
Algorytmy online: lista 10

Zadanie 1. (2 pkt.) Pokaż, że konkurencyjność dowolnego algorytmu deterministycznego Det
dla problemu przenoszenia pliku wynosi co najmniej 3. Wskazówka: rozważ graf dwuwierzchoł-
kowy i porównaj Det z trzema algorytmami (dwa statyczne i jeden, który ma plik w innym
wierzchołku niż Det).

Zadanie 2. (2 pkt.) Rozważ następujący algorytm Cntk parametryzowany pewną liczbą
całkowitą k. Na początku działania Cntk losuje wartość licznika C jednostajnie ze zbioru
{1, . . . , k}. W każdym kroku, po obsłudze żądania, Cntk zmniejsza C o 1 i jeśli następnie
C = 0, to plik jest przenoszony do miejsca żądania, zaś C jest zmieniane na k.
Pokaż, że dla dowolnego k konkurencyjność algorytmu Cntk wynosi co najwyżej

max
{

2 + 2D

k
, 1 + k

2D

}
+ O(1/D) .

gdzie D jest rozmiarem pliku. Zakładając, że D → ∞ i nie musisz się przejmować całkowito-
ścią k, oblicz jakie jest k optymalizujące powyższe maksimum i ile wynosi wtedy konkuren-
cyjność Cntk. Wskazówka: wykorzystaj funkcję potencjału Φ = (C + D) · d(Cntk, Opt).

Zadanie 3. (2 pkt.) Rozważmy następujące uogólnienie algorytmu Flip dla problemu przeno-
szenia pliku: algorytm Flip(p) przenosi plik do żądania z prawdopodobieństwem p ∈ (0, 1].
(Oryginalny algorytm Flip wybierał p = 1/(2D)). Ustalmy graf, który składa się z dwóch
wierzchołków połączonych krawędzią. Pokaż, że dla dowolnego p konkurencyjność algorytmu
Flip(p) na tym grafie wynosi co najmniej 3.

Zadanie 4. Na odwrocie znajdziesz program liniowy, zapisz go do pliku lower.lp. Przeczytaj
jego zawartość zwracając uwagę na trzy wyróżnione nierówności: dlaczego są one prawdziwe?
Uruchom polecenie lp_solve < lower.lp.1

a) (2 pkt.) Na podstawie wyniku narysuj i opisz, jak wygląda faza dla której zachodzi
Alg + ∆Φ = 7 · Opt, gdzie Φ = 2 · D · d(Alg, Opt). Uwaga: prawdopodobnie żądania
nie mogą być skupione w jednym miejscu req, ten punkt odpowiada tylko ich „środkowi
masy”.

b) (2 pkt.) Zauważ, że powyższy wynik nie prowadzi łatwo do prawdziwego dolnego
ograniczenia, bo odległość d(Alg, Opt) jest inna na początku i na końcu fazy. Dodaj
odpowiednią równość, żeby to wymusić, wykonaj ponownie program i rozwiąż ponow-
nie poprzedni podpunkt. Jak z obecnej konstrukcji wynika dolne ograniczenie 7 na
konkurencyjność algorytmu Move-To-Min?

Marcin Bieńkowski

1Program lp_solve to darmowy solver LP dostępny w większości popularnych systemów operacyjnych. Jeśli w
wyniku otrzymasz inne wartości niż potential_start = 0 i potential_end = 4, to wymuś je przez odkomento-
wanie odpowiednich wierszy.



/*
Generowanie metryki wymuszającej największy współczynnik dla jednej fazy algorytmu Move-To-Min
dla problemu File migration i konkretnej funkcji potencjału równej 2 * D * dist(ALG, OPT).

Mamy dane punkty alg0, alg1, opt0 i opt1 (pozycje ALG i OPT na początku i końcu). Zmienne
w programie to głównie D_x_y, oznaczające odległość między punktami x i y, pomnożoną przez D.
Dodatkowo D_req_x oznacza sumę odległości od punktu x do wszystkich żądań z danej fazy.

UWAGA: Wartość ratio jest GÓRNYM ograniczeniem, tj. jeśli program zwróci ratio = 7, to oznacza,
że faktyczna konkurencyjność wynosi co najwyżej 7. Ale nie na odwrót: program może wygenerować
układ punktów, który NIE JEST MOŻLIWY DO ZAIMPLEMENTOWANIA jako prawdziwa faza.

*/

max: ratio;

ratio = alg_cost + potential_end - potential_start;

alg_cost = D_req_alg0 + D_alg0_alg1;
opt_cost = 1;

opt_cost >= D_req_opt0; // Lemat ograniczający koszt OPT zastosowany do opt0
opt_cost >= D_req_opt1; // Lemat ograniczający koszt OPT zastosowany do opt1
opt_cost >= D_opt0_opt1;

potential_start = 2 D_alg0_opt0;
potential_end = 2 D_alg1_opt1;

// Odkomentuj, jeśli masz za dużo szczęścia:
// potential_start = 0;
// potential_end = 4;

// Jakie jest znaczenie tych trzech nierówności?
D_req_alg1 <= D_req_alg0;
D_req_alg1 <= D_req_opt0;
D_req_alg1 <= D_req_opt1;

// Nierówności trójkąta.
D_req_alg0 <= D_req_alg1 + D_alg0_alg1;
D_req_alg0 <= D_req_opt0 + D_alg0_opt0;
D_req_alg0 <= D_req_opt1 + D_alg0_opt1;
D_req_alg1 <= D_req_alg0 + D_alg0_alg1;
D_req_alg1 <= D_req_opt0 + D_alg1_opt0;
D_req_alg1 <= D_req_opt1 + D_alg1_opt1;
D_req_opt0 <= D_req_alg0 + D_alg0_opt0;
D_req_opt0 <= D_req_alg1 + D_alg1_opt0;
D_req_opt0 <= D_req_opt1 + D_opt0_opt1;
D_req_opt1 <= D_req_alg0 + D_alg0_opt1;
D_req_opt1 <= D_req_alg1 + D_alg1_opt1;
D_req_opt1 <= D_req_opt0 + D_opt0_opt1;
D_alg0_alg1 <= D_req_alg0 + D_req_alg1;
D_alg0_alg1 <= D_alg0_opt0 + D_alg1_opt0;
D_alg0_alg1 <= D_alg0_opt1 + D_alg1_opt1;
D_alg0_opt0 <= D_req_alg0 + D_req_opt0;
D_alg0_opt0 <= D_alg0_alg1 + D_alg1_opt0;
D_alg0_opt0 <= D_alg0_opt1 + D_opt0_opt1;
D_alg0_opt1 <= D_req_alg0 + D_req_opt1;
D_alg0_opt1 <= D_alg0_alg1 + D_alg1_opt1;
D_alg0_opt1 <= D_alg0_opt0 + D_opt0_opt1;
D_alg1_opt0 <= D_req_alg1 + D_req_opt0;
D_alg1_opt0 <= D_alg0_alg1 + D_alg0_opt0;
D_alg1_opt0 <= D_alg1_opt1 + D_opt0_opt1;
D_alg1_opt1 <= D_req_alg1 + D_req_opt1;
D_alg1_opt1 <= D_alg0_alg1 + D_alg0_opt1;



D_alg1_opt1 <= D_alg1_opt0 + D_opt0_opt1;
D_opt0_opt1 <= D_req_opt0 + D_req_opt1;
D_opt0_opt1 <= D_alg0_opt0 + D_alg0_opt1;
D_opt0_opt1 <= D_alg1_opt0 + D_alg1_opt1;


