
Algorytmy online: lista 8

Zadanie 1. (3 pkt.) Rozważmy problem routingu na linii o n wierzchołkach, gdzie każda
krawędź ma pojemność U . Pokaż dolne ograniczenie na ścisłą konkurencyjność dowolnego
algorytmu deterministycznego w wysokości Ω(n1/U ).

Zadanie 2. Rozważmy problem szeregowania zadań na m niepowiązanych maszynach. W kroku t

otrzymujemy zadanie zdefiniowane wektorem pt = (pt,1, pt,2, . . . , pt,m). Jeśli przypiszemy je
maszynie j, to jej obciążenie ℓj zwiększy się o pt,j . Celem jest minimalizacja maxm

j=1 ℓj .
Podobnie jak w przypadku algorytmu dla powiązanych maszyn chcemy stworzyć proce-
durę Algλ, która będzie przypisywać zadania przy założeniu, że Opt ≤ λ (i będzie gwaran-
tować, że obciążenie każdej maszyny to O(λ · log m)).
Niech yt,j = 1 jeśli zadanie t przypisujemy do maszyny j, zaś 0 w przeciwnym przypadku.
W kroku k będziemy rozważać przypisanie zadań tylko do maszyn ze zbioru

Sk ≜ {j ∈ [m] : pk,j ≤ λ}, 1

tj. wymagamy, żeby yk,j = 0 dla każdego j /∈ Sk. W kroku k definiujmy następujące
zagadnienie całkowitoliczbowe P int

k , którego celem jest maksymalizacja liczby przypisanych
zadań.

maksymalizuj:
k∑

t=1

m∑
j=1

yt,j

przy warunkach:
m∑

j=1
yt,j ≤ 1 dla każdego t ∈ [k],

k∑
t=1

pt,j · yt,j ≤ λ dla każdego j ∈ [m],

yt,j ≤ 0 dla każdych t ∈ [k], j ∈ [m] \ St,
yt,j ∈ {0, 1} dla każdych t ∈ [k], j ∈ [m].

Niech Pk będzie liniową relaksacją P int
k , w której warunek yt,j ∈ {0, 1} został zastąpiony przez

yt,j ≥ 0. (Warunek yt,j ≤ 1 jest zbędny, bo implikowany przez ∑m
j=1 yt,j ≤ 1). Programem

dualnym do Pk jest następujące zagadnienie minimalizacyjne Dk.

minimalizuj:
m∑

j=1
λ · xj +

k∑
t=1

zt

przy warunkach: zt + pt,j · xj ≥ 1 dla każdych t ∈ [k], j ∈ St,

zt + pt,j · xj + αt,j ≥ 1 dla każdych t ∈ [k], j ∈ [m] \ St,

xj ≥ 0 dla każdego j ∈ [m],
zt ≥ 0 dla każdego t ∈ [k],
αt,j ≥ 0 dla każdych t ∈ [k], j ∈ Sk

1[n] = {1, . . . , n} dla dowolnej liczby naturalnej n.



Algorytm ALGλ działa następująco. Na początku przypisuje xj ← 1/(2λ ·m) dla każdego
j ∈ {1, . . . , m}. W kroku k algorytm wykonuje następujące czynności.

• Jeśli Sk = ∅ lub jeśli istnieje maszyna j, dla której xj > 1/λ, to zwróć FAIL.
• W przeciwnym przypadku niech j∗ będzie maszyną z Sk minimalizującą pk,j∗ · xj∗ .

Wtedy:
– przypisz zadanie k do maszyny j∗ (tj. yk,j∗ ← 1 oraz yk,j ← 0 dla j ̸= j∗),
– αk,j ← 1 dla każdego j /∈ Sk

– zk ← 1− pk,j∗ · xj∗ ,
– xj∗ ← xj∗ ·

(
1 + pk,j∗

2λ

)
.

Niech T będzie maksymalnym numerem kroku, takim że Alg nie zwraca FAIL w kro-
kach 1, . . . , T . (Możliwe, że T jest ostatnim krokiem wejścia). Rozwiązanie generowane przez
Alg przypisuje wszystkie T zadań do maszyn, ale odpowiadające mu rozwiązanie dla P int

k

być może nie jest dopuszczalne (obciążenia maszyn mogą być większe od λ).

a) (2 pkt.) Pokaż, że dla dowolnego kroku t ∈ {0, . . . , T}, Alg generuje dopuszczalne
rozwiązanie dla Dt i zachodzi

Alg(Dt) = t + 1− λ ·
m∑

j=1
x

(t)
j ,

gdzie x
(t)
j to wartość zmiennej xj po kroku t.

b) (2 pkt.) Pokaż, że jeśli Alg zwróci FAIL w kroku T + 1, to Opt nie jest w stanie
przypisać wszystkich T + 1 zadań tak, żeby obciążenie każdej maszyny wynosiło co
najwyżej λ.

c) (2 pkt.) Pokaż, że dla dowolnego kroku t ∈ {1, . . . , T} oraz dla dowolnej maszyny j

zachodzi
xj ≥

2 ℓj/(2λ)

2λ ·m
Jak z tego wynika ℓj = O(λ · log m)?

d) (1 pkt.) Jak z poprzednich punktów wynika następujące twierdzenie: „Jeśli pierwsze T

zadań można przypisać z obciążeniem co najwyżej λ dla każdej maszyny, to Alg przypisze
te zadania generując obciążenie O(λ·log m) dla każdej maszyny i nie zwróci FAIL podczas
pierwszych T kroków”.

Marcin Bieńkowski


