote this value.

Lemma 19.13. During ContextEqSatSimp (ContextEqSat) the maximal arity of letters in the signa-
ture does not change.

Proof. Let k be the initial value of maximal arity of letters in the equations’ signature, which is the
same as for the input (trimmed) signature. Clearly, it cannot decrease, as all letters of the input
signature are counted in.

It cannot increase either: all letters, on which we perform compression, have arity at most k and
the compression operations do not increase the arity of letters.

19.9.2 Exponent of periodicity
The following lemma shows that the size of the a-chains can be limited in case of size-minimal solutions.

Lemma 19.14 (Exponent of periodicity bound [60]). Let s be a size-minimal solution of a context
equation u = v (for a signature Σ). Suppose that s(X) (or s(x)) can be written as tsmt′, where t, s, t′
are 1-patterns (or t′ is a ground term, respectively). Then m = 2O(|u|+|v|).

We use Lemma 19.14 only for the case when s is a unary letter, for which the proof simplifies
significantly and is essentially the same as in the case of word equations [23] (which is a simplification
of the general bound on the exponent of periodicity by Kościelski and Pacholski [27]).

Note that bound applies to every signature: given an equation, we can change the signature and
the bound remains the same.

19.9.3 Occurrences of variables
In contrast to the recompression-based algorithm for word equations, ContextEqSat introduces new
variables and their occurrences to the equation (when Uncross pops down a letter of arity greater than
1). At first it seems like a large issue, as the number of letters introduced to the equation in one
phase depends on the number of term variables. However, we are able to bound the number of such
term variables at any time by n(k − 1); recall that k is the maximal arity of letters in the signature,
this is the place in which we essentially use that k is bounded. To this end, we need some definitions:
we say that a variable xi is owned by a context variable X if xi occurred in the equation when X
popped a letter down. A particular occurrence of xi in the equation is owned by the occurrence of the
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context variable that introduced it. When a context variable X is removed from the equation the term
variables it owns get disowned (and particular occurrences of those term variable are also disowned).

We show that each context variable owns at most k − 1 term variables. Using this claim we can
bound (in terms of n and k) the number of occurrences of term variables in the equation and the
number of letters popped during the uncrossing.

Lemma 19.15. Every context variable X present in u = v owns at most k − 1 term variables.
Furthermore, if n1 is the initial number of context variables, then the total number of owned and
disowned term variables is n1(k − 1). In particular, there are at most n(k − 1) occurrences of term
variables in u = v.

Note that the upper bound on the number of term variables does not depend on the non-deterministic
choices of ContextEqSat.

Proof. Given an occurrence of a subterm Xt we say that this occurrence of X dominates the occur-
rences of term variables in t.

We show by induction two technical claims:

1. For every occurrence of a variable X the multiset of term variables, whose occurrences it owns,
is the same.

2. Each occurrence of X dominates its owned occurrences of term variables.

The subclaim 1 is trivial: at the beginning, there are no owned term variables. When we introduce
new X-owned term variables, we replace each X with the same Xf(x1, . . . , xi−1, •, xi, . . . , xm−1), in
particular the set of X-owned term variables for each occurrence of X is increased by {x1, . . . , xm−1}.
When we remove occurrences of x, we remove them all at the same time. Which ends the induction.

Concerning the subclaim 2, this vacuously holds for the input instance, which yields the induction
base. For the induction step, consider now the operation performed on the context equation. Any
subterm compression is performed only on letters, so it cannot affect the domination. When we pop
the letters from a variable x, we replace x with ax (or remove x altogether), so this also does not affect
the domination. Similarly, when we pop letters from context variables, we either replace X with aX
or X with Xf(x1, . . . , xi−1, •, xi, . . . , xm−1), in both cases the domination of the old variables is not
affected and in the last case the new variables x1, . . . , xm−1 owned by this particular occurrence of X
are indeed dominated by this occurrence of X.

Using those two subclaims we now show that if during Uncross X pops down a letter, then X does
not own any variables. Suppose that X pops down a letter. Then in u = v there is a subtree Xc for a
constant c. Suppose that X owned a variable x before popping down the letter. Then by subclaim 1
the occurrence of X which is applied on c also owns occurrence of x and by 2 this occurrence is
dominated by its owning occurrence of X, which is not possible, as this owning occurrence of X is
part of the term Xc. As a consequence, each occurrence of a context variable owns at most k − 1
occurrences of variables.

Now, concerning the number of term variables: let the initial number of variables (not owned
nor disowned) and context variables be n0 and n1, where n0 + n1 ≤ n. Suppose that at some point
there are n′

1 ≤ n1 context variables occurrences. Since we never introduce context variables, there are
at most n′

1(k − 1) owned variables’ occurrences, and at most (n1 − n′
1)(k − 1) disowned ones. This

yields a bound of n1(k − 1) on the number of occurrences of variables that are owned or disowned.
Additionally, there are n0 occurrences that are neither owned, nor disowned (those are the occurrences
of variables that were present in the input equation). In total

n′
1(k − 1) + (n1 − n′

1)(k − 1) + n0 = n1(k − 1) + n0 ≤ n(k − 1) ,

with the inequality following from k ≥ 2 and n0 + n1 ≤ n.

The bound on the number of occurrences of term variables allows a bound on the number of
different crossing subpatterns.
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Lemma 19.16. For an equation u = v during ContextEqSat and its solution s there are at most
n(k + 1) different crossing subpatterns.

Proof. Let n1 and n0 be the initial number of context variables and variables, note that n0 + n1 ≤ n.
By Lemma 19.15 the total number of variables in u = v is at most n0 + n1(k − 1)

Each context variable introduces at most two different crossing patters: one for its top letter and
one for its last letter. A variable can introduce at most one crossing subpattern. So the number of
such subpatterns is at most

2n1 + n0 + n1(k − 1) = n0 + n1(k + 1) ≤ n(k + 1) ,

as claimed.

As another consequence, we can also limit the number of new letters introduced during the un-
crossing.s

Lemma 19.17. Uncrossing and compression of a subpattern introduces at most n(2k + 1) letters to
the equation.

Proof. Consider first the pair compression. At most one letter is popped up and down from each of
the context variable, which gives 2n letters. Also, at most one letter is popped up from each variable,
and there are at most n(k − 1) variables, see Lemma 19.15, this yields n(k − 1) new letters. In total:
2n+ n(k − 1) = n(k + 1) ≤ n(2k − 1).

The analysis is the same for uncrossing a-chains, except that instead of one letter we pop whole
a-prefixes and a-suffixes. But they are immediately replaced with single letters, so the same estimation
holds.

For the father-i-leaf subpatterns, we only pop up unary letters from variables, which gives n(k−1)
letters. We also pop down at most a single letter f from each context variable, together with up to
k − 1 new variables, which may be immediately after turned into letters, which yields another nk
letters. So, n(2k − 1) letters in total.

19.9.4 Size bounds

We can now show the crucial lemma: if a solution is satisfiable, then for some non-deterministic choices
the obtained equation is also satisfiable and its size does not grow. We begin with showing the bound
when the signature is not restricted and explain in the next section, that those results hold also for
simple signatures.

Lemma 19.18. Suppose that the equation u = v has a solution s (over a signature Σ) for which there
is a non-crossing subpattern with explicit occurrence in u = v. Then after compressing this subpattern
the obtained equation is satisfiable, is smaller and has a smaller solution (over the signature Σ expanded
by the letter replacing the compressed subpatterns).

Proof. We perform the subpattern compression for appropriate subpattern. The obtained equation is
clearly smaller (as there is at least one occurrence of the compressed subpattern). From Lemma 19.6
the obtained equation has a solution s′ such that s′(u′) is smaller than s(u).

A similar statement can be shown also for uncrossing and compression of crossing subpatterns.

Lemma 19.19. Suppose that the equation u = v has a solution s (over a signature Σ) for which there
is no non-crossing subpattern with explicit occurrence in u = v. Then there is a crossing subpattern
(with respect to s) such that for appropriate non-deterministic choices after uncrossing and compressing
it the equation has a smaller solution (over a signature Σ expanded by the new letters that replaced
the compressed subpatterns). Additionally, if the equation has at least 48n2k2 letters then for those
nondeterministic choices the obtained equation has less letters.
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Proof. Take any crossing subpattern. Uncross it. By Lemma 19.9 the obtained equation has a solution
of the same size, for which the subpattern is non-crossing. Compress this subpattern. By Lemma 19.18
the obtained equation has smaller solution. Note that this argument holds for the compression of any
subpattern, as long as it has occurrences in the solution; the claim on the signature follows also from
Lemma 19.18.

Let us move to the second claim of the lemma.
If u = v has more than n2(2k+ 1)(k+ 1) occurrences of constants then it has the same amount of

occurrences of father-leaf subpatterns. As there are at most n(k + 1) different crossing subpatterns,
see Lemma 19.16, one of them has more than

n2(2k + 1)(k + 1)
n(k + 1) = n(2k + 1)

occurrences. We uncross it and compress it. The uncrossing introduces at most n(2k+ 1) new letters,
see Lemma 19.17. On the other hand, at least n(2k + 1) + 1 letters are removed, and so the equation
gets smaller.

If u = v has at most n2(2k + 1)(k + 1) constants then it has at most

n2(2k + 1)(k + 1) + n(k − 1) < n2(4k)(k + 1)

symbols of arity 0 (the other n(k − 1) are the variables, see Lemma 19.15). Hence it also has at most
this amount of nodes of arity at least 2, so all remaining nodes have arity at most 1 and at most n of
them are context variables. So there are at least

n2(24k)(k + 1)− 2n2(4k)(k + 1)− n > n2(15k)(k + 1)

unary letters in the equation.
We can similarly estimate the amount of chains: each maximal chain ends with a node of arity

different than 1, so there are at most

n2(4k)(k + 1)︸ ︷︷ ︸
symbols of arity 0

+ n2(4k)(k + 1)︸ ︷︷ ︸
symbols of arity at least 2

+ n︸︷︷︸
context variables

< n2(9k)(k + 1)

different chains.
If a chain is not a single letter, then each of its letter is covered by an occurrence of some a-maximal

chain (of length greater than 1) or ab pair; by the assumption each ab pair is a crossing pair and each
a has a crossing blocks. On the other hand, by Lemma 19.16, there are at most n(k + 1) different
crossing subpatterns. So occurrences of one of those subpatterns cover at least

n2(15k)(k + 1)− n2(9k)(k + 1)
n(k + 1) > 2n(2k + 1)

letters. We compress this subpattern. The rest of the analysis follows as in the case of compression of
father-i-leaf subpatterns, with one exception: when we pop the a-prefixes and suffixes, we introduce
perhaps very long chains to the equation. They are immediately replaced with a single letter after-
wards, so there is no problem with this. Moreover, any as that are part of the compressed chain and
were in the equation before popping are compressed. So in total we introduce 1 letter and remove all
explicit letters that are part of the compressed chains.

A similar claim can be shown also for the size of the solution

Lemma 19.20. Suppose that the equation u = v has a solution s (over a signature Σ) for which there is
no non-crossing subpattern with explicit occurrence in u = v. Then there is a crossing subpattern (with
respect to s) such that for appropriate non-deterministic choices after uncrossing and compressing it
the equation is larger by at most n(2k + 1) and it has a solution of size at most

(
1− 1

6n(k+1)

)
|s(u)|

(over a signature Σ plus the letters replacing the compressed subpatterns).
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Proof. The bound on the number of introduced letters follow from Lemma 19.17.
Let n0, n1 and n2 be the number of letters of arity 0, 1 and at least 2 in s(u). If n0 ≥ |s(u)|

6 then
there are at least |s(u)|

6 different occurrences of father-leaf patterns. By Lemma 19.16 there are at
most n(k+1) different crossing subpatterns, see Lemma 19.16, and so one of them has at least |s(u)|

6n(k+1)

occurrences. Its compression removes at least |s(u)|
6n(k+1) letters from the equation. On the level of the

equation we first need to uncross this subpattern and then compress it, the rest of the analysis is as
in Lemma 19.19.

So suppose that n0 <
|s(u)|

6 , so also n2 <
|s(u)|

6 and so n1 ≥ 2|s(u)|
3 . Except perhaps the chains of

length 1, each letter in a unary chain is covered by some ab pair or a-chain of length greater than 2.
Since each chain ends in a letter of arity other than 1, there are at most n0 + n2 <

|s(u)|
3 chains and

so at least |s(u)|
3 letters are covered. As there at most n(k + 1) different crossing subpatterns, one of

them covers at least |s(u)|
3n(k+1) letters and so its compression removes at least |s(u)|

6n(k+1) letters from the
solution. The rest of the analysis follows as in the previous case.

We can now show the proof of the main theorem (Theorem 19.10) for the case of ContextEqSatSimp.

proof of Theorem 19.10 for ContextEqSatSimp . Suppose that we are given a satisfiable equation u =
v. By Lemma 19.12 the equation is satisfiable also over the trimmed signature.

During the algorithm we ensure that the equation has at most 48n2k2 + n(2k+ 1) letters over the
signature consisting of the trimmed signature and all letters introduced during the ContextEqSatSimp.

During the algorithm, if there is a non-crossing subpattern for some length-minimal solution, we
choose it for compression (as a non-deterministic guess). This reduces the number of letters in the
equation, see Lemma 19.18, so there are at most 48n2k2 +n(2k+ 1) such compressions in a row. Note
that each consecutive equation has smaller minimal solution, again by Lemma 19.18.

If there are only crossing pairs for the size-minimal solution (say s), then there are two different
behaviours, depending on the size of the equation. If the equation has more than 48n2k2 letters then
we choose a crossing subpattern (for s) for uncrossing and compression according to Lemma 19.19.
After uncrossing it and the compression the size of the equation and size-minimal solution decrease,
see Lemma 19.19.

If the equation has at most 48n2k2 letters then choose according to Lemma 19.20. Thus the size
of the size-minimal solution decreases by a fraction 1− 1

6n(k+1) and the size of the equation increases
by at most n(2k + 1).

In this way the number of letters in the equation is always at most 48n2k2+ n(2k + 1): we can
only increase it by compressing pairs chosen according to Lemma 19.20 or Lemma 19.19, in each case
by at most n(2k+1) letters. However, if the equation has more than 48n2k2 then we choose the latter
and the Lemma 19.19 guarantees that the size of the equation does not increase.

Concerning the number of phases: each compression according to Lemma 19.20 reduces the size
of the length-minimal solution by a fraction

(
1− 1

6n(k+1)

)
, so after 6n(k + 1) such compressions

the size of the length-minimal (simple) solution reduces by a constant fraction, so there are only
O(nk logN) such compressions, where N is the size of the size-minimal solution. Consider now, how
many other compression can there be between two compressions according to Lemma 19.20? Each
other compression reduces the size of the equation by 1 and so there can be at most 48n2k2+ n(2k+1)
of them in-between two such compressions. So there are O(n3k3 logN) compression steps in total.

19.9.5 Simple solutions

We now show that the ContextEqSat does not loose solutions by restricting itself to the equations’
signature; moreover, the size of the size-minimal solution remains the same.

Lemma 19.21. Let k be the maximal arity of symbols in the trimmed signature. Consider any equation
obtained during ContextEqSat. If it has a solution s over a signature of arity k then it has a solution
s′ over the equations’ signature; moreover, size of s′ is not larger then the size of s.
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Proof. The proof follows a similar replacement schema as in the case of Lemma 19.12: take any
signature Σ′ and let Σ be the simple signature. If s(u) uses a letter g ∈ Σ′ \ Σ then it must be used
inside a substitution s(X). We can replace all occurrences of g with a letter fi ∈ Σ′ of the same arity;
this is possible as there is a letter of each arity up to k in Σ and the arity of Σ′ is bounded by k. The
obtained substitution is a solution and it has the same size as s, yielding the claim.

This allows us to show that proof of Theorem 19.10 in case of ContextEqSat.

proof of Theorem 19.10 for ContextEqSat . The proof of the Theorem is the same as in the case of
ContextEqSatSimp, with one exception: we ensure that the kept solution is over the equation’s signa-
ture. (Note that Lemma 19.18–19.20 apply to this setting). After a compression (and perhaps the
earlier uncrossing) we get an equation over a signature extended by some letters, and a solution s′

smaller than a solution s of the previous equation. It could be that s′ is not over equation’s signature,
but by Lemma 19.1 it is over a signature of maximal arity at most k and so from Lemma 19.21 there
is a simple solution whose size is at most the size of s′, so in particular smaller than s.

The rest of the proof is identical, as we rely only on local choices of pair to compress for some
solution.

This allows us to show also the proof of Theorem 19.11.

proof of Theorem 19.11. By Theorem 19.10 the (non-deterministic) algorithm ContextEqSat stores an
equation of sizeO(n2k2), which is stored in polynomial space. The maximal stored equation’s signature
has size of the equation plus the size of the trimmed signature, which is linear, see Lemma 19.12. The
additional used space is proportional to the size of the equation, except the space needed to store the
lengths of the a-chains. But this is at most polynomial, see Lemma 19.14. Thus the whole space usage
is polynomial.

It cannot be that during the computation we reach the same equation (which necessarily has the
same equations’ signature): each performed compression operation shortens the length of the length-
minimal solution, see Lemma 19.18, 19.19 and 19.20. And the size of the size-minimal solution is the
same.

Hence after an appropriate number of steps during which we did not accept we can reject the
input.

Lastly, by Savitch Theorem the non-deterministic polynomial space algorithm can be determinised,
using at most quadratically more space.
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