Task sheet 10

Task 62. Show that if $u_1wu_2 = v_1\overline{w}v_2$ and w is reduced then either w = 1 or $v_1\overline{w}\sqsubseteq u_1$ or $u_1w\sqsubseteq v_1$, i.e. w and \overline{w} cannot overlap.

Task 63. Consider the case of x being a pseudo-solution of $xu\underline{x}vx$, where $x_u = \overline{u''}$ and $x_v = w_v\overline{v'}$: (and $\overline{v''}\overline{w_v} \sqsubseteq x_u = \overline{u''}$); in particular, $x = \overline{u''}w_v\overline{v'}$. Show that $x = x_ux_v = nf(\overline{u''}u^{\bullet\bullet}\overline{v})$ for some $u \sqsupseteq u'' \sqsupseteq u^{\bullet\bullet}$; note that there is a reduction in $\overline{u''}u^{\bullet\bullet}$

Task 64. Let $x_u = \overline{u''}w_u$, $x_v = w_v\overline{v'}$ (in particular, $x = \overline{u''}w_uw_v\overline{v'}$) and also $x_v \sqsupseteq \overline{w_u} u'$ and $\overline{v''} \overline{w_v} \sqsubseteq x_u$. All above are in nf; this corresponds to the main case of pseudo-solution of xuxvx.

Justify the argument (especially the steps involving nf)

$$\overline{v''\overline{w_v}} \sqsubseteq \overline{u''}w_u$$

$$v'v''\overline{v''}\overline{w_v} \sqsubseteq v\overline{u''}w_u$$

$$\operatorname{nf}(v'\overline{w_v}) \sqsubseteq \operatorname{nf}(v\overline{u''}w_u)$$

$$v'\overline{w_v} \sqsubseteq \operatorname{nf}(v\overline{u''}w_u)$$

$$u'w_u \sqsubseteq \operatorname{nf}(v\overline{u''}w_u)$$

$$\operatorname{nf}(\overline{u''}\overline{u'}u'w_u) \sqsubseteq \operatorname{nf}(\overline{u}v\overline{u''}w_u)$$

$$\operatorname{nf}(\overline{u''}w_u) \sqsubseteq \operatorname{nf}(\overline{u}v\overline{u''}w_u)$$

$$x_u \sqsubseteq \operatorname{nf}(\overline{u}vx_u)$$

Task 65. Let s be a cyclically reduced word. Let W be a set of words and $k = \sum_{w \in W} |w|$. Suppose that s^{k_1}, \ldots, s^{k_p} are pairwise disjoint subwords of words in W and that k_1, \ldots, k_p are pairwise different integers. Show that $p \leq \sqrt{4k/|s|+1}$.