Algorytmy online: lista 10

Zadanie 1. (2 pkt.) Pokaz, ze konkurencyjnosé dowolnego algorytmu deterministycznego DET
dla problemu przenoszenia pliku wynosi co najmniej 3. Wskazowka: rozwaz graf dwuwierzchol-
kowy i poréwnaj DET z trzema algorytmami (dwa statyczne i jeden, ktéry ma plik w innym
wierzcholku niz DET).

Zadanie 2. (2 pkt.) Rozwaz nastepujacy algorytm CNTj parametryzowany pewna liczba
catkowitg k. Na poczatku dziatania CNTy losuje wartos¢ licznika C' jednostajnie ze zbioru
{1,...,k}. W kazdym kroku, po obstudze zadania, CNT;, zmniejsza C o 1 i jesli nastepnie
C =0, to plik jest przenoszony do miejsca zadania, za§ C' jest zmieniane na k.

Pokaz, ze dla dowolnego k konkurencyjnosé algorytmu CNTy, wynosi co najwyzej

2D k

gdzie D jest rozmiarem pliku. Zaktadajac, ze D — oo i nie musisz sie przejmowaé catkowito-
$cia k, oblicz jakie jest k optymalizujace powyzsze maksimum i ile wynosi wtedy konkuren-
cyjno$¢ CNTy. Wskazéwka: wykorzystaj funkcje potencjalu ® = (C + D) - d(CNTy, OPT).

Zadanie 3. (2 pkt.) Rozwazmy nastepujace uogdlnienie algorytmu FLIp dla problemu przeno-
szenia pliku: algorytm FLIP(p) przenosi plik do zadania z prawdopodobiefistwem p € (0, 1].
(Oryginalny algorytm FLIP wybieral p = 1/(2D)). Ustalmy graf, ktéry sklada sie z dwéch
wierzchotkéw polaczonych krawedzig. Pokaz, ze dla dowolnego p konkurencyjnosé algorytmu
FLIP(p) na tym grafie wynosi co najmniej 3.

Zadanie 4. Na odwrocie znajdziesz program liniowy, zapisz go do pliku lower.1lp. Przeczytaj
jego zawartosS¢ zwracajac uwage na trzy wyrdznione nieréwnosci: dlaczego s one prawdziwe?
Uruchom polecenie 1p_solve < lower.lp.!

a) (2 pkt.) Na podstawie wyniku narysuj i opisz, jak wyglada faza dla ktérej zachodzi
ALG + AP =7-Oprt, gdzie ® =2 D - d(ALG, OPT). Uwaga: prawdopodobnie zadania
nie moga by¢ skupione w jednym miejscu req, ten punkt odpowiada tylko ich ,,Srodkowi
masy”.

b) (2 pkt.) Zauwaz, ze powyzszy wynik nie prowadzi latwo do prawdziwego dolnego
ograniczenia, bo odleglos¢ d(ALG, OPT) jest inna na poczatku i na koncu fazy. Dodaj
odpowiednig réwnosé, zeby to wymusi¢, wykonaj ponownie program i rozwiaz ponow-
nie poprzedni podpunkt. Jak z obecnej konstrukeji wynika dolne ograniczenie 7 na
konkurencyjnoéé¢ algorytmu Move-To-Min?

Marcin Bienkowski

Program 1p_solve to darmowy solver LP dostepny w wiekszo$ci popularnych systeméw operacyjnych. Jesli w
wyniku otrzymasz inne wartoéci niz potential_start = 0 i potential_end = 4, to wymus$ je przez odkomento-
wanie odpowiednich wierszy.

/*
Generowanie metryki wymuszajgcej najwigkszy wspbéiczynnik dla jednej fazy algorytmu Move-To-Min
dla problemu File migration i konkretnej funkcji potencjatu réwnej 2 * D * dist(ALG, OPT).

Mamy dane punkty algO, algl, optO i optl (pozycje ALG i OPT na poczatku i koiicu). Zmienne
w programie to gtdéwnie D_x_y, oznaczajace odlegios¢ miedzy punktami x i y, pomnozong przez D.
Dodatkowo D_req_x oznacza sume¢ odlegtoSci od punktu x do wszystkich zadan z danej fazy.

UWAGA: Wartosé ratio jest GORNYM ograniczeniem, tj. jesli program zwréci ratio = 7, to oznacza,
ze faktyczna konkurencyjnoS¢ wynosi co najwyzej 7. Ale nie na odwrdt: program moze wygenerowac
uktad punktdéw, ktéry NIE JEST MOZLIWY DO ZAIMPLEMENTOWANIA jako prawdziwa faza.

*/

max: ratio;

ratio = alg_cost + potential_end - potential_start;

alg_cost = D_req_alg0 + D_alg0O_algl;

opt_cost = 1;

opt_cost >= D_req_optO0; // Lemat ograniczajacy koszt OPT zastosowany do optO
opt_cost >= D_req_optl; // Lemat ograniczajacy koszt OPT zastosowany do optl
opt_cost >= D_optO_optl;

potential _star
potential_end

// Odkomentuj, jesli masz za duzo szczeScia:

// potential_s
// potential_e

// Jakie jest

t

tart = 0;
nd = 4;

znaczenie tych trzech nierdwnosci?

2 D_algO_optO0;
2 D_algl_optil;

D_req_algl <= D_req_alg0;

D_req_algl <= D_req_optO;

D_req_algl <= D_req_opti;

// NierdwnoSci trdjkata.

D_req_alg0 <= D_req_algl + D_alg0O_algl;
D_req_alg0 <= D_req_optO + D_algO_optO0;
D_req_alg0 <= D_req_optl + D_algO_optil;
D_req_algl <= D_req_alg0 + D_alg0O_algl;
D_req_algl <= D_req_optO0 + D_algl_optO;
D_req_algl <= D_req_optl + D_algl_optl;
D_req_optO <= D_req_alg0 + D_algO_optO0;
D_req_optO <= D_req_algl + D_algl_optO;
D_req_optO <= D_req_optl + D_optO_optl;
D_req_optl <= D_req_alg0 + D_algO_optl;
D_req_optl <= D_req_algl + D_algl_opti;
D_req_optl <= D_req_optO0 + D_optO_optl;
D_alg0O_algl <= D_req_alg0 + D_req_algl;
D_algO_algl <= D_algO_optO + D_algl_optO;
D_alg0O_algl <= D_algO_optl + D_algl_opti;
D_algO_optO <= D_req_alg0 + D_req_optO;
D_alg0O_optO <= D_algO_algl + D_algl_optO;
D_alg0O_optO <= D_algO_optl + D_optO_optl;
D_alg0O_optl <= D_req_alg0 + D_req_optil;
D_alg0O_optl <= D_algO_algl + D_algl_optl;
D_alg0O_optl <= D_algO_optO + D_optO_optl;
D_algl_optO <= D_req_algl + D_req_optO;
D_algl_optO <= D_algO_algl + D_algO_optO0;
D_algl_optO <= D_algl_optl + D_optO_optl;
D_algl_optl <= D_req_algl + D_req_optil;
D_algl_optl <= D_algO_algl + D_algO_optl;

D_algl_optl
D_optO_opt1l
D_optO_opt1l
D_optO_optl

<=
<=
<=
<=

D_algl_optO
D_req_optO

D_alg0O_optO
D_algl_optO

+ o+ o+ o+

D_optO_optl;
D_req_optl;

D_algO_optl;
D_algl_opti;

