
Django

Jan Zbrocki

Uniwersytet Wrocławski

16.10.2025





Request-Response Cycle



Client sends request

It all begins when a client (typically a web browser) sends a request
to your Django server. This request could be anything from visiting
a web page to submitting a form. These requests are made using
HTTP methods like:
▶ GET: Used to request data from the server (e.g., a web page)

▶ POST: Used to send data to the server (e.g., submitting a
form)

▶ DELETE: Used to delete data from a server
▶ PUT: Used to actualize data on server



Client sends request

It all begins when a client (typically a web browser) sends a request
to your Django server. This request could be anything from visiting
a web page to submitting a form. These requests are made using
HTTP methods like:
▶ GET: Used to request data from the server (e.g., a web page)
▶ POST: Used to send data to the server (e.g., submitting a

form)

▶ DELETE: Used to delete data from a server
▶ PUT: Used to actualize data on server



Client sends request

It all begins when a client (typically a web browser) sends a request
to your Django server. This request could be anything from visiting
a web page to submitting a form. These requests are made using
HTTP methods like:
▶ GET: Used to request data from the server (e.g., a web page)
▶ POST: Used to send data to the server (e.g., submitting a

form)
▶ DELETE: Used to delete data from a server

▶ PUT: Used to actualize data on server



Client sends request

It all begins when a client (typically a web browser) sends a request
to your Django server. This request could be anything from visiting
a web page to submitting a form. These requests are made using
HTTP methods like:
▶ GET: Used to request data from the server (e.g., a web page)
▶ POST: Used to send data to the server (e.g., submitting a

form)
▶ DELETE: Used to delete data from a server
▶ PUT: Used to actualize data on server



Web Server - native

Deafalt django server can be started with command:

python manage.py runserver

It creates developer server on port 8000 on localhost and it’s
perfect for debugging. But it’s not scalable, not safe and it is single
threaded.



Web Server - Nginx

Nginx is a web server that can also be used as a reverse proxy, load
balancer, mail proxy and HTTP cache. Released in 2004. Nginx is
free and open-source software. A large fraction of web servers use
Nginx, often as a load balancer.



WSGI

The Web Server Gateway Interface is a simple calling
convention for web servers to forward requests to web applications
or frameworks written in the Python programming language.
Examples:
▶ Native django WSGI, It is single threaded :(

▶ Gunicorn (natively supports Django), Faster



WSGI

The Web Server Gateway Interface is a simple calling
convention for web servers to forward requests to web applications
or frameworks written in the Python programming language.
Examples:
▶ Native django WSGI, It is single threaded :(
▶ Gunicorn (natively supports Django), Faster



Request

Once the request hits the server, Django picks it up. This is where
Django’s powerful architecture comes into play. The request is
wrapped into an HttpRequest object, which contains all the details
about the request such as:
▶ Request Method: GET, POST, etc.

▶ URL: The path the user requested.
▶ Headers: Information like cookies, user agent, etc.
▶ Body: For POST requests, this contains form data or file

uploads.



Request

Once the request hits the server, Django picks it up. This is where
Django’s powerful architecture comes into play. The request is
wrapped into an HttpRequest object, which contains all the details
about the request such as:
▶ Request Method: GET, POST, etc.
▶ URL: The path the user requested.

▶ Headers: Information like cookies, user agent, etc.
▶ Body: For POST requests, this contains form data or file

uploads.



Request

Once the request hits the server, Django picks it up. This is where
Django’s powerful architecture comes into play. The request is
wrapped into an HttpRequest object, which contains all the details
about the request such as:
▶ Request Method: GET, POST, etc.
▶ URL: The path the user requested.
▶ Headers: Information like cookies, user agent, etc.

▶ Body: For POST requests, this contains form data or file
uploads.



Request

Once the request hits the server, Django picks it up. This is where
Django’s powerful architecture comes into play. The request is
wrapped into an HttpRequest object, which contains all the details
about the request such as:
▶ Request Method: GET, POST, etc.
▶ URL: The path the user requested.
▶ Headers: Information like cookies, user agent, etc.
▶ Body: For POST requests, this contains form data or file

uploads.



Url routing

After the request is encapsulated in the HttpRequest object, it’s
passed through Django’s URL routing system. Django looks for a
matching URL pattern in your urls.py file. If it finds one, it sends
the request to the corresponding view function. from django.urls
import path from . import views

1 urlpatterns = [
2 path(’home/’, views.home_view , name=’home’),
3 ]



View

This is where logic for request starts. The view receives the
HttpRequest object, processes the data, interacts with the database
if needed, and prepares a response.



Middleware

Before Django sends the response back to the client, it passes the
request and response through several middleware components.
Middleware is a series of hooks that can process requests and
responses globally.
▶ Modify the request before it reaches the view.

▶ Modify the response before it’s sent to the client.
▶ Handle authentication, logging, or session management.



Middleware

Before Django sends the response back to the client, it passes the
request and response through several middleware components.
Middleware is a series of hooks that can process requests and
responses globally.
▶ Modify the request before it reaches the view.
▶ Modify the response before it’s sent to the client.

▶ Handle authentication, logging, or session management.



Middleware

Before Django sends the response back to the client, it passes the
request and response through several middleware components.
Middleware is a series of hooks that can process requests and
responses globally.
▶ Modify the request before it reaches the view.
▶ Modify the response before it’s sent to the client.
▶ Handle authentication, logging, or session management.



Creating Django project

▶ As every other package django can be installed with packege
manager:
pip install django

▶ Create project:
django-admin startproject <name>

▶ Create first app in the project:
python3 manage.py startapp <app name>

and add it to INSTALLED_APPS in settings.py



Creating Django project

▶ As every other package django can be installed with packege
manager:
pip install django

▶ Create project:
django-admin startproject <name>

▶ Create first app in the project:
python3 manage.py startapp <app name>

and add it to INSTALLED_APPS in settings.py



Creating Django project

▶ As every other package django can be installed with packege
manager:
pip install django

▶ Create project:
django-admin startproject <name>

▶ Create first app in the project:
python3 manage.py startapp <app name>

and add it to INSTALLED_APPS in settings.py



View

1 def detail(request , question_id ):
2 return HttpResponse(
3 "You’re␣looking␣at␣question␣%s."
4 % question_id
5 )
6

7

8 def results(request , question_id ):
9 response = "You’re␣looking␣at␣\

10 the␣results␣of␣question␣%s."
11 return HttpResponse(response % question_id)
12

13

14 def vote(request , question_id ):
15 return HttpResponse(
16 "You’re␣voting␣on␣question␣%s."
17 % question_id
18 )



View

1 class UserViewSet(viewsets.ViewSet ):
2 def list(self , request ):
3 queryset = User.objects.all()
4 serializer = UserSerializer(
5 queryset ,
6 many=True ,
7 )
8 return Response(serializer.data)
9

10 def retrieve(self , request , pk=None):
11 queryset = User.objects.all()
12 user = get_object_or_404(queryset , pk=pk)
13 serializer = UserSerializer(user)
14 return Response(serializer.data)



View
1 class UserViewSet(viewsets.ModelViewSet ):
2 queryset = User.objects.all()
3 serializer_class = UserSerializer
4

5 @action(detail=True , methods =[’post’])
6 def set_password(self , request , pk=None):
7 user = self.get_object ()
8 serializer = PasswordSerializer(
9 data=request.data

10 )
11 if serializer.is_valid ():
12 user.set_password(
13 serializer.validated_data[’password ’])
14 user.save()
15 return Response ({
16 ’status ’: ’password␣set’})
17 else:
18 return Response(serializer.errors ,
19 status=status.HTTP_400_BAD_REQUEST)



View

1 class SomeViewSet(viewsets.ModelViewSet ):
2 def some_action(self , request , pk=None):
3 serializer = SomeSerializer(
4 data=request.data
5 )
6 if serializer.is_valid ():
7 service = SomeService(
8 serializer.validated_data
9 )

10 return Response(
11 status=status.HTTP_200_OK
12 )
13 else:
14 return Response(
15 serializer.errors ,
16 status=status.HTTP_400_BAD_REQUEST
17 )



Models

▶ In Django we have "all in"package so among other things we
have full DB handling implemented.

▶ To handle DB tables we have Models (very similar to
SQLAlchemy) which have class structures.

▶ To handle queries to DB we have Django ORM with all its
pros and cons.



Models

▶ In Django we have "all in"package so among other things we
have full DB handling implemented.

▶ To handle DB tables we have Models (very similar to
SQLAlchemy) which have class structures.

▶ To handle queries to DB we have Django ORM with all its
pros and cons.



Models

▶ In Django we have "all in"package so among other things we
have full DB handling implemented.

▶ To handle DB tables we have Models (very similar to
SQLAlchemy) which have class structures.

▶ To handle queries to DB we have Django ORM with all its
pros and cons.



Models

1 from django.db import models
2 class Reporter(models.Model ):
3 first_name = models.CharField(max_length =30)
4 last_name = models.CharField(max_length =30)
5 email = models.EmailField ()
6

7 def __str__(self):
8 return f"{self.first_name}␣{self.last_name}"
9 class Article(models.Model ):

10 headline = models.CharField(max_length =100)
11 pub_date = models.DateField ()
12 reporter = models.ForeignKey(Reporter , on_delete=models.CASCADE)
13 def __str__(self):
14 return self.headline
15 class Meta:
16 ordering = ["headline"]



Models

In Django we have migrations. These are representation of layers
that were made via models to create DB.
▶ python manage.py makemigrations

▶ python manage.py migrate
▶ python manage.py showmigrations



Models

In Django we have migrations. These are representation of layers
that were made via models to create DB.
▶ python manage.py makemigrations
▶ python manage.py migrate

▶ python manage.py showmigrations



Models

In Django we have migrations. These are representation of layers
that were made via models to create DB.
▶ python manage.py makemigrations
▶ python manage.py migrate
▶ python manage.py showmigrations



Django ORM

To work on queries Django implements QuerySet. QuerySet is
result of most database queries.

How can we get all articles from Article model?

Simply:

Article.objects.all()



Django ORM

To work on queries Django implements QuerySet. QuerySet is
result of most database queries.

How can we get all articles from Article model?
Simply:

Article.objects.all()



Django ORM

Let’s see some QuerySet refinement methods
▶ filter()

f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

▶ exclude()
▶ annotate()
▶ order_by()
▶ values()
▶ values_list()
▶ get()



Django ORM

Let’s see some QuerySet refinement methods
▶ filter()

f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

▶ exclude()

▶ annotate()
▶ order_by()
▶ values()
▶ values_list()
▶ get()



Django ORM

Let’s see some QuerySet refinement methods
▶ filter()

f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

▶ exclude()
▶ annotate()

▶ order_by()
▶ values()
▶ values_list()
▶ get()



Django ORM

Let’s see some QuerySet refinement methods
▶ filter()

f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

▶ exclude()
▶ annotate()
▶ order_by()

▶ values()
▶ values_list()
▶ get()



Django ORM

Let’s see some QuerySet refinement methods
▶ filter()

f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

▶ exclude()
▶ annotate()
▶ order_by()
▶ values()

▶ values_list()
▶ get()



Django ORM

Let’s see some QuerySet refinement methods
▶ filter()

f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

▶ exclude()
▶ annotate()
▶ order_by()
▶ values()
▶ values_list()

▶ get()



Django ORM

Let’s see some QuerySet refinement methods
▶ filter()

f.e. Reporter.objects.filter(first_name="Jan")
or Article.objects.filter(reporter__first_name="Jan")

▶ exclude()
▶ annotate()
▶ order_by()
▶ values()
▶ values_list()
▶ get()



Django ORM

Let’s see how to do DB changes
▶ create()

f.e.
p = Person.objects.create(

first_name="Bruce",
last_name="Springsteen",

)
same as
p = Person(

first_name="Bruce",
last_name="Springsteen",

)
p.save(force_insert=True)

▶ update()
▶ delete()



Django ORM

Let’s see how to do DB changes
▶ create()

f.e.
p = Person.objects.create(

first_name="Bruce",
last_name="Springsteen",

)
same as
p = Person(

first_name="Bruce",
last_name="Springsteen",

)
p.save(force_insert=True)

▶ update()

▶ delete()



Django ORM

Let’s see how to do DB changes
▶ create()

f.e.
p = Person.objects.create(

first_name="Bruce",
last_name="Springsteen",

)
same as
p = Person(

first_name="Bruce",
last_name="Springsteen",

)
p.save(force_insert=True)

▶ update()
▶ delete()



DjangoAdmin

1 from django.contrib import admin
2

3 from .models import Question
4

5

6 class QuestionAdmin(admin.ModelAdmin ):
7 fields = ["pub_date", "question_text"]
8

9

10 admin.site.register(Question , QuestionAdmin)



DjangoAdmin



Django test
To run tests we type command:

python manage.py test polls

Output:

Creating test database for alias ’default’...
System check identified no issues (0 silenced).
F
======================================================================
FAIL: test_was_published_recently_with_future_question (polls.tests.QuestionModelTests)
----------------------------------------------------------------------
Traceback (most recent call last):

File "/path/to/djangotutorial/polls/tests.py", line 16, in test_was_published_recently_with_future_question
self.assertIs(future_question.was_published_recently(), False)

AssertionError: True is not False

----------------------------------------------------------------------
Ran 1 test in 0.001s

FAILED (failures=1)
Destroying test database for alias ’default’...



Django test

1 import datetime
2

3 from django.test import TestCase
4 from django.utils import timezone
5

6 from .models import Question
7

8 class QuestionModelTests(TestCase ):
9 def test_was_published_recently_with_future_question(self):

10 time = (
11 timezone.now() +
12 datetime.timedelta(days =30)
13 )
14 future_question = Question(pub_date=time)
15 self.assertIs(
16 future_question.was_published_recently (),
17 False
18 )



Django in benchmarks
https:
//www.techempower.com/benchmarks/#section=data-r23

https://www.techempower.com/benchmarks/#section=data-r23
https://www.techempower.com/benchmarks/#section=data-r23


Django toolbar



Django additional concepts - Aggregation

1 class Book(models.Model ):
2

3 name = models.CharField(max_length =300)
4

5 pages = models.IntegerField ()
6

7 price = models.DecimalField(max_digits =10, decimal_places =2)
8

9 rating = models.FloatField ()
10

11 authors = models.ManyToManyField(Author)
12

13 publisher = models.ForeignKey(Publisher , on_delete=models.CASCADE)
14

15 pubdate = models.DateField ()
16

17

18 Book.objects.aggregate(Max("price", default =0))



Django additional concepts - Coverage report



Django additional concepts

▶ Raw SQL

▶ Database denormalization
▶ PostgreSQL
▶ Signals
▶ Django debug toolbar



Django additional concepts

▶ Raw SQL
▶ Database denormalization

▶ PostgreSQL
▶ Signals
▶ Django debug toolbar



Django additional concepts

▶ Raw SQL
▶ Database denormalization
▶ PostgreSQL

▶ Signals
▶ Django debug toolbar



Django additional concepts

▶ Raw SQL
▶ Database denormalization
▶ PostgreSQL
▶ Signals

▶ Django debug toolbar



Django additional concepts

▶ Raw SQL
▶ Database denormalization
▶ PostgreSQL
▶ Signals
▶ Django debug toolbar



Django

These are some basic and some more advanced concepts of Django.

Any questions?


