Django

Jan Zbrocki

Uniwersytet Wroctawski

16.10.2025

Request-Response Cycle
django

Request-Response
Cycle

CLIENT
Browser
1y

B SERVER

pache)

Wi

RESPONSE REQUEST
Middleware

Middleware

TEMPLATE
htwal

u
dj a ngo URL RESOLUTION
wrlspy
VIEW
Middleware
TEMPLATE

Middleware \ \ ;
IR

MODEL

nodels by

MANAGERS

DATABASE
PstareSEL

Client sends request

It all begins when a client (typically a web browser) sends a request
to your Django server. This request could be anything from visiting
a web page to submitting a form. These requests are made using
HTTP methods like:

» GET: Used to request data from the server (e.g., a web page)

Client sends request

It all begins when a client (typically a web browser) sends a request
to your Django server. This request could be anything from visiting
a web page to submitting a form. These requests are made using
HTTP methods like:
» GET: Used to request data from the server (e.g., a web page)
» POST: Used to send data to the server (e.g., submitting a
form)

Client sends request

It all begins when a client (typically a web browser) sends a request
to your Django server. This request could be anything from visiting
a web page to submitting a form. These requests are made using
HTTP methods like:
» GET: Used to request data from the server (e.g., a web page)
» POST: Used to send data to the server (e.g., submitting a
form)

» DELETE: Used to delete data from a server

Client sends request

It all begins when a client (typically a web browser) sends a request
to your Django server. This request could be anything from visiting
a web page to submitting a form. These requests are made using
HTTP methods like:

» GET: Used to request data from the server (e.g., a web page)

» POST: Used to send data to the server (e.g., submitting a

form)
» DELETE: Used to delete data from a server

» PUT: Used to actualize data on server

Web Server - native

Deafalt django server can be started with command:

python manage.py runserver

It creates developer server on port 8000 on localhost and it's
perfect for debugging. But it's not scalable, not safe and it is single
threaded.

Web Server - Nginx

Nginx is a web server that can also be used as a reverse proxy, load
balancer, mail proxy and HTTP cache. Released in 2004. Nginx is
free and open-source software. A large fraction of web servers use
Nginx, often as a load balancer.

WSGI

The Web Server Gateway Interface is a simple calling
convention for web servers to forward requests to web applications
or frameworks written in the Python programming language.
Examples:

» Native django WSGI, It is single threaded :(

WSGI

The Web Server Gateway Interface is a simple calling
convention for web servers to forward requests to web applications
or frameworks written in the Python programming language.
Examples:

» Native django WSGI, It is single threaded :(

» Gunicorn (natively supports Django), Faster

Request

Once the request hits the server, Django picks it up. This is where
Django’s powerful architecture comes into play. The request is
wrapped into an HttpRequest object, which contains all the details
about the request such as:

» Request Method: GET, POST, etc.

Request

Once the request hits the server, Django picks it up. This is where
Django’s powerful architecture comes into play. The request is
wrapped into an HttpRequest object, which contains all the details
about the request such as:

» Request Method: GET, POST, etc.
» URL: The path the user requested.

Request

Once the request hits the server, Django picks it up. This is where
Django’s powerful architecture comes into play. The request is
wrapped into an HttpRequest object, which contains all the details
about the request such as:

» Request Method: GET, POST, etc.

» URL: The path the user requested.

» Headers: Information like cookies, user agent, etc.

Request

Once the request hits the server, Django picks it up. This is where
Django’s powerful architecture comes into play. The request is
wrapped into an HttpRequest object, which contains all the details
about the request such as:

» Request Method: GET, POST, etc.
» URL: The path the user requested.
» Headers: Information like cookies, user agent, etc.

» Body: For POST requests, this contains form data or file
uploads.

Url routing

After the request is encapsulated in the HttpRequest object, it's
passed through Django's URL routing system. Django looks for a
matching URL pattern in your urls.py file. If it finds one, it sends
the request to the corresponding view function. from django.urls
import path from . import views

1 |urlpatterns = [
2 path(’home/’, views.home_view, name=’home’),

3 1]

View

This is where logic for request starts. The view receives the
HttpRequest object, processes the data, interacts with the database
if needed, and prepares a response.

Middleware

Before Django sends the response back to the client, it passes the
request and response through several middleware components.
Middleware is a series of hooks that can process requests and
responses globally.

» Modify the request before it reaches the view.

Middleware

Before Django sends the response back to the client, it passes the
request and response through several middleware components.
Middleware is a series of hooks that can process requests and
responses globally.

» Modify the request before it reaches the view.
» Modify the response before it's sent to the client.

Middleware

Before Django sends the response back to the client, it passes the
request and response through several middleware components.
Middleware is a series of hooks that can process requests and
responses globally.

» Modify the request before it reaches the view.
» Modify the response before it's sent to the client.

» Handle authentication, logging, or session management.

Creating Django project

» As every other package django can be installed with packege
manager:

pip install django

Creating Django project

» As every other package django can be installed with packege
manager:

pip install django

» Create project:

django-admin startproject <name>

Creating Django project

» As every other package django can be installed with packege
manager:

pip install django

» Create project:

django-admin startproject <name>

» Create first app in the project:
python3 manage.py startapp <app name>

and add it to INSTALLED APPS in settings.py

View

1 |def detail(request, question_id):

2 return HttpResponse (

3 "You’reylooking ,atquestion %s."
4 % question_id

5)

s |def results(request, question_id):

9 response = "You’relookinggat;\
10 [the,resultsof ,questiony’%s."
11 return HttpResponse (response % question_id)

12
13
14 |def vote(request, question_id):

15 return HttpResponse (
16 "You’reyvoting on,question, %s."
17 % question_id

18)

View

10
11
12
13

14

class UserViewSet(viewsets.ViewSet):

def

def

list (self, request):
queryset = User.objects.all()
serializer = UserSerializer (
queryset,
many=True,
)

return Response(serializer.data)

retrieve(self, request, pk=None):

queryset = User.objects.all()

user = get_object_or_404 (queryset,
serializer = UserSerializer (user)
return Response(serializer.data)

pk=pk)

View

1 |class UserViewSet(viewsets.ModelViewSet):

10
11
12
13
14
15
16
17
18
19

queryset = User.objects.all()
serializer_class = UserSerializer

@action(detail=True, methods=[’post’])
def set_password(self, request, pk=None):
user = self.get_object ()
serializer = PasswordSerializer (
data=request.data
)
if serializer.is_valid():
user.set_password(
serializer.validated_datal[’passwo
user .save ()
return Response ({
’status’: ’passwordgset’})
else:
return Response(serializer.errors,
status=status.HTTP_400_BAD_REQUES]

rd’]

T)

View

1 |class SomeViewSet(viewsets.ModelViewSet):

10

11

12

13

14

15

16

17

def some_action(self, request, pk=None):

serializer = SomeSerializer(
data=request.data
)
if serializer.is_valid():
service = SomeService (
serializer.validated_data
)
return Response(
status=status.HTTP_200_0K
)
else:

return Response(
serializer.errors,
status=status.HTTP_400_BAD_REQUES]

Models

» In Django we have "all in"package so among other things we
have full DB handling implemented.

Models

» In Django we have "all in"package so among other things we
have full DB handling implemented.

» To handle DB tables we have Models (very similar to
SQLAIchemy) which have class structures.

Models

» In Django we have "all in"package so among other things we
have full DB handling implemented.

» To handle DB tables we have Models (very similar to
SQLAIchemy) which have class structures.

» To handle queries to DB we have Django ORM with all its
pros and cons.

Models

10
11
12
13
14
15
16

from django.db import models

class Reporter (models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)
email = models.EmailField ()

def __str__(self):

return f"{self.first_name} {self.last_nam

class Article(models.Model):

headline = models.CharField(max_length=100)
pub_date models.DateField ()
reporter = models.ForeignKey (Reporter, on_del
def __str__(self):

return self.headline
class Meta:

ordering = ["headline"]

3}n

Models

In Django we have migrations. These are representation of layers
that were made via models to create DB.

» python manage.py makemigrations

Models

In Django we have migrations. These are representation of layers
that were made via models to create DB.

» python manage.py makemigrations

» python manage.py migrate

Models

In Django we have migrations. These are representation of layers
that were made via models to create DB.

» python manage.py makemigrations
» python manage.py migrate

» python manage.py showmigrations

Django ORM

To work on queries Django implements QuerySet. QuerySet is
result of most database queries.

How can we get all articles from Article model?

Django ORM

To work on queries Django implements QuerySet. QuerySet is
result of most database queries.

How can we get all articles from Article model?
Simply:

Article.objects.all()

Django ORM

Let's see some QuerySet refinement methods

> filter()
f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

Django ORM

Let's see some QuerySet refinement methods

> filter()
f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

» exclude()

Django ORM

Let's see some QuerySet refinement methods

> filter()
f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

» exclude()
» annotate()

Django ORM

Let's see some QuerySet refinement methods

> filter()
f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

» exclude()
annotate()
» order_by()

v

Django ORM

Let's see some QuerySet refinement methods

> filter()
f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

exclude ()
annotate()

order_by()

vvvyYyy

values ()

Django ORM

Let's see some QuerySet refinement methods

> filter()
f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

exclude ()
annotate()
order_by()

values ()

vVvyYVvyyvyy

values_list ()

Django ORM

Let's see some QuerySet refinement methods

> filter()
f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

exclude ()
annotate ()
order_by()
values()
values_list()

get)

vVvYvyVvVvyy

Django ORM

Let's see how to do DB changes

> create()

f.e.

p = Person.objects.create(
first_name="Bruce",
last_name="Springsteen",

)

same as

p = Person(
first_name="Bruce",
last_name="Springsteen",

)

p.save(force_insert=True)

Django ORM

Let's see how to do DB changes

> create()

f.e.

p = Person.objects.create(
first_name="Bruce",
last_name="Springsteen",

)

same as

p = Person(
first_name="Bruce",
last_name="Springsteen",

)

p.save(force_insert=True)

» update()

Django ORM

Let's see how to do DB changes

> create()

f.e.

p = Person.objects.create(
first_name="Bruce",
last_name="Springsteen",

)

same as

p = Person(
first_name="Bruce",
last_name="Springsteen",

)

p.save(force_insert=True)
» update()
> delete()

DjangoAdmin

from django.contrib import admin

from .models import Question

class QuestionAdmin(admin.ModelAdmin):
fields = [”pub_date”, ”question_text"]

admin.site.register (Question, QuestionAdmin)

DjangoAdmin

Change question

What's up?

Date published:
P Date: 2024-0802 | Tocay | [
Time: | 10:07:18 Now | (D)
Question text: What's up?

Django test
To run tests we type command:
python manage.py test polls
Output:

Creating test database for alias ’default’...
System check identified no issues (0 silenced).
F

FAIL: test_was_published_recently_with_future_question (polls.te

Traceback (most recent call last):
File "/path/to/djangotutorial/polls/tests.py", line 16, in tes
self.assertIs(future_question.was_published_recently(), Fals

AssertionError: True is not False

Ran 1 test in 0.001s

FAILED (failures=1)
Destroying test database for alias ’default’...

Django test

10
11
12
13
14
15
16
17

18

import datetime

from django.test import TestCase
from django.utils import timezone

from .models import Question

class QuestionModelTests (TestCase):
def test_was_published_recently_with_future_q]

time = (
timezone.now () +
datetime.timedelta (days=30)

)

future_question = Question(pub_date=time)

self.assertIs(
future_question.was_published_recentl
False

nest:

y O,

Django in benchmarks

https:
//www.techempower.com/benchmarks/#section=data-r23

42595 W32% e e i s
41,98 m 32% R P fpm ogc U My tn Raw e

398 W minijax 41,927 W 32% TR v A Uw Gn My U f R
399 W ils-falcon 40615 W 31% R Ry Rac i Un Py Un Fl R
400 M ninja-standalone 40323 W 3.0% TR vty Nen Un My Un Fu Re
<01 mkelp-starman-mysal. 40140 W 30% e e My v Raw e
492 W sinatra-postgres-passenger-mri 40039 | 30% o Ry Rac Pw ln Py n ful Re
403 mfat-free 39922 W 30% R P fpm nge Ln My o e
404 W lumen-swoole 39847 W 30% TP oo Moo n My Un Rl Ra
405 W duct-aleph 39834 W 30% TG Ny Nen n Py Un Raw Re
406 Wiz postgresql-diesel] 39766 W 3.0% = 5 mp Un Py Un Fu Re
407 maleph 39,411 W 30% T Ny Moo Gn g Un Raw hea
<05 W emmett 38744 W 29% By Nen Moo tn Pg Un Rl R
405 axum [postgresal-salx) 38712 W 29% =5 mp tn Py Un Raw pe
410 M officefloor-vertx 38372 W 29% v of v Un Py Un Ful Re
37939 W 29% o on Non e Wy tn Raw e

412 W morepath 37853 @ 29% Py M Gn Un Py Un Fu Re
413 W fastapl-gunicom-orm 37797 W 28% By Gn n A e
414 W symfony-roadrunner 36035 0 27% PP o N Un Py e
tp 35681 W 27% Gn T Py n f e
416 W falcon [pypy3] 34716 W 26% an Un g Un Ful Re
417 W laravel-swoole 34294 W 26% on Un My LUn Fu R
415 W salvo [diesel] 34005 0 26% Twp Un Py Un Raw e
415 W laravel-octane [frankenphp) 3382 0 25% G tn wy Un Fu ke
420 M pippo-tomcat-postgres 32714 W 2.5% Non Un Py Un faw Rea
421 W jango-postgresa 32,651 0 25% vei Py e
422 W salvo [postares-salx] 32,089 1 24% o Un Py Un Raw Rea
425 1 pippo-undertow-postares 32,226 1 24% Non Un Py Un Raw Re
24 31792 0 24% 51 RN i NEETY KRN [
425 W pyramid 31769 0 24% Tin g o Fa R
426 W falcon [fastwsgi] 31,458 0 24% Un 7y Un Fu pe
s1409 4 24% I I |

31,256 1 24% Tn Py o Raw fea

425 pippo-jetty-postgres 31,140 0 23% Tin g o faw R
430 m pippo-undertow-mysql 31,067 1 23% oy n R e
431 mhitp-kit 30963 1 23% Tin wy e Mo e

https://www.techempower.com/benchmarks/#section=data-r23
https://www.techempower.com/benchmarks/#section=data-r23

Django toolbar

SQL queries from 1 connection

Jdefault 0.54 ms (6 queries including 2.simi

lar and 2 duplicates)

QUERY TIMELINE TIME (MS) ACTION
| [] SELECT - FROM "django_session” WHERE |] 020 Sel
["django_session"."expire_date” > '2025-03-20 Expl

15:49:56.748899' AND

*django_session" "session_key"
Tsnenaw7dx 014y T9asvatw’) LIMIT 21

I +| SELECT =+« FROM "auth_user” WHERE - 0.07 Sel
"auth_user"."id" =1 LIMIT 21 Expl
| [] SELECT =+ FROM "auth_group” ORDER BY |] 0.07 Sel
"auth_group™."name" ASC Expl
| [<] SELECT COUNT(*) AS "_count’ FROM - 0.07 Sel Settings
"auth_user"” Expl
|2 simitar queries. | Duplicated 2 times. Head
| [£] SELECT COUNT(*) AS"_count’ FROM [] 0.04 Sel
"auth_user” Expl Request
|2 similar queries. | Duplicated 2 times.
| [] SELECT -+ FROM "auth_user" ORDERBY | Sel
"auth_user" "username” ASC Expl

Templates

Django additional concepts - Aggregation

1 |class Book(models.Model):

2

3 name = models.CharField(max_length=300)

4

5 pages = models.IntegerField ()

6

7 price = models.DecimalField(max_digits=10, degcima
8

9 rating = models.FloatField ()

10

11 authors = models.ManyToManyField (Author)

12

13 publisher = models.ForeignKey (Publisher, on_dglet
14

15 pubdate = models.DateField ()

16

17

18 |Book.objects.aggregate (Max("price", default=0))

Django additional

concepts - Coverage

AN Files (95.92%)

All Files (95.92% covered a

65 fles in total. 1911 relevant lines. 1833 lines covy

2File
Q lib/devise rails warden_compat.rb

Q Ho devise fomniauth.rb

Q W) devise /rails.rb

Q Hbj devise /encrypiors/base.rb

3 b devise jcantroliers/shared_helpers.ri

Q Wb devise fmallers fhelperats

Q lib/devise rails routes.rb

Q b/ devise fcontrolers/url_helpers.rb

9 li/devise /madals/encryptablet

Q Hbj devise strategies/ioken_authenticatable.
Q app/controllers devise registrations._control
Q b devise /schema.rb

Q lib/devise /madels/authenticatable.rb

Q lib/deviserd

2 app/contrallers/devise/confirmations_controll
Q app/contrallers devise/omniauth_callbacks_c
Q app/contrallers /devise/passwards_controller,
Q app/controllers /devise/ sessions.comroller b
3 app/contrallers fdevice unlocks controller.rb
3 app/helpers devise_helperb.

Q app/mallers devise/mailerxb.

R b/ devise fcontrolers helpers.sb

Q lib/devise/controllers/ internal_helpers.rb

9 libjdevise controllers/rememberable.rb.

Q lib/devise fcontrollers/scoped_views.rb.

Q lib/devise fencrypiors /authlogic_shas12.rb

Q lib/devise feneryplors /clearance_shalrb

Q b devise [encryprors /restiul_authentication_shal.rb

“Inflector.

iz from.
rescue Mamekrror = ¢

AF e.message - /minitiolizes const
Ratls. 1ogger.debg "[Devise] Tyl
nil

else

v/
to desericlize 1maltd closs #{kloss)

unless. Bevise rack_session?

Class Devise::IndifferentHash < Hash
regulor_ariter, :[1- unless method_defined?(: regular_mriter)
altos_method iregulor update, [update LLESS method defined?(:regular. update)

det [1keyy
super(eonvert_key(key))
end

def [Je(rey, volue)
regulor_sriterCconvert key(key) , value)

alios_method :sto

L O

def update(other_hash)
other.hash.each pair { Ikey. valuel regulor writer(convert key(key). value) }

altos_method imerger, :update

def key?(key)
supercomvart_kay(key))
end

1o metnet o e

oo = Ty
"

£ Avg. Hits { Line
1947

11

10

101

811
1978
82
59
204
2854
a8
15
52

Django additional concepts

» Raw SQL

Django additional concepts

> Raw SQL

» Database denormalization

Django additional concepts

» Raw SQL
» Database denormalization
> PostgreSQL

Django additional concepts

» Raw SQL

» Database denormalization
> PostgreSQL

» Signals

Django additional concepts

Raw SQL

Database denormalization
PostgreSQL

Signals

vVvyYyyvyy

Django debug toolbar

Django

These are some basic and some more advanced concepts of Django.

Any questions?

