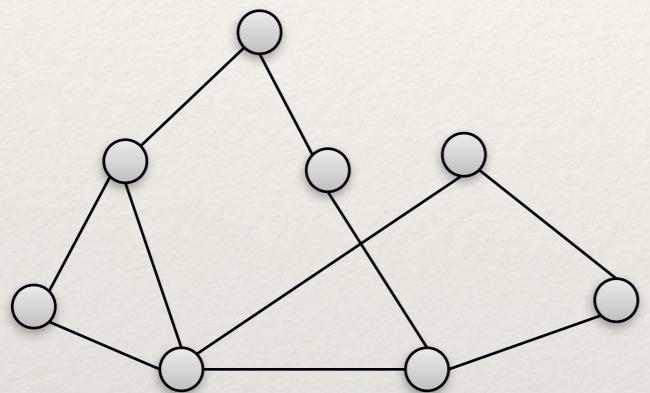

Approximating Graphs by Trees

Marcin Bieńkowski

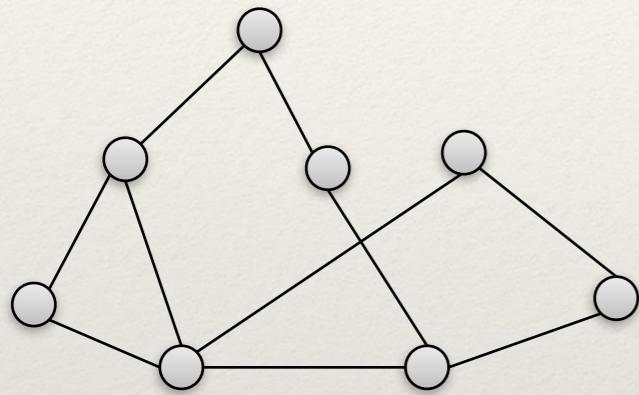
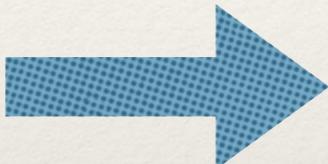
The problem

Given an arbitrary graph
 $G = (V, E)$ of n nodes...

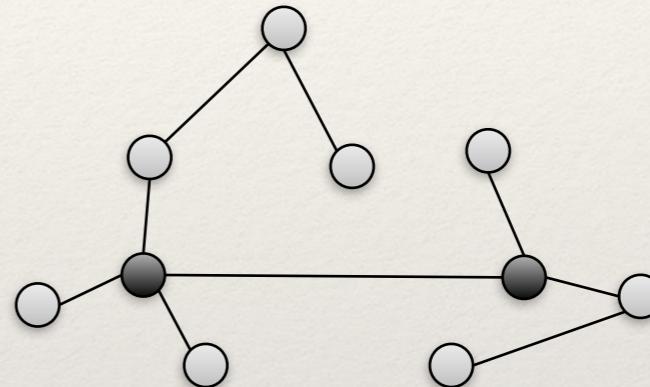


The problem

Given an arbitrary graph
 $G = (V, E)$ of n nodes...

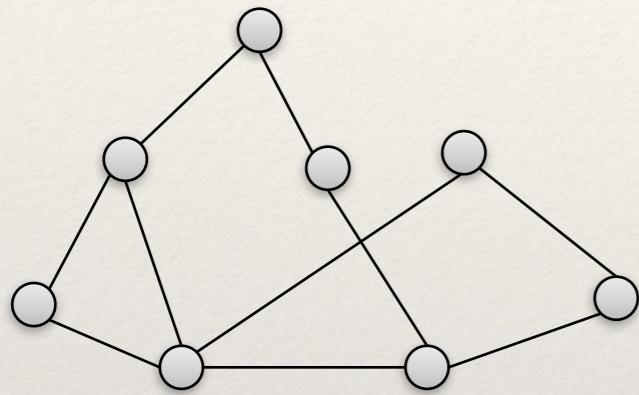


... construct a tree $T = (V', E')$
with $V \subseteq V'$...

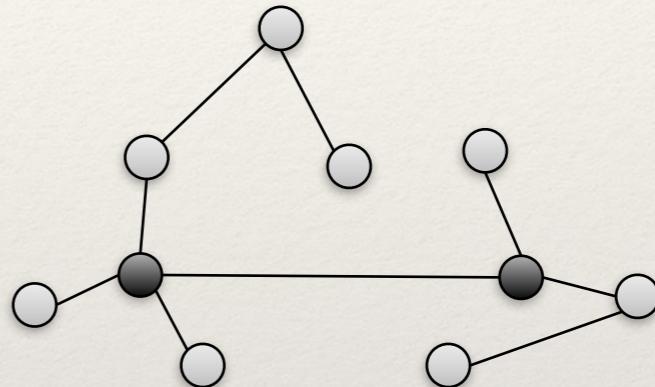


The problem

Given an arbitrary graph
 $G = (V, E)$ of n nodes...



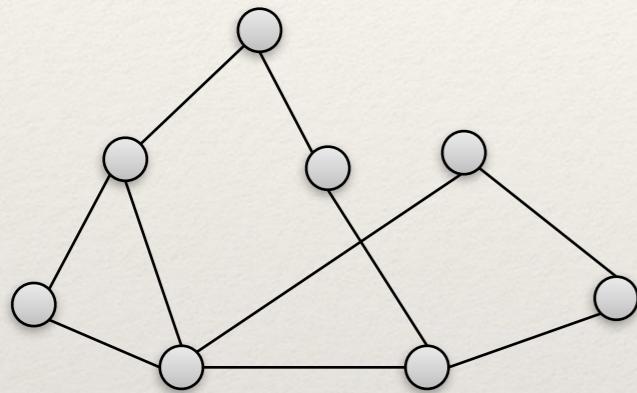
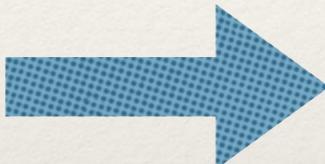
... construct a tree $T = (V', E')$
with $V \subseteq V'$...



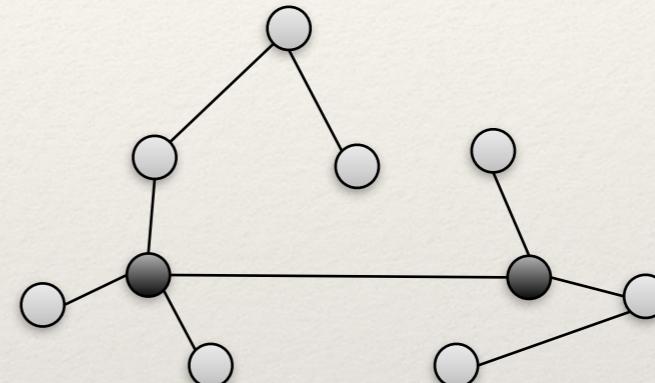
... that (approximately) preserves the distances between any pair u, v of vertices: $d_{u,v} \leq T_{u,v} \leq \alpha \cdot d_{u,v}$

The problem

Given an arbitrary graph
 $G = (V, E)$ of n nodes...



... construct a tree $T = (V', E')$
with $V \subseteq V'$...



... that (approximately) preserves the distances between
any pair u, v of vertices: $d_{u,v} \leq T_{u,v} \leq \alpha \cdot d_{u,v}$

distortion

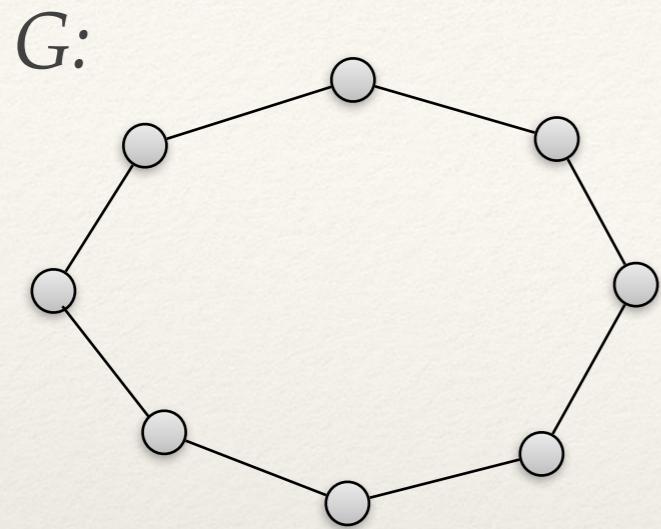
Applications...

... for most of optimization problems on graphs, whose objective function is linear in distances.

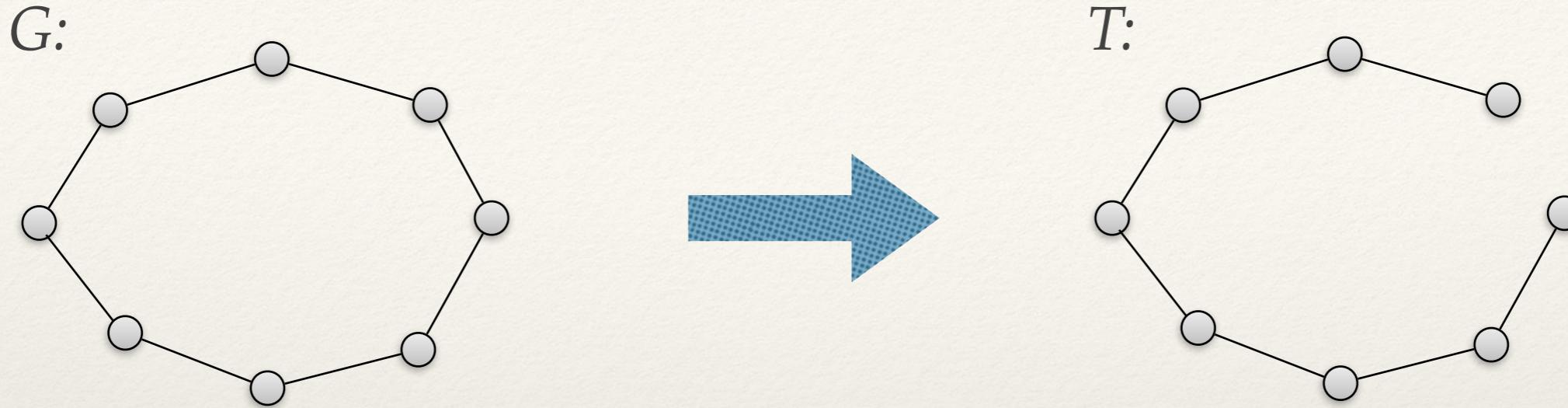
In particular:

- ❖ metrical task systems
- ❖ group Steiner tree
- ❖ buy-at-bulk network design
- ❖ distributed paging
- ❖ k-server
- ❖ k-median
- ❖ ...

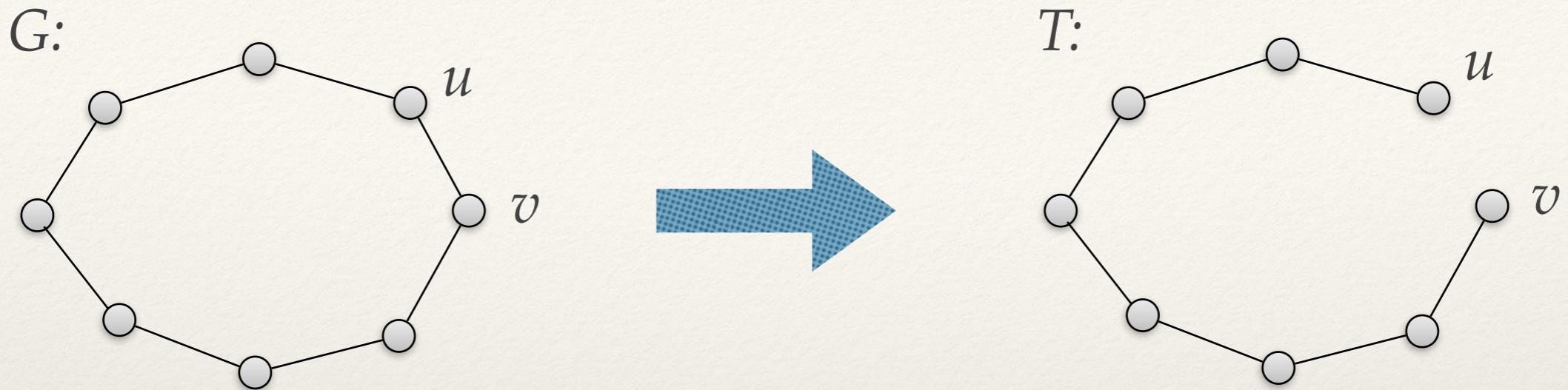
Is small distortion possible? (1)



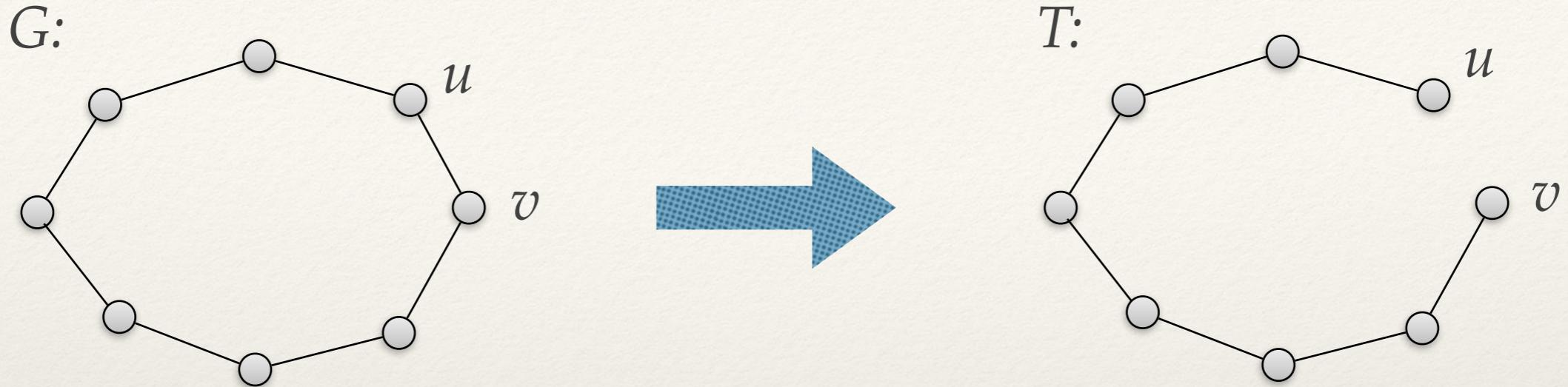
Is small distortion possible? (1)



Is small distortion possible? (1)

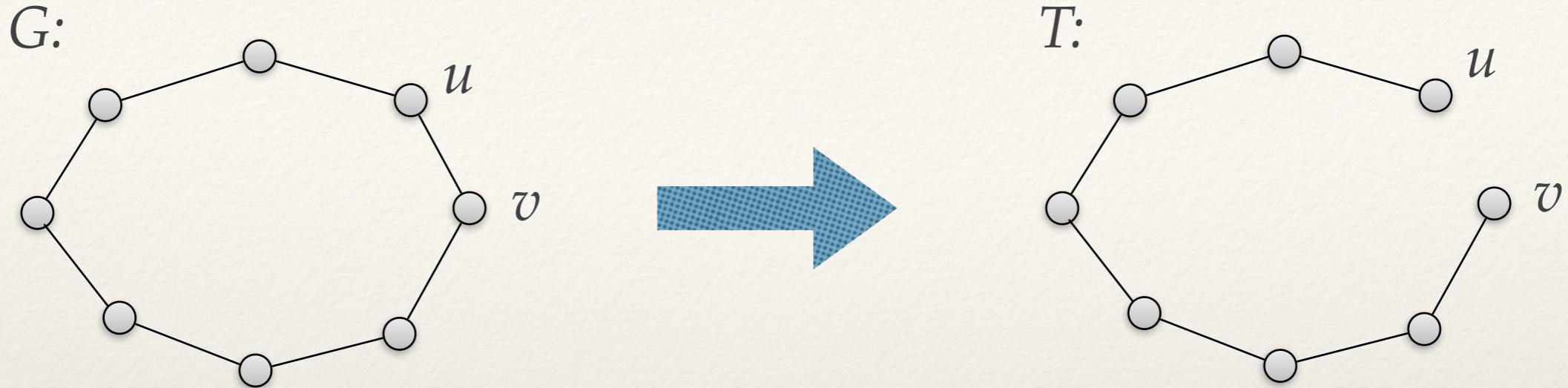


Is small distortion possible? (1)



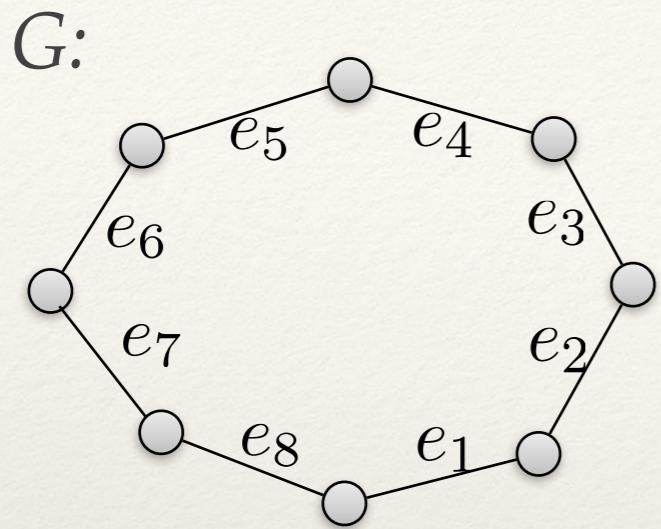
- ❖ The distortion is $n-1$.

Is small distortion possible? (1)

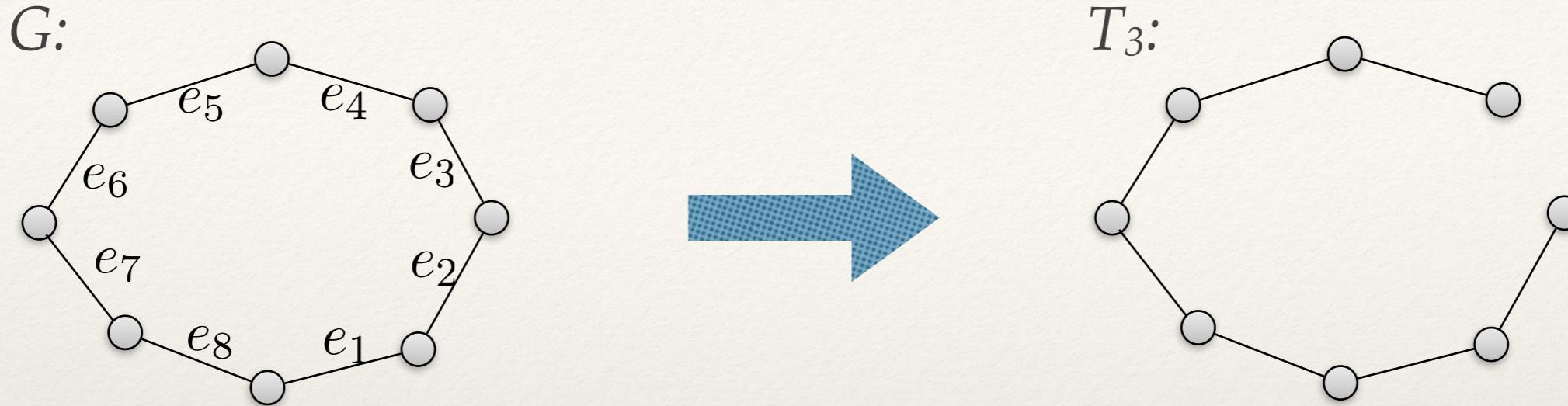


- ❖ The distortion is $n-1$.
- ❖ Actually, this is more complicated as T may contain additional nodes, but the distortion is $\Omega(n)$. [Rabinovich, Raz 2005]
- ❖ No good **deterministic** choice of T , what about **random** one?

Is small distortion possible? (2)

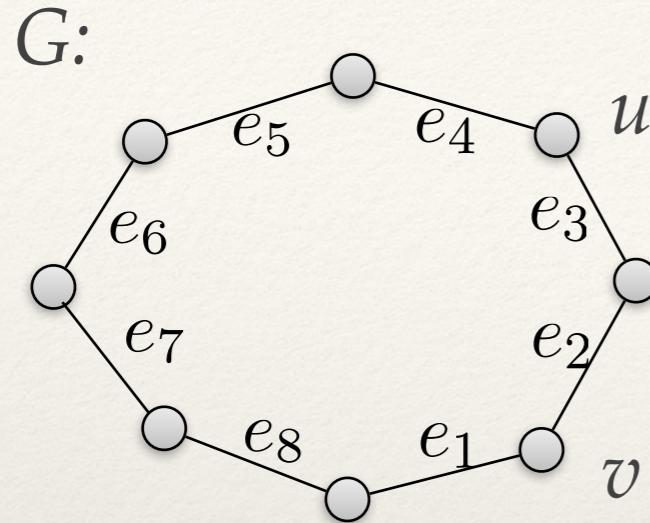
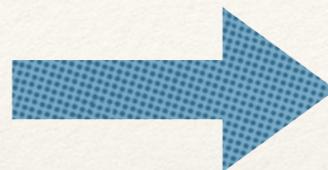
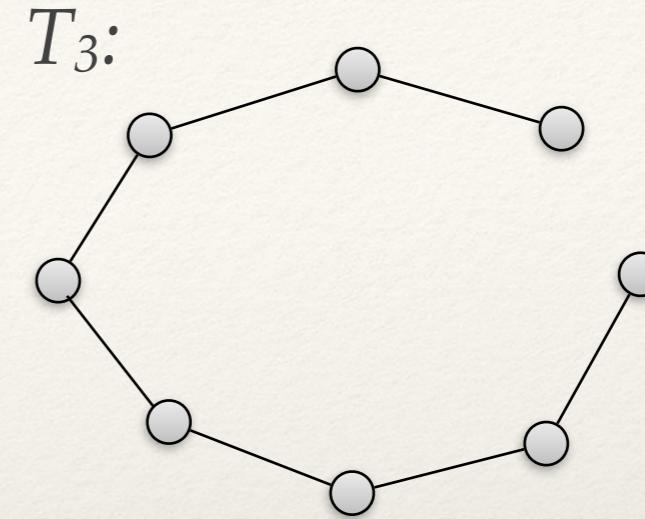


Is small distortion possible? (2)



- ❖ Cut a random edge from the circle (each with probability $1/n$) obtaining a random tree.

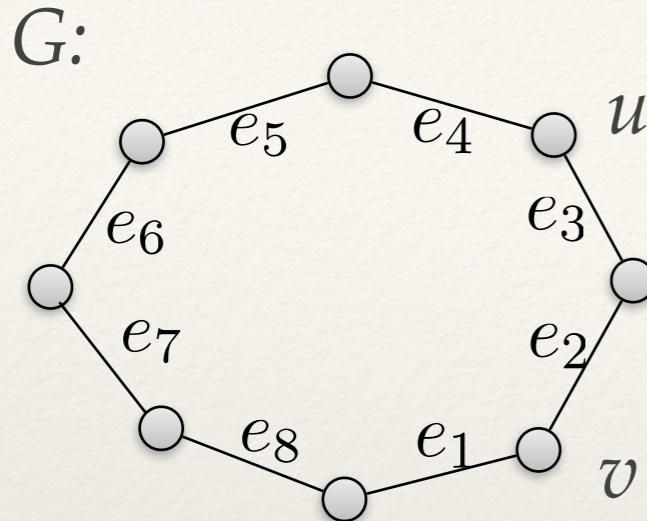
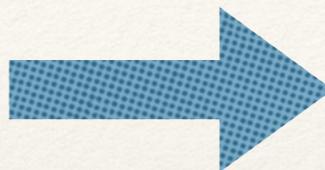
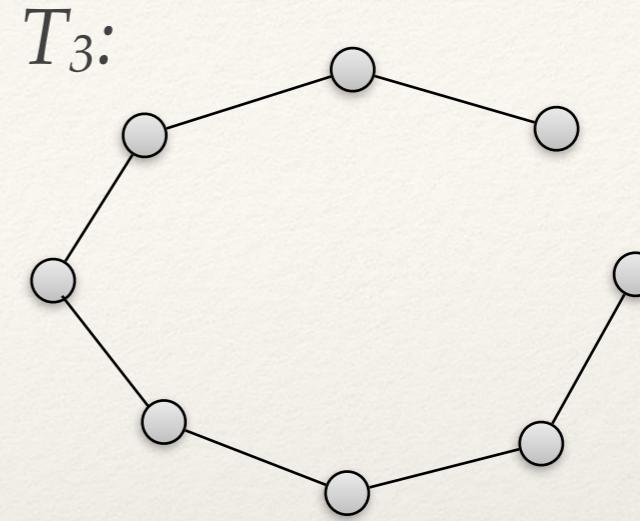
Is small distortion possible? (2)



- ❖ Cut a random edge from the circle (each with probability $1/n$) obtaining a random tree.
- ❖ Fix any two nodes u and v , let $k = d_{u,v}$.

Then, $\mathbf{E}[T_{u,v}] = \frac{k}{n} \cdot (n - k) + \frac{n - k}{n} \cdot k = 2k \cdot \frac{n - k}{n} < 2k$

Is small distortion possible? (2)



- ❖ Cut a random edge from the circle (each with probability $1/n$) obtaining a random tree.

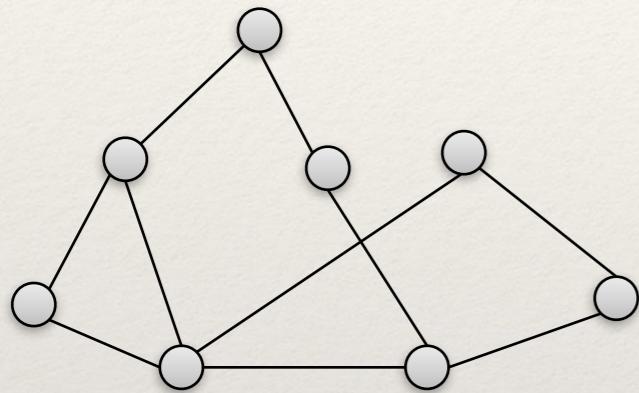
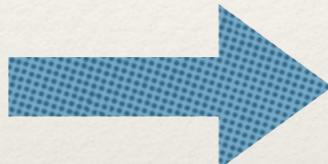
- ❖ Fix any two nodes u and v , let $k = d_{u,v}$.

distortion < 2

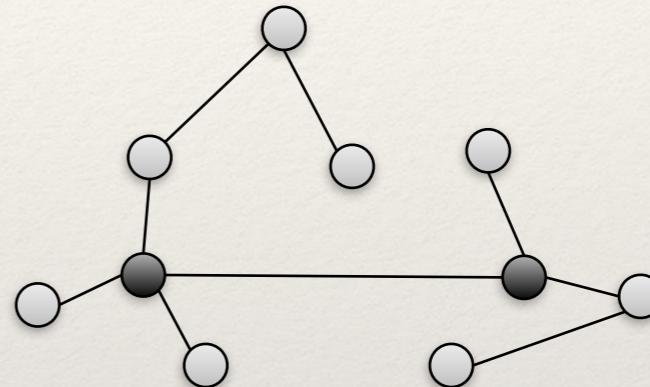
$$\text{Then, } \mathbf{E}[T_{u,v}] = \frac{k}{n} \cdot (n - k) + \frac{n - k}{n} \cdot k = 2k \cdot \frac{n - k}{n} < 2k$$

The (slightly modified) problem

Given an arbitrary graph
 $G = (V, E)$ of n nodes...



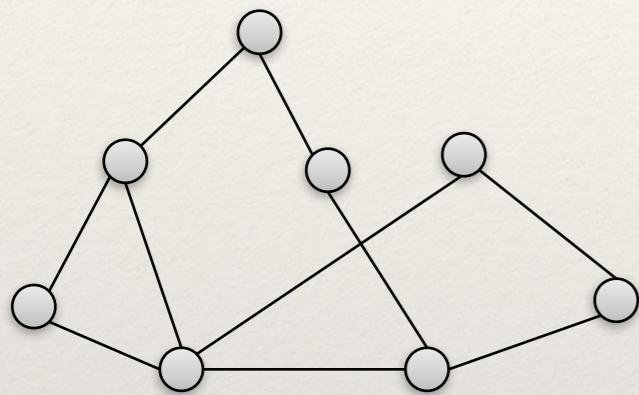
... construct a **random**
tree $T = (V', E')$ with $V \subseteq V'$...



The (slightly modified) problem

Given an arbitrary graph
 $G = (V, E)$ of n nodes...

... construct a **random**
tree $T = (V', E')$ with $V \subseteq V'$...



... that (approximately) preserves the distances between
any pair u, v of vertices: $d_{u,v} \leq T_{u,v}$ and $E[T_{u,v}] \leq \alpha \cdot d_{u,v}$

distortion

Historical Notes

Bounding distortion:

- ❖ $2^{O(\sqrt{\log n \log \log n})}$ [Alon, Karp, Peleg, West, SIAM Jcomp '91]
- ❖ $O(\log^2 n)$ [Bartal, FOCS '96]
- ❖ $O(\log n \log \log n)$ [Bartal, STOC '98]
- ❖ $O(\log n)$ [Fakcharoenphol, Rao, Talwar, STOC '03]

The last three results use **hierarchical partitioning** of the graph.

Historical Notes

Bounding distortion:

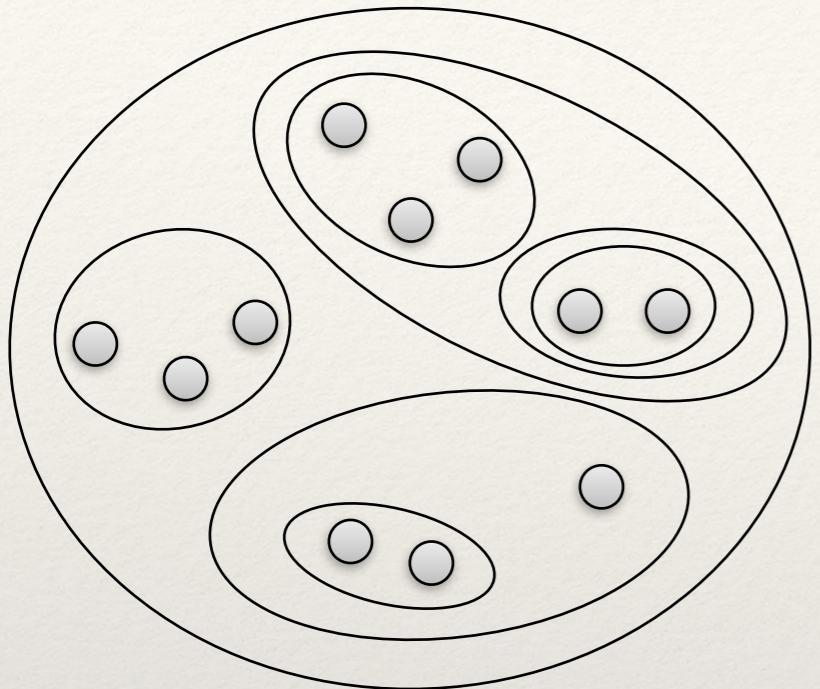
- ❖ $2^{O(\sqrt{\log n \log \log n})}$ [Alon, Karp, Peleg, West, SIAM Jcomp '91]
- ❖ $O(\log^2 n)$ [Bartal, FOCS '96]
- ❖ $O(\log n \log \log n)$ [Bartal, STOC '98]
- ❖ $O(\log n)$ [Fakcharoenphol, Rao, Talwar, STOC '03]

asymptotically optimal

The last three results use **hierarchical partitioning** of the graph.

Hierarchical decomposition

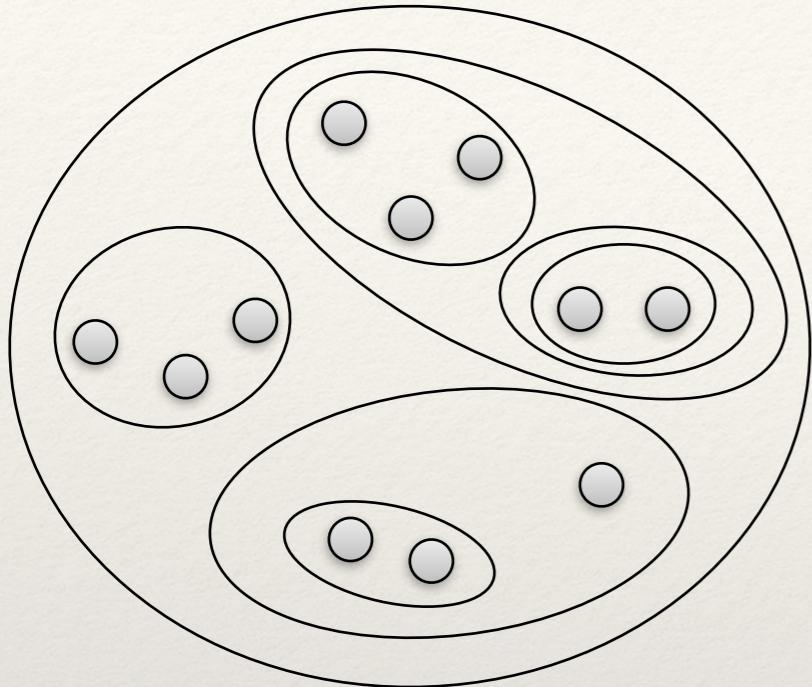
$$G = (V, E)$$



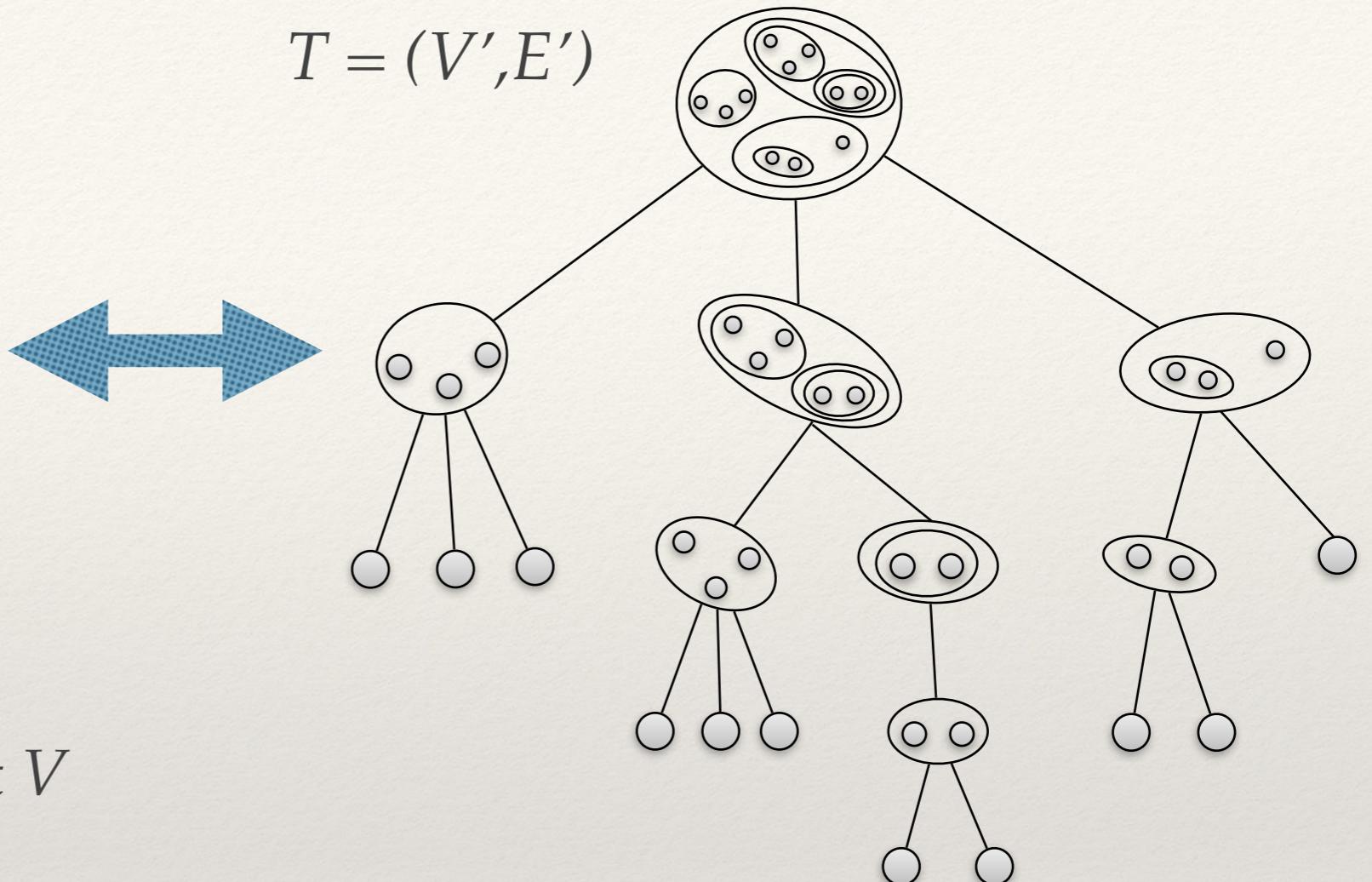
- ❖ Iteratively partition set V

Hierarchical decomposition

$G = (V, E)$



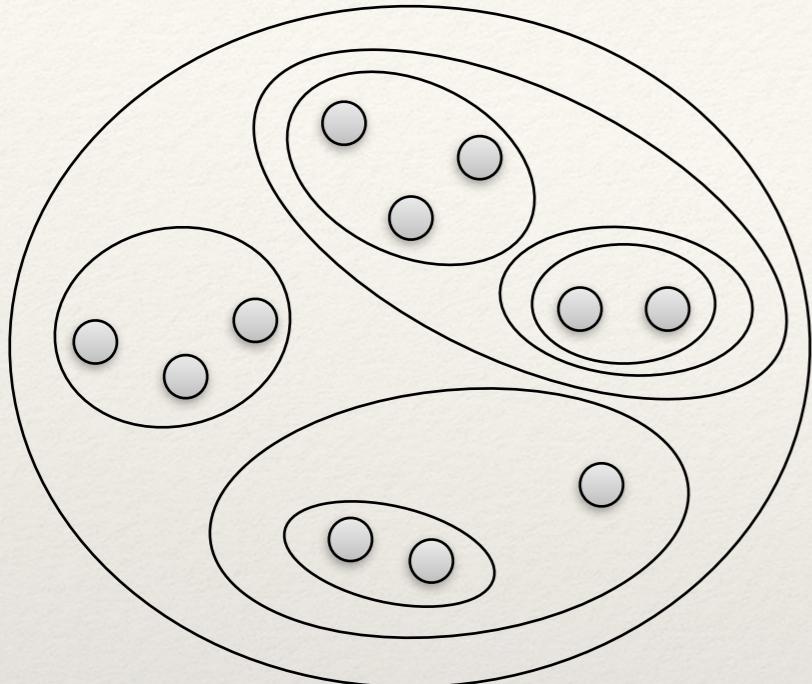
$T = (V', E')$



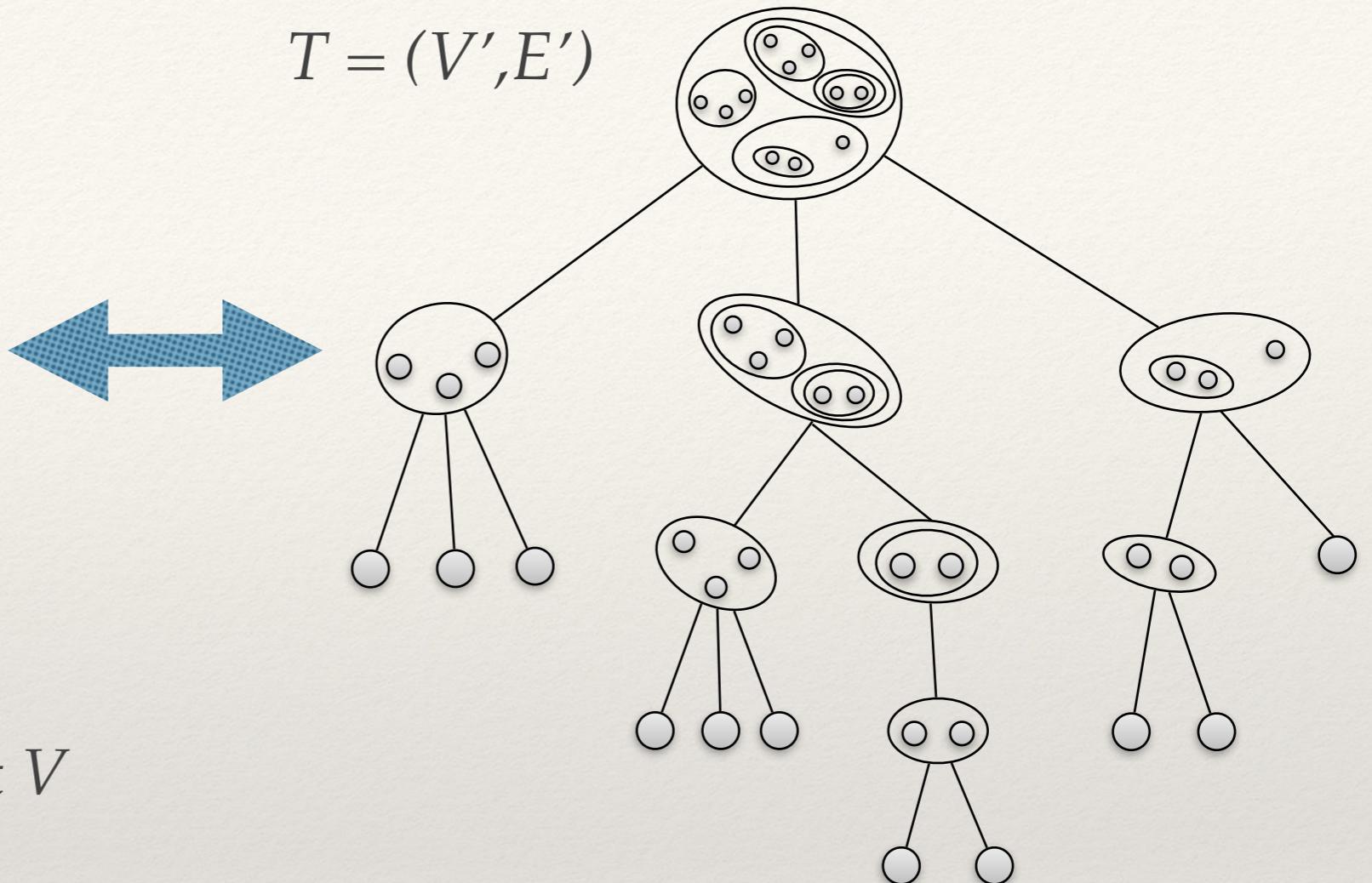
- ❖ Iteratively partition set V
- ❖ Leaves of T = singleton sets
- ❖ Nodes of $V' \setminus V$ = other sets in partitioning

Hierarchical decomposition

$G = (V, E)$



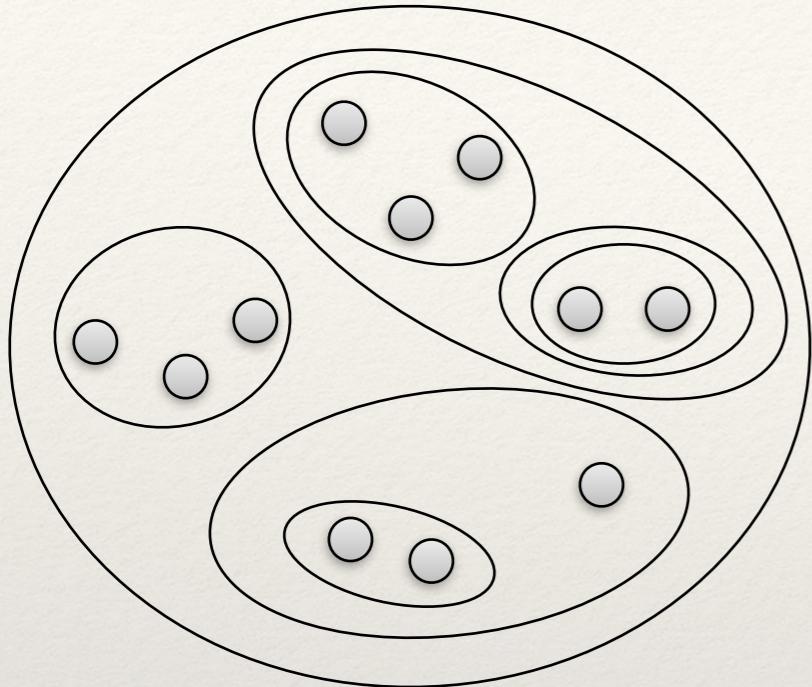
$T = (V', E')$



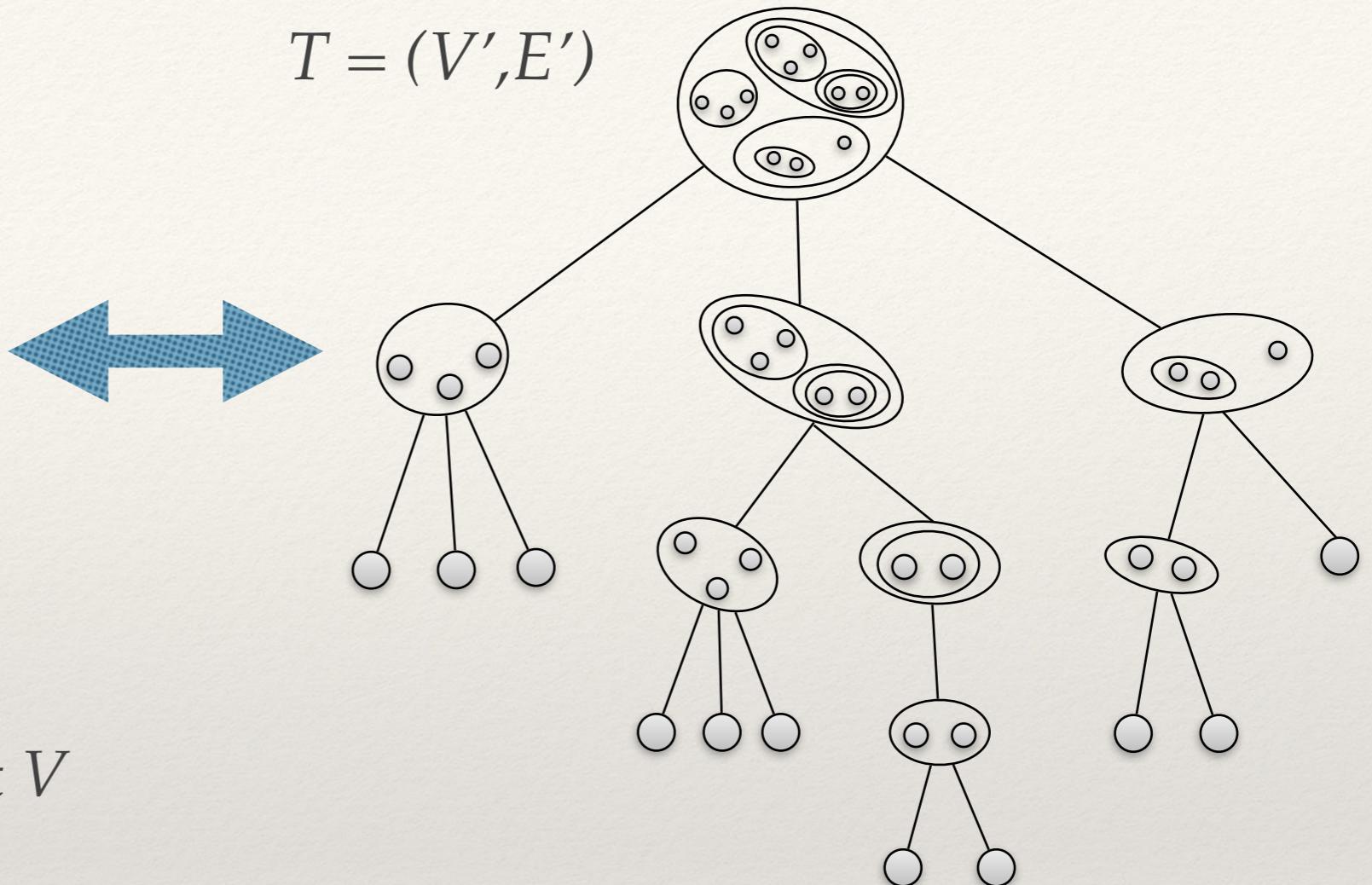
- ❖ Iteratively partition set V
- ❖ Leaves of T = singleton sets
- ❖ Nodes of $V' \setminus V$ = other sets in partitioning
- ❖ **How to choose partitioning of G ?**

Hierarchical decomposition

$G = (V, E)$



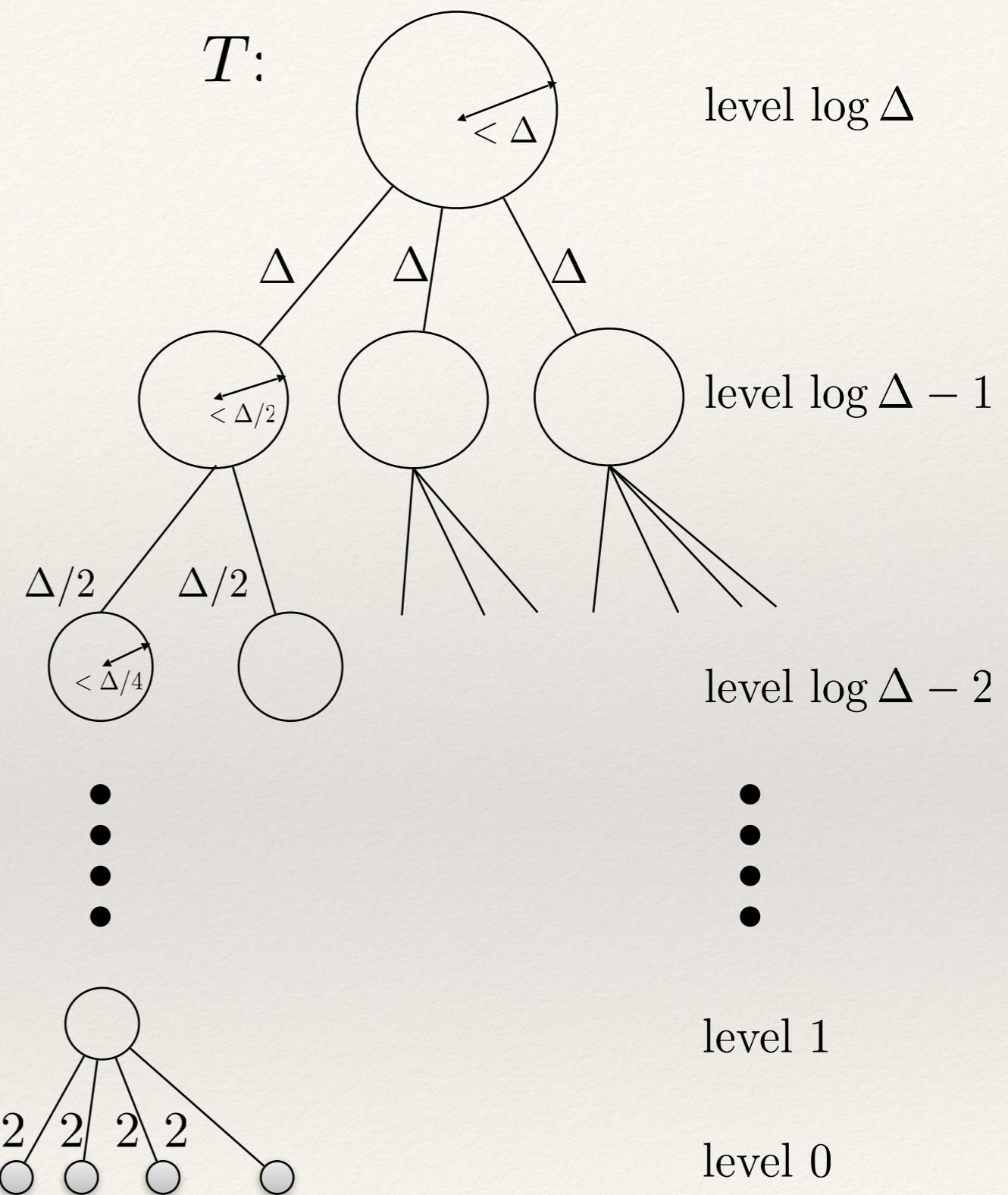
$T = (V', E')$



- ❖ Iteratively partition set V
- ❖ Leaves of T = singleton sets
- ❖ Nodes of $V' \setminus V$ = other sets in partitioning
- ❖ **How to choose partitioning of G ?**
- ❖ **How to choose distances in T ?**

Choosing tree distances

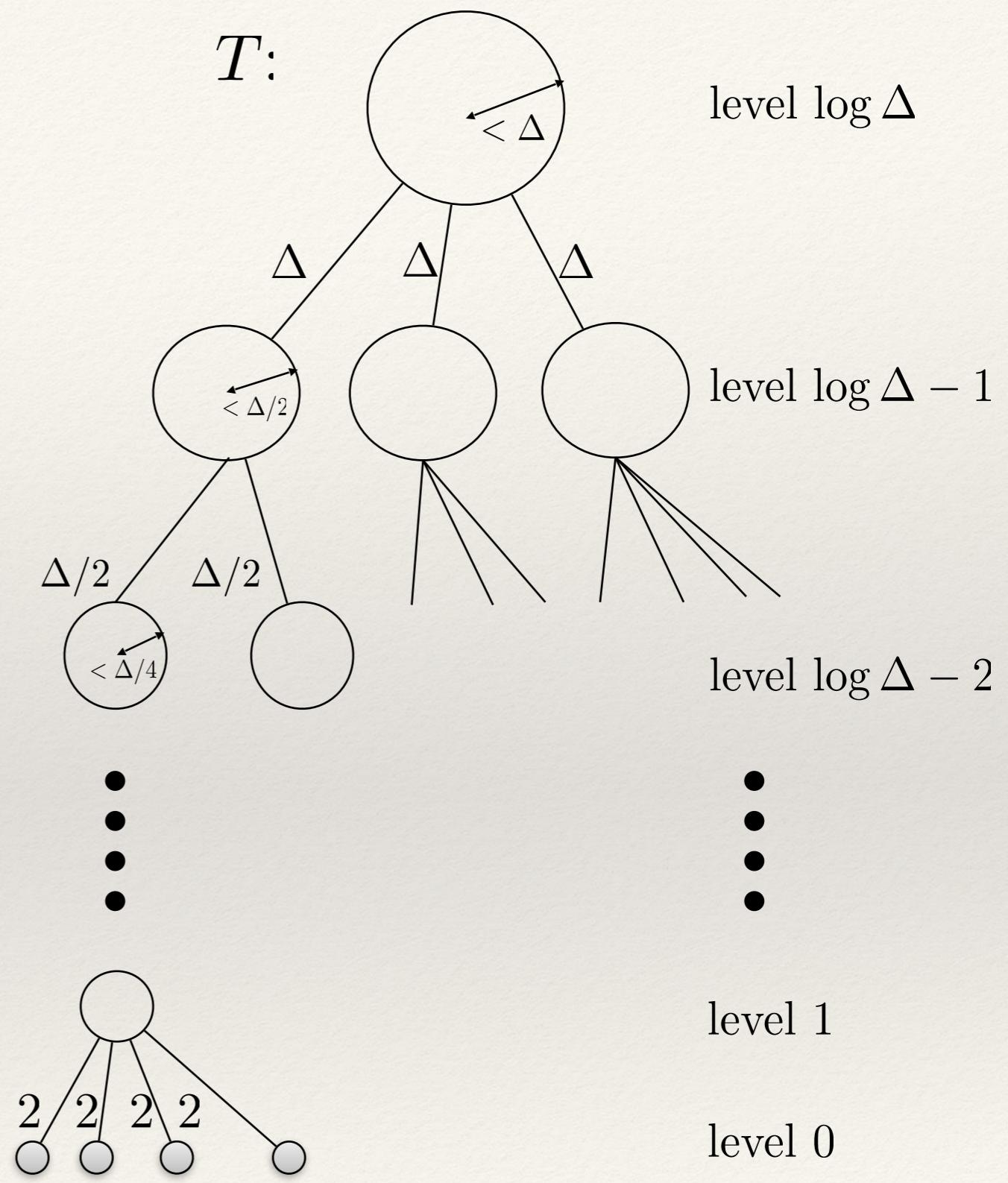
- ❖ W.l.o.g. $d_{u,v} \geq 1$
- ❖ $\Delta = \text{smallest power of 2}$ greater than $2 \cdot \max d_{u,v}$
- ❖ FRT decomposition guarantee: for a set S on level i , there exists a ball of radius $< 2^i$ (centered at some node) containing nodes of S .



Choosing tree distances

- ❖ W.l.o.g. $d_{u,v} \geq 1$
- ❖ $\Delta = \text{smallest power of 2 greater than } 2 \cdot \max d_{u,v}$
- ❖ FRT decomposition guarantee: for a set S on level i , there exists a ball of radius $< 2^i$ (centered at some node) containing nodes of S .

Observation. For nodes $u, v \in V$, s.t. $\text{lca}(u,v)$ is on level i it holds that $T_{u,v} = 2^{i+2} - 4$.

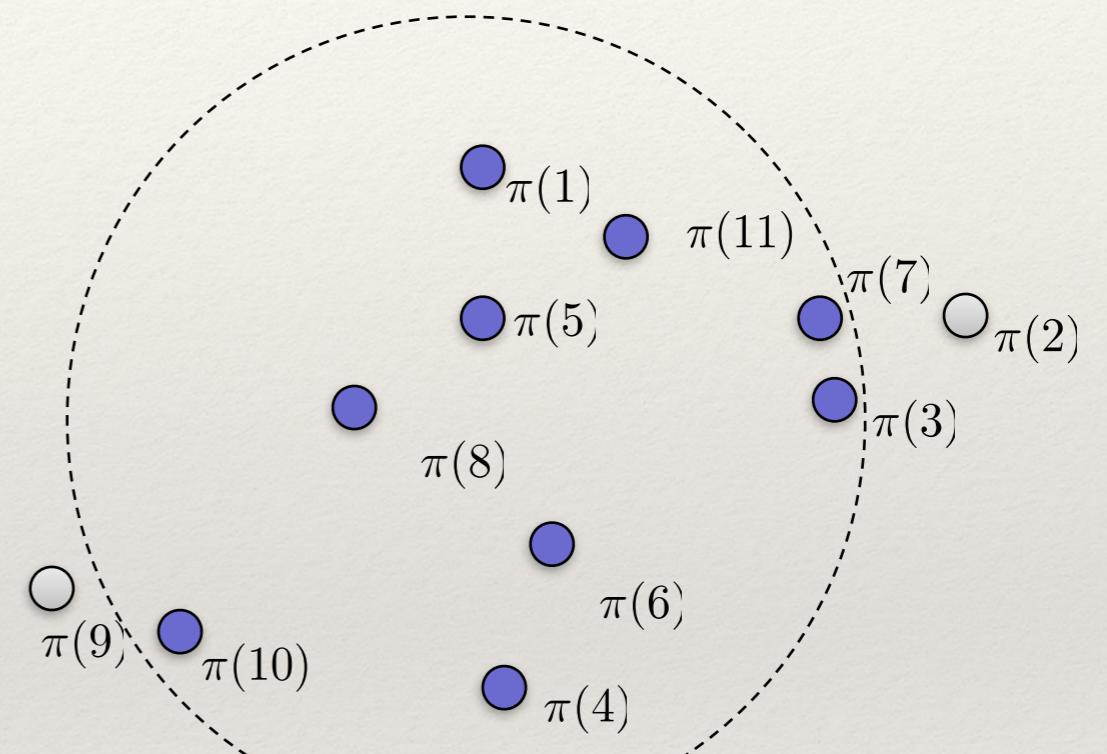


Lemma 1. $d_{u,v} \leq T_{u,v}$

Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

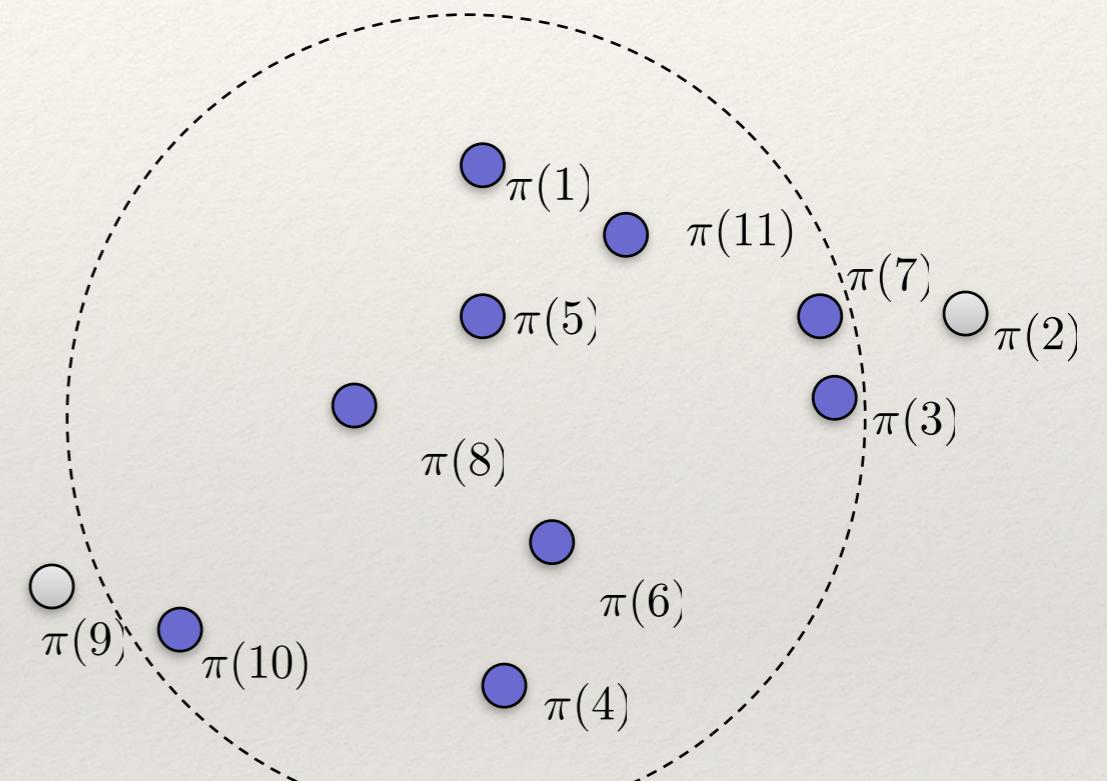
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

- ♦ $X_j \cap S$ is the new set on level i

- ♦ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

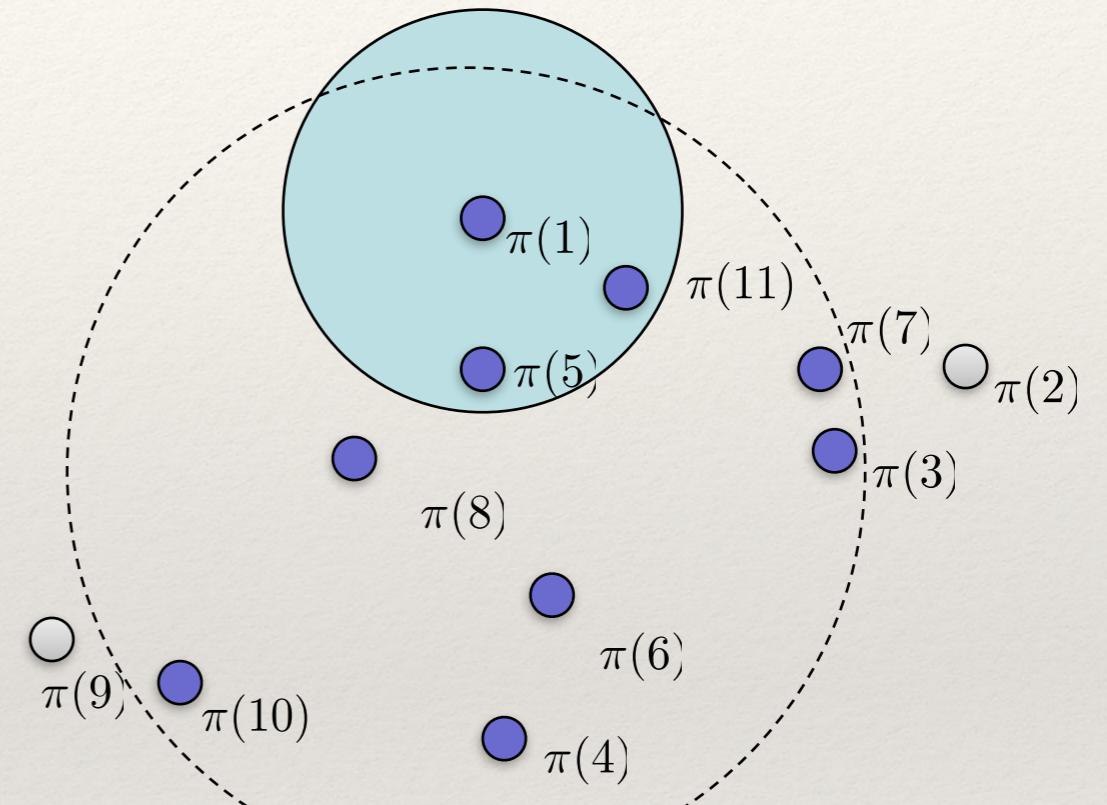
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

♦ $X_j \cap S$ is the new set on level i

♦ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

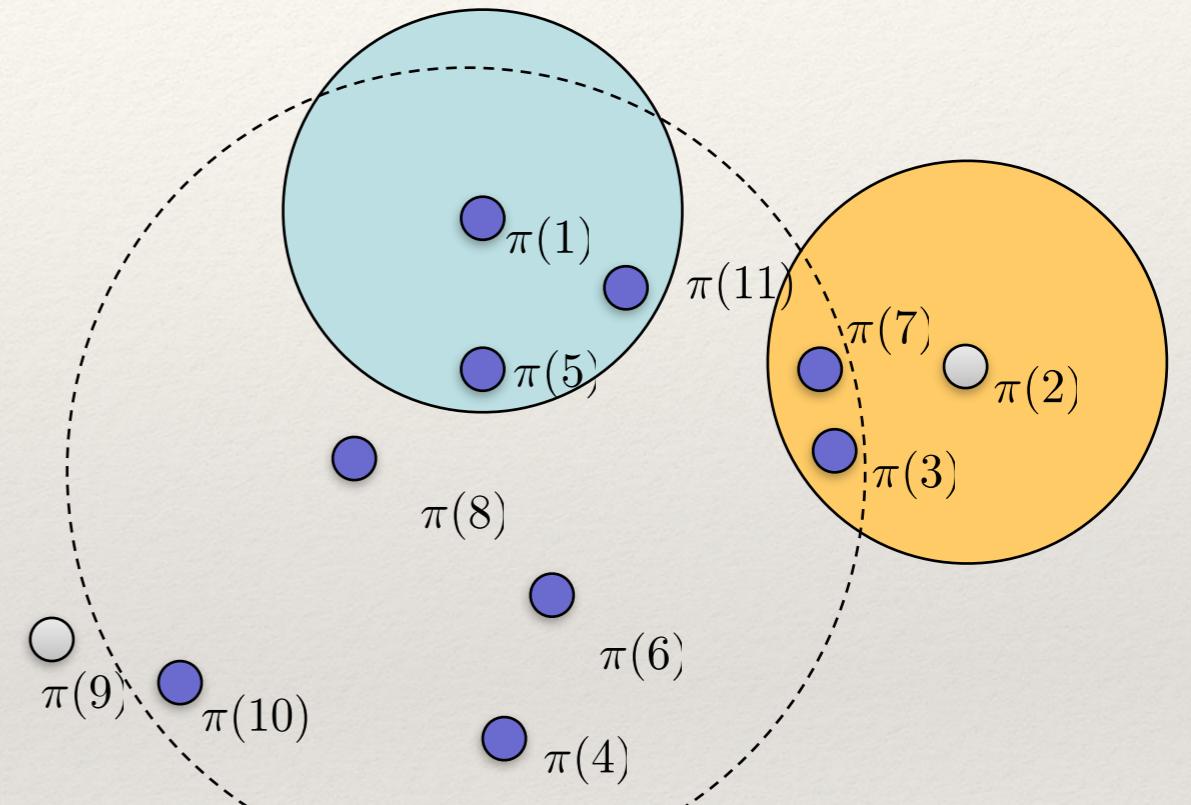
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

♦ $X_j \cap S$ is the new set on level i

♦ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

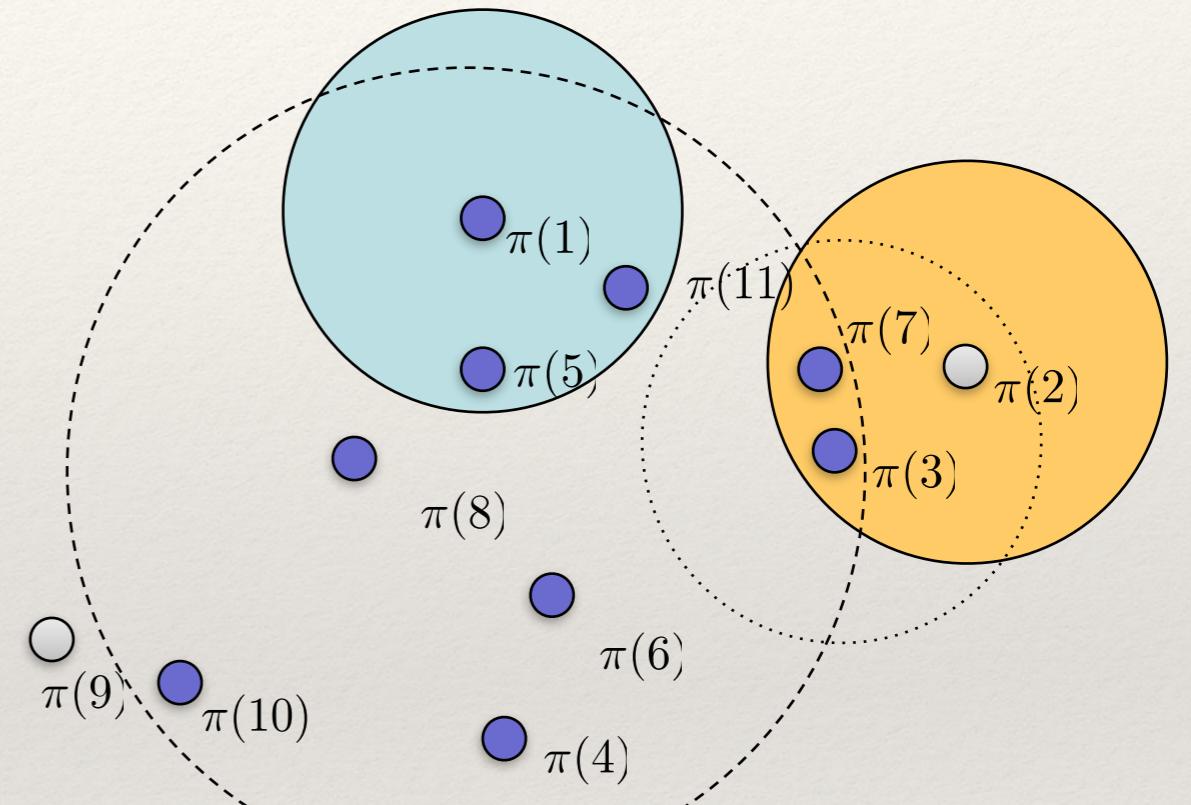
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

- ♦ $X_j \cap S$ is the new set on level i

- ♦ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

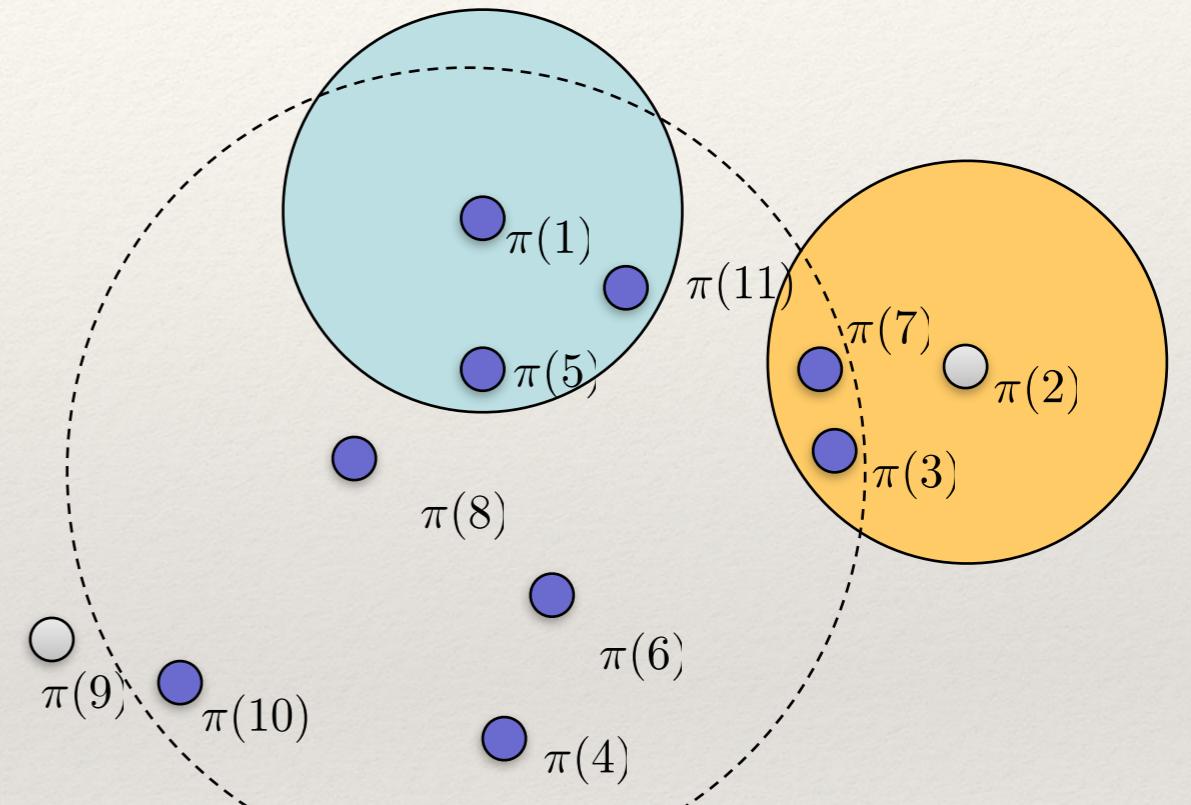
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

♦ $X_j \cap S$ is the new set on level i

♦ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

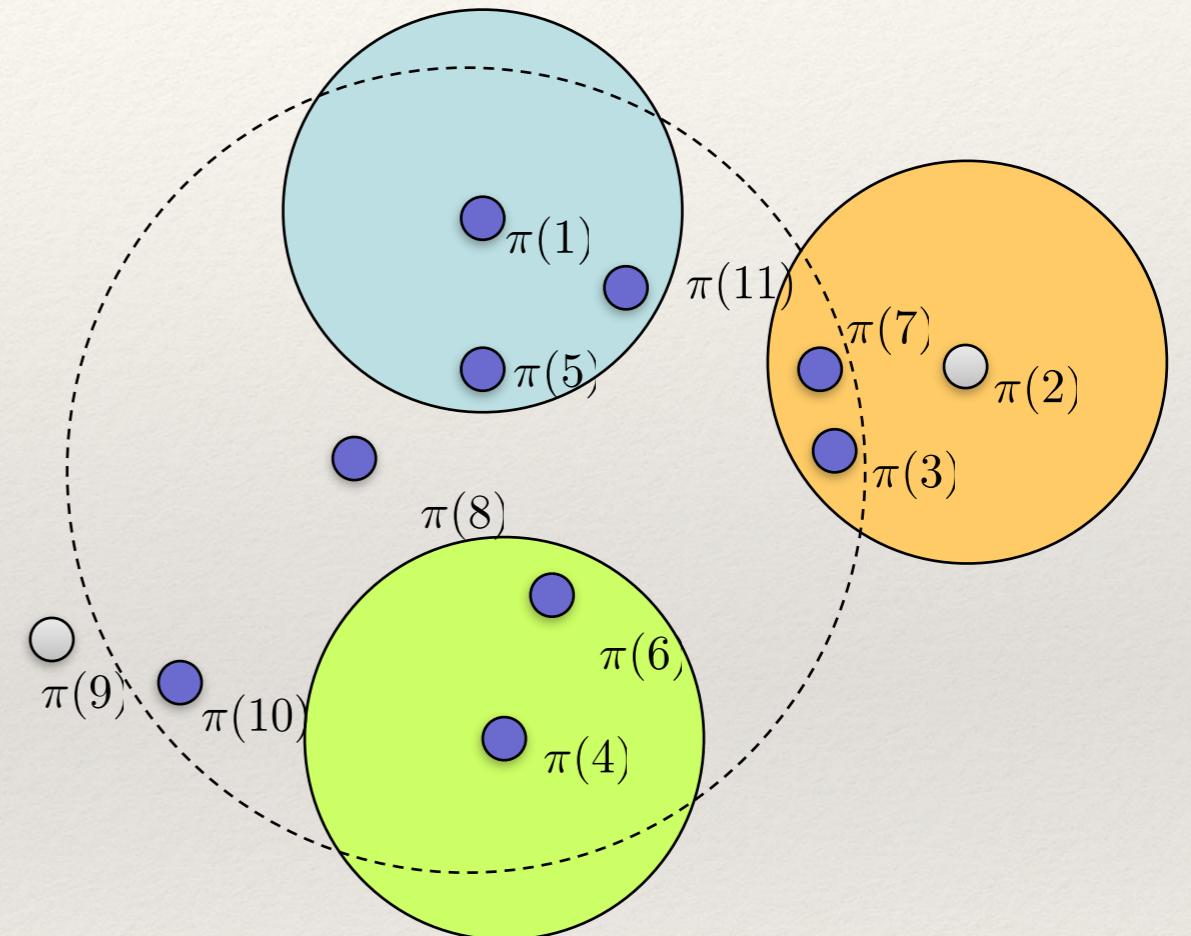
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

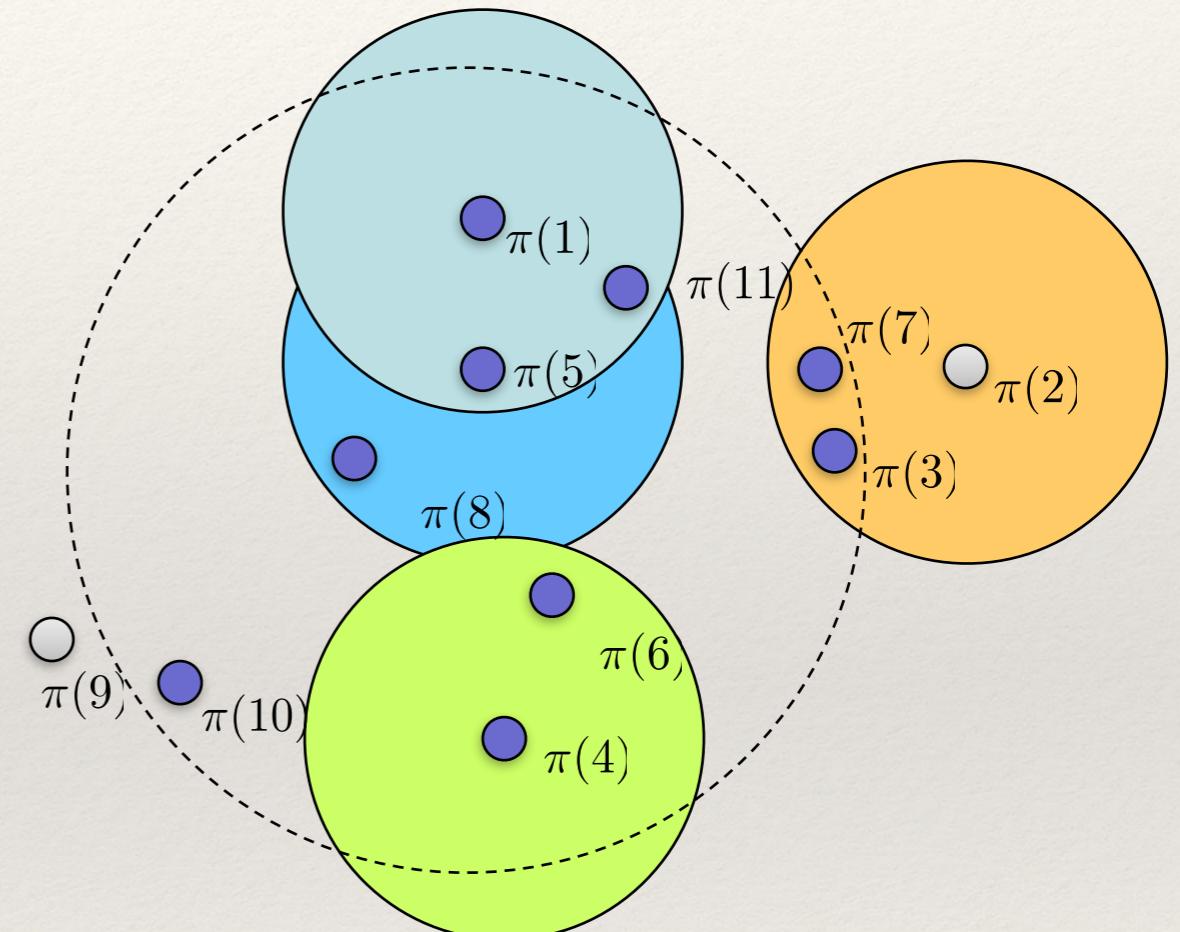
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



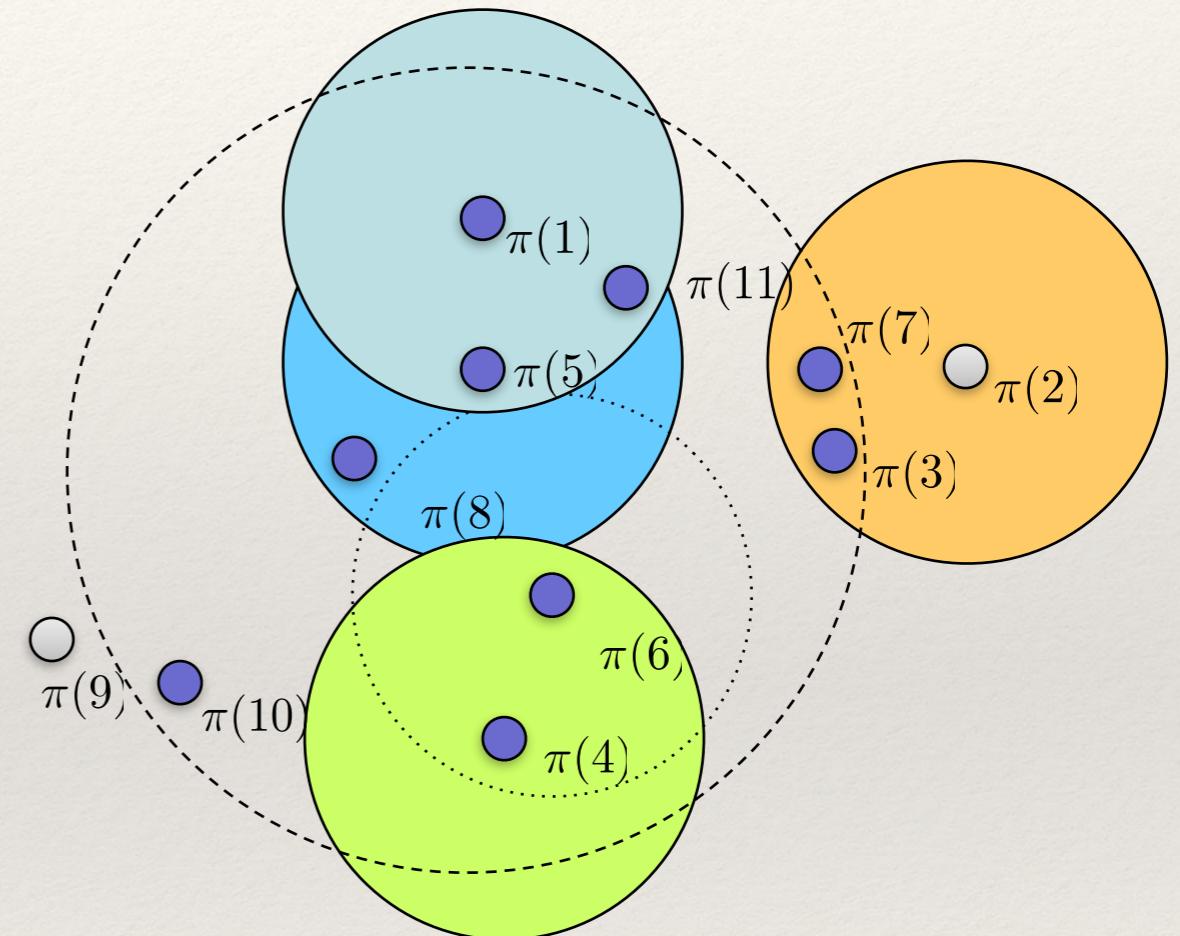
Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

for $j = 1, \dots, n$

- ❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$
- ❖ if $X_j \cap S \neq \emptyset$ then
 - ◆ $X_j \cap S$ is the new set on level i
 - ◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

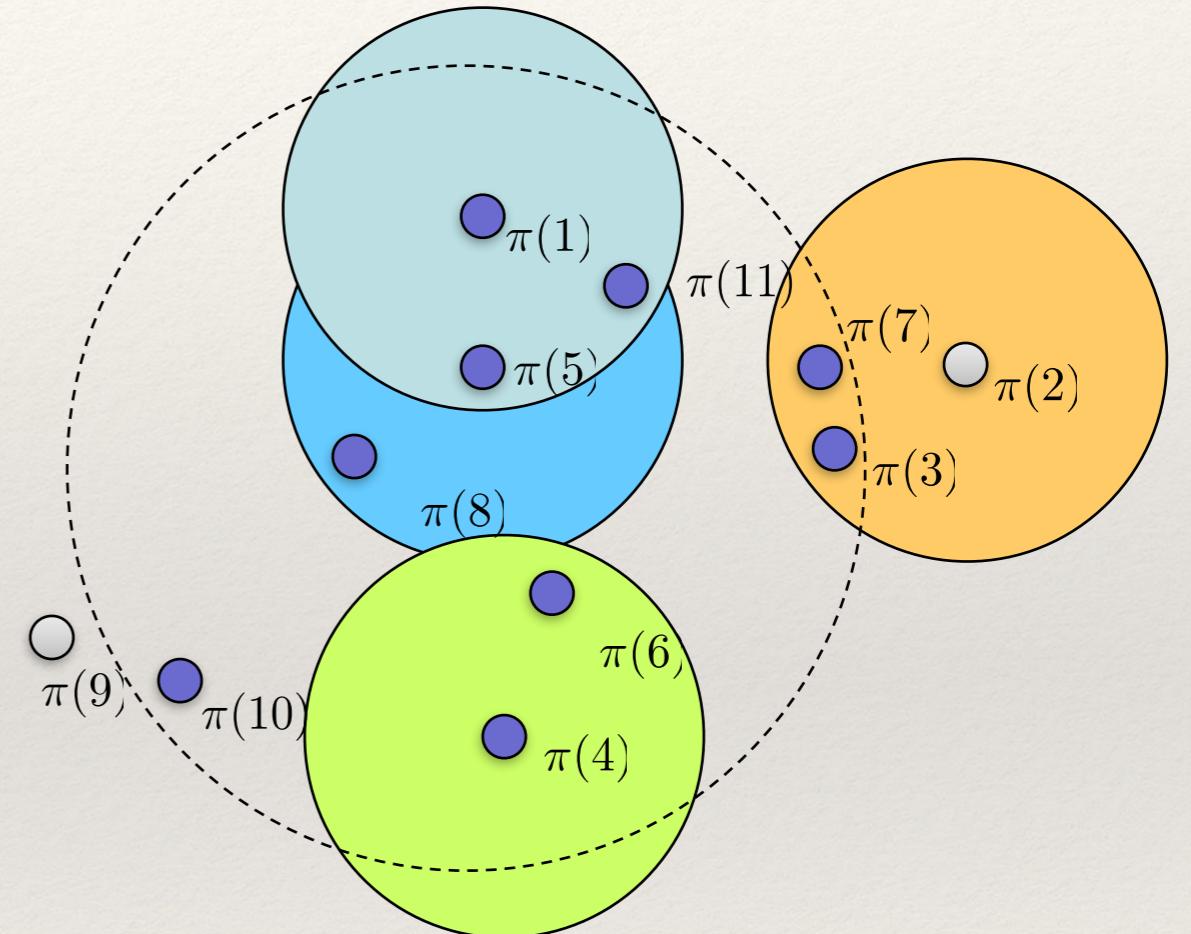
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

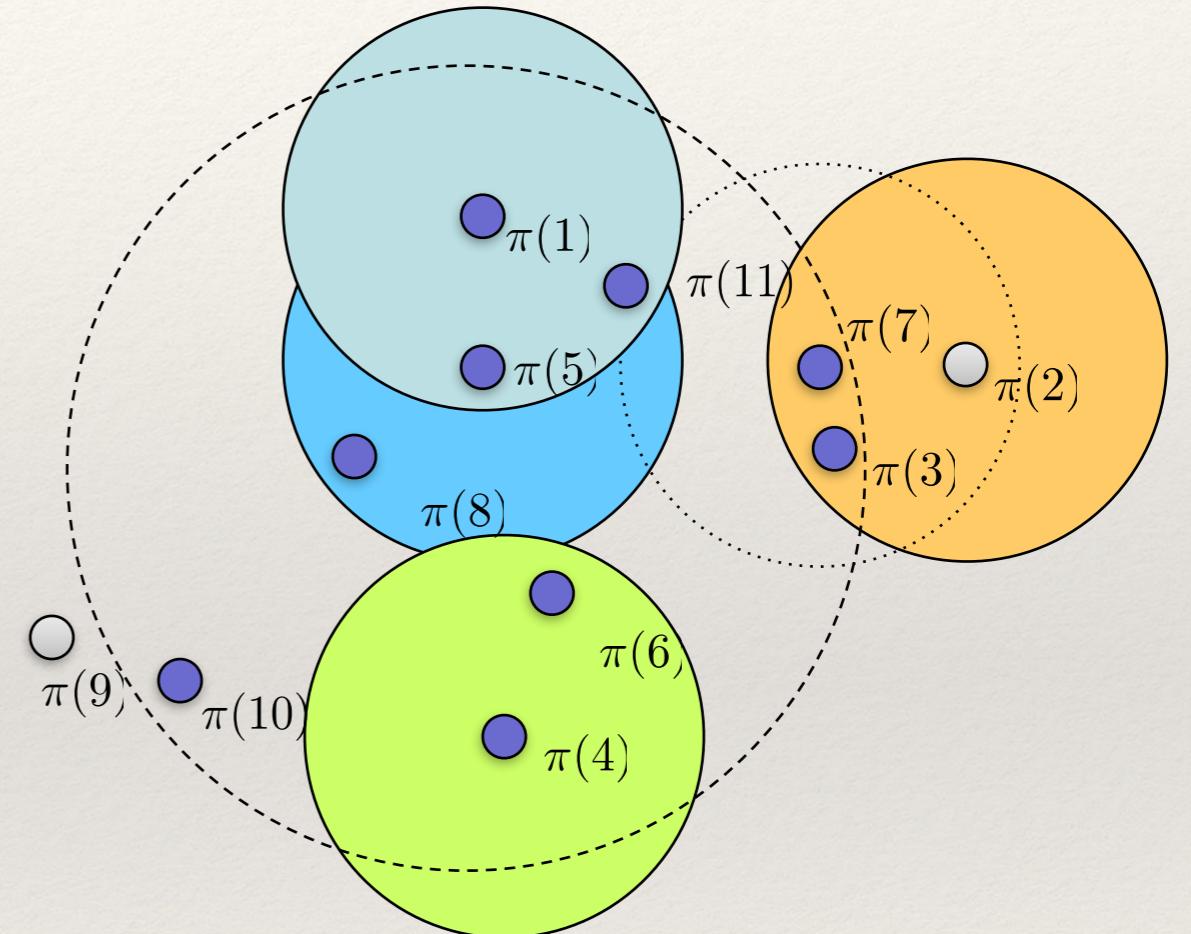
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

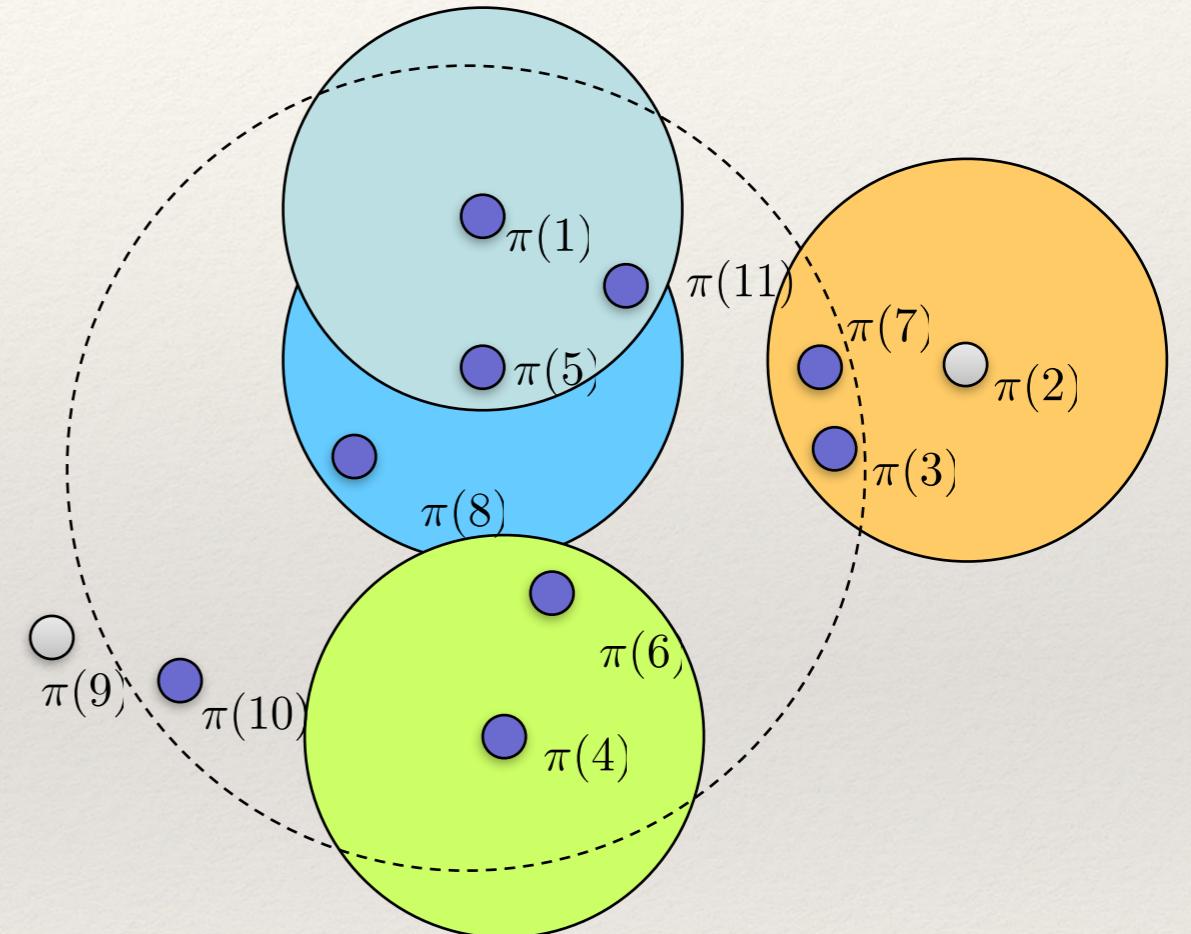
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

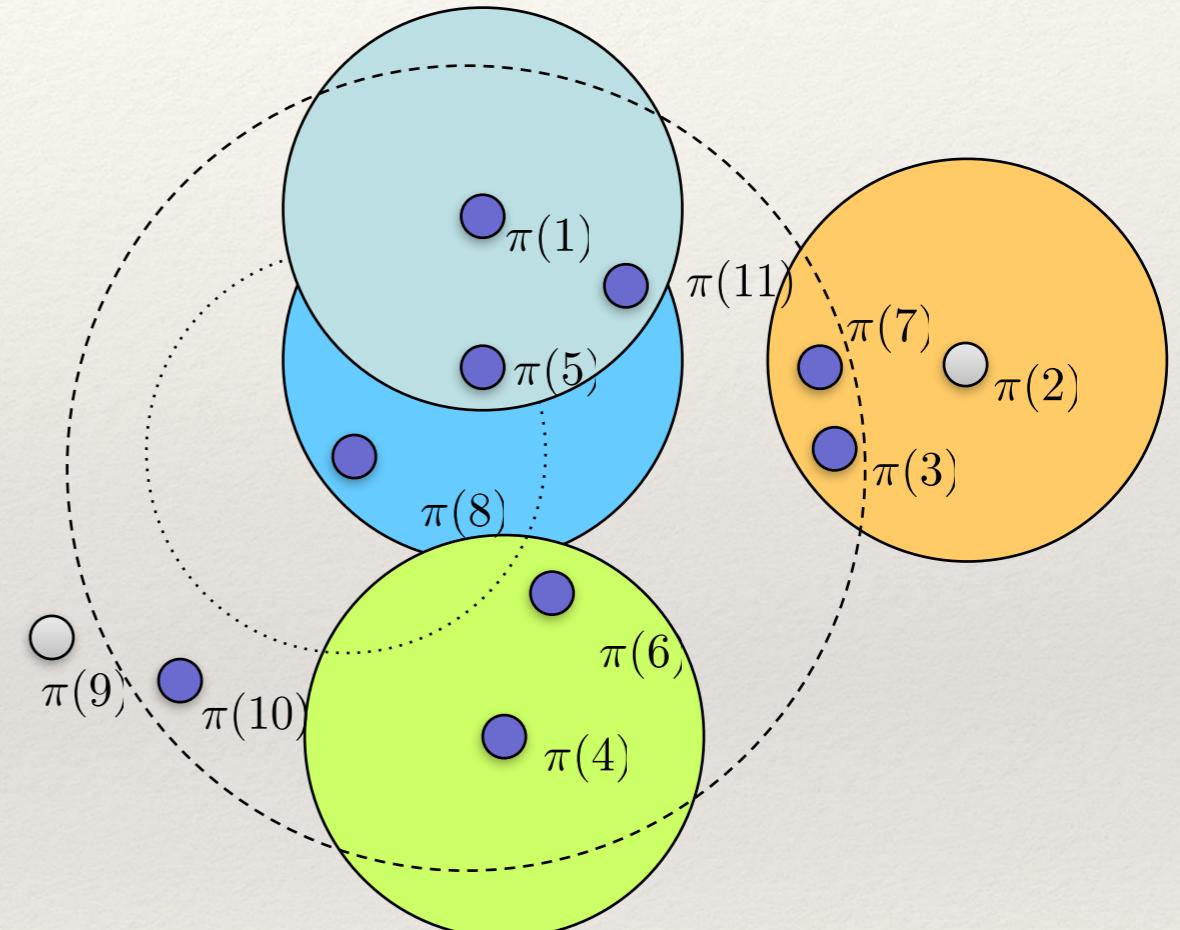
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

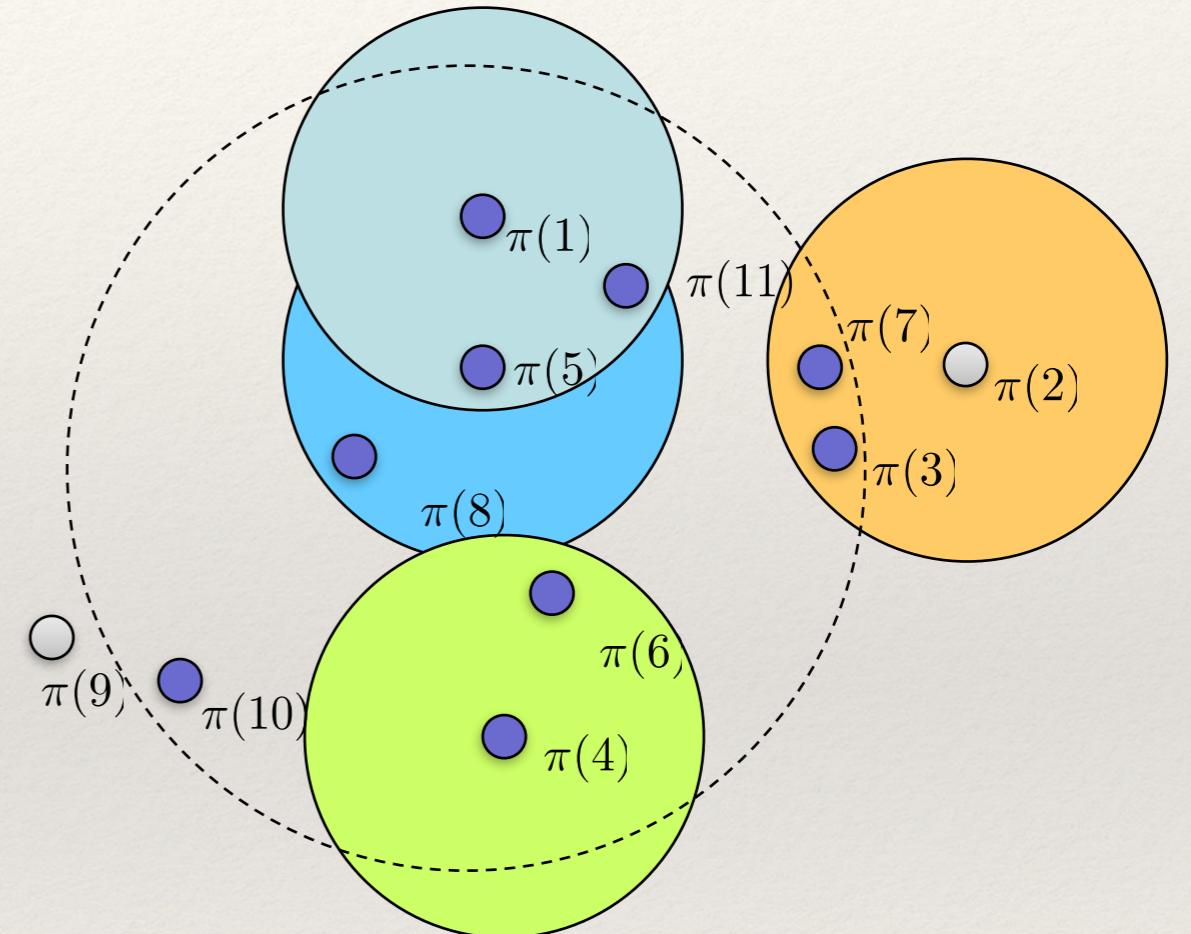
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

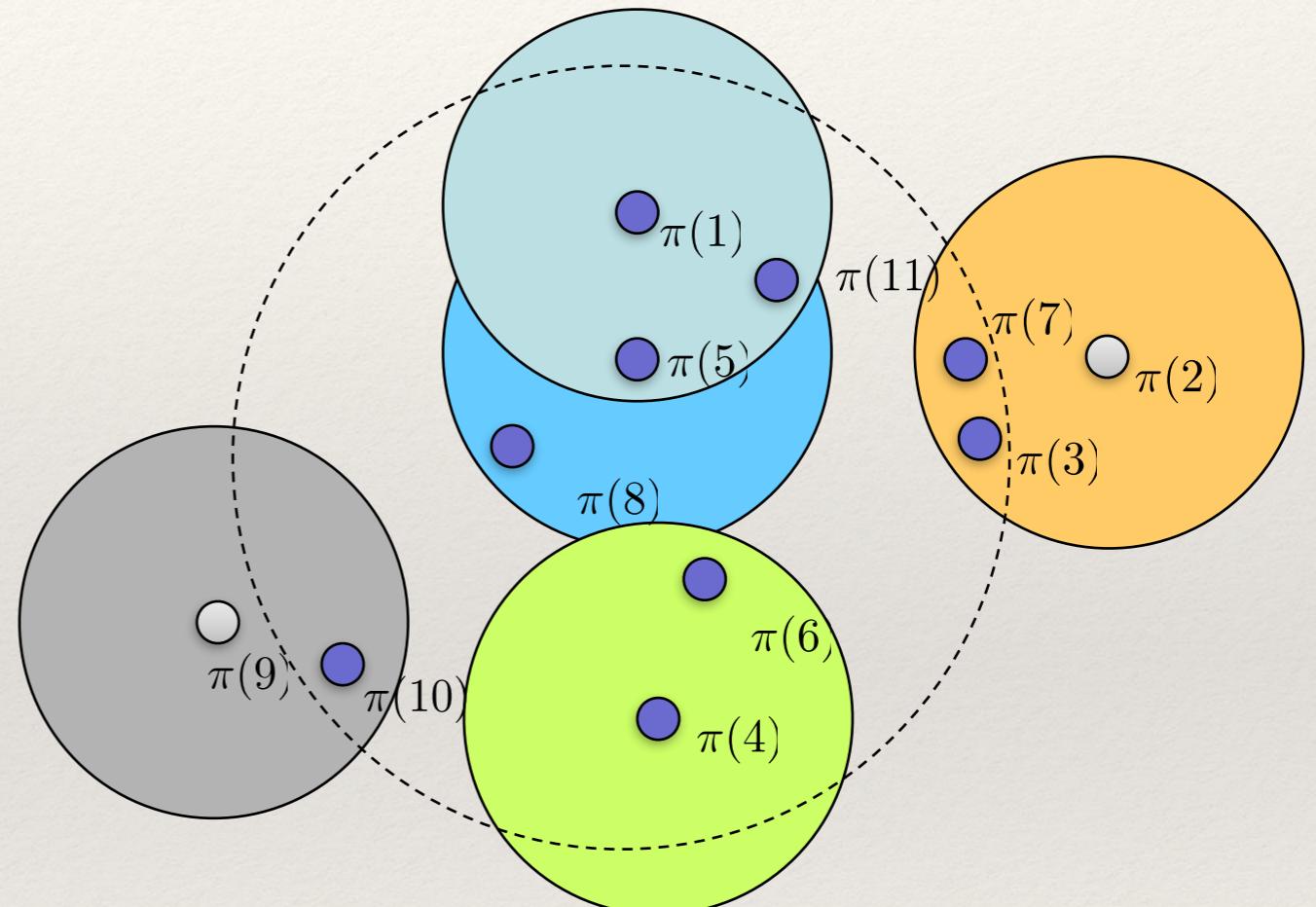
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

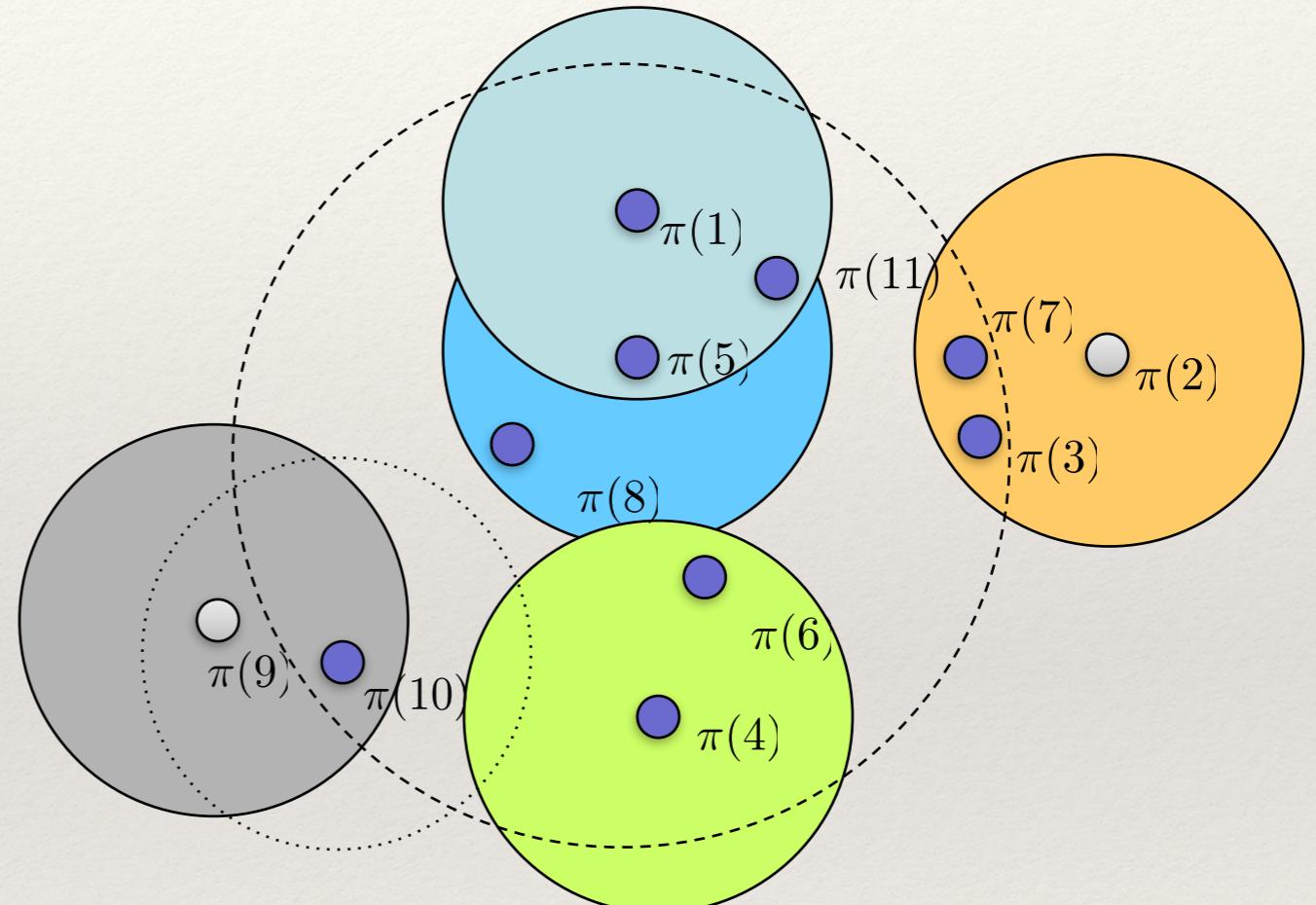
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

- ♦ $X_j \cap S$ is the new set on level i

- ♦ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

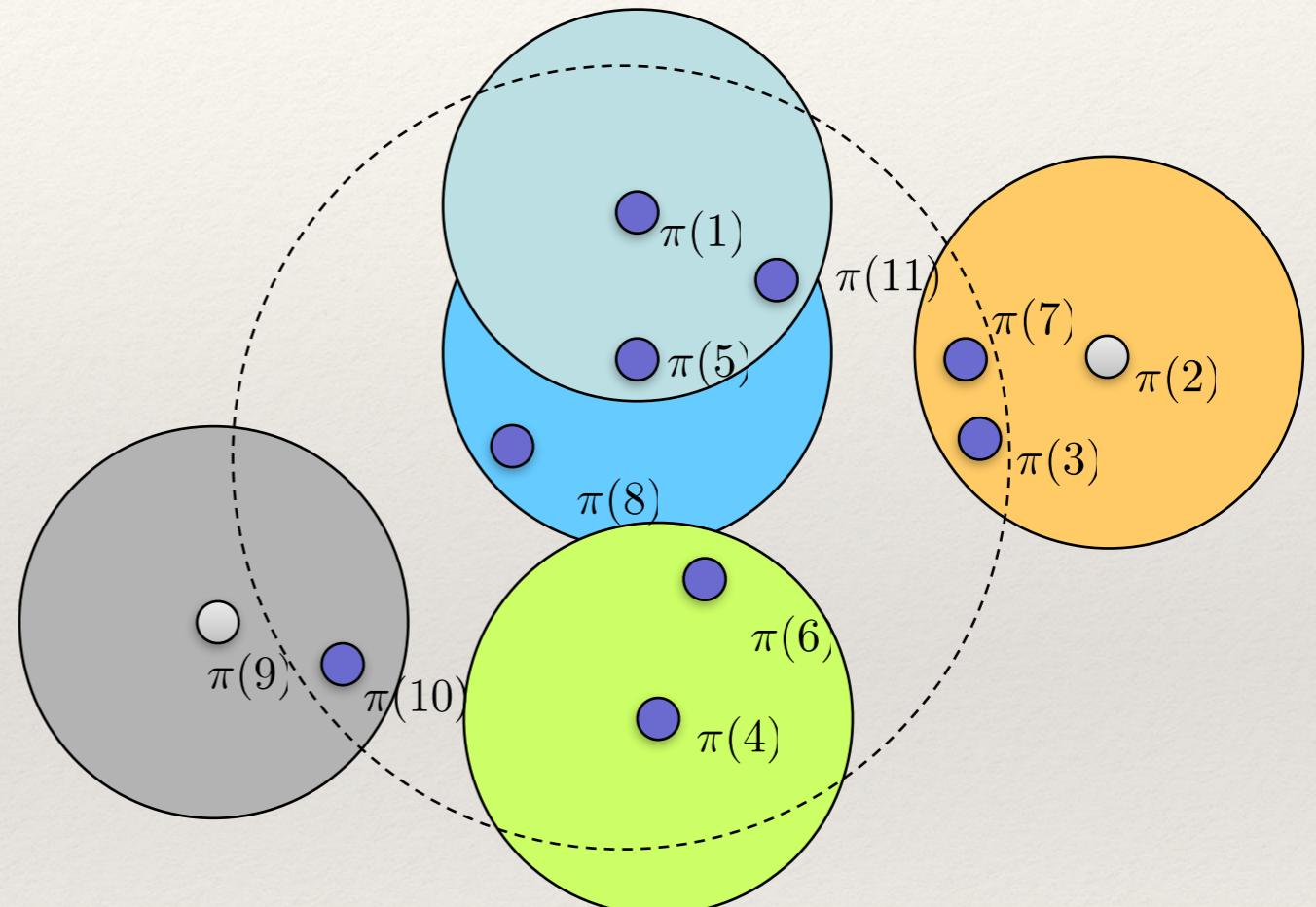
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

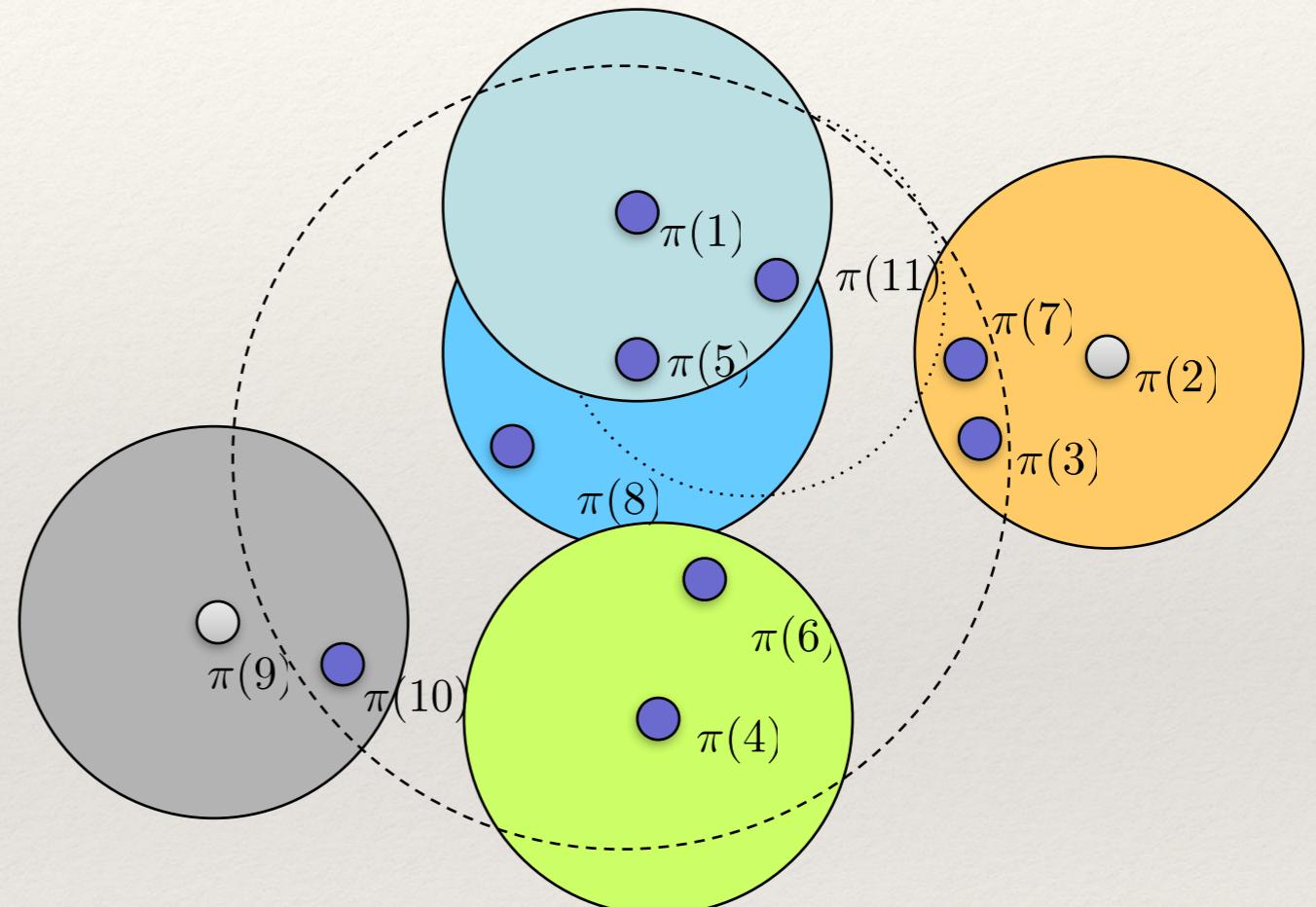
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$



Partitioning of a single set

At the beginning randomly choose $r \in [1/2, 1)$ and a random permutation π of all nodes.

Partitioning of S on level $i+1$:

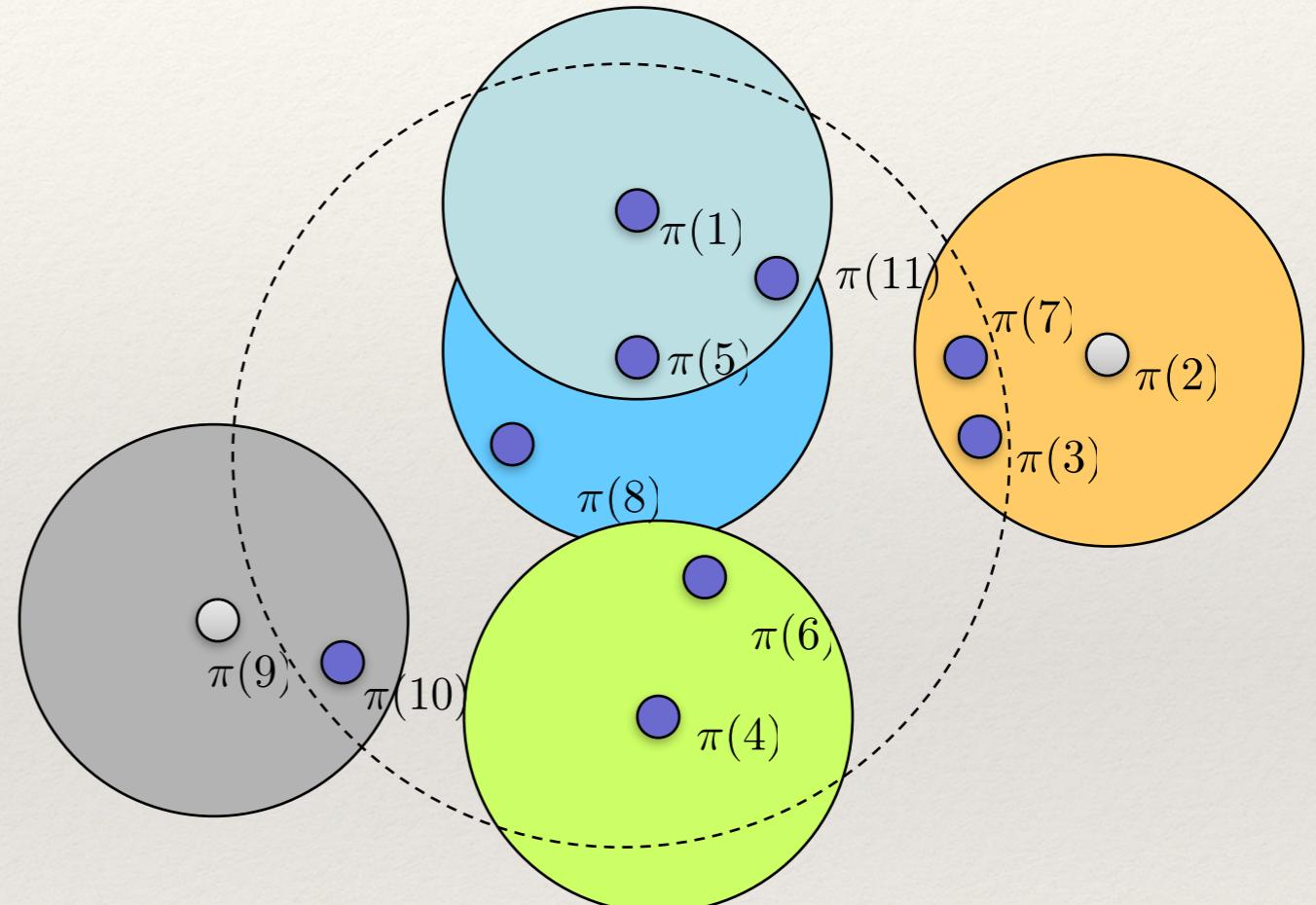
for $j = 1, \dots, n$

❖ $X_j \leftarrow \text{Ball}(\pi(j), 2^i \cdot r)$

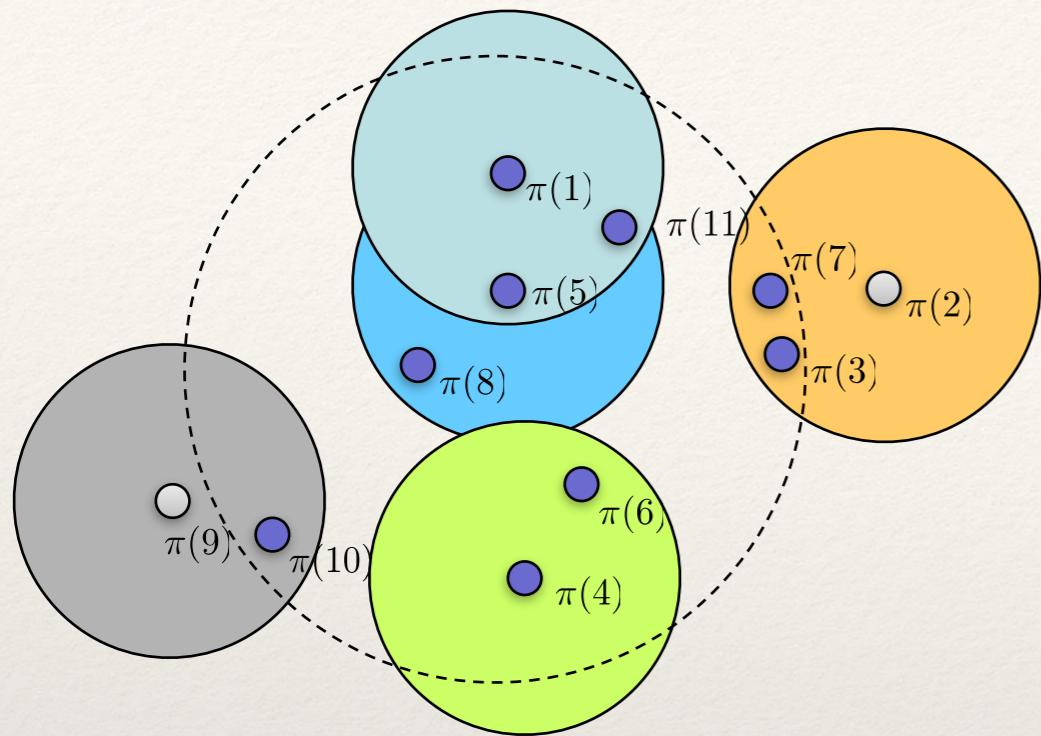
❖ if $X_j \cap S \neq \emptyset$ then

◆ $X_j \cap S$ is the new set on level i

◆ $S \leftarrow S \setminus X_j$

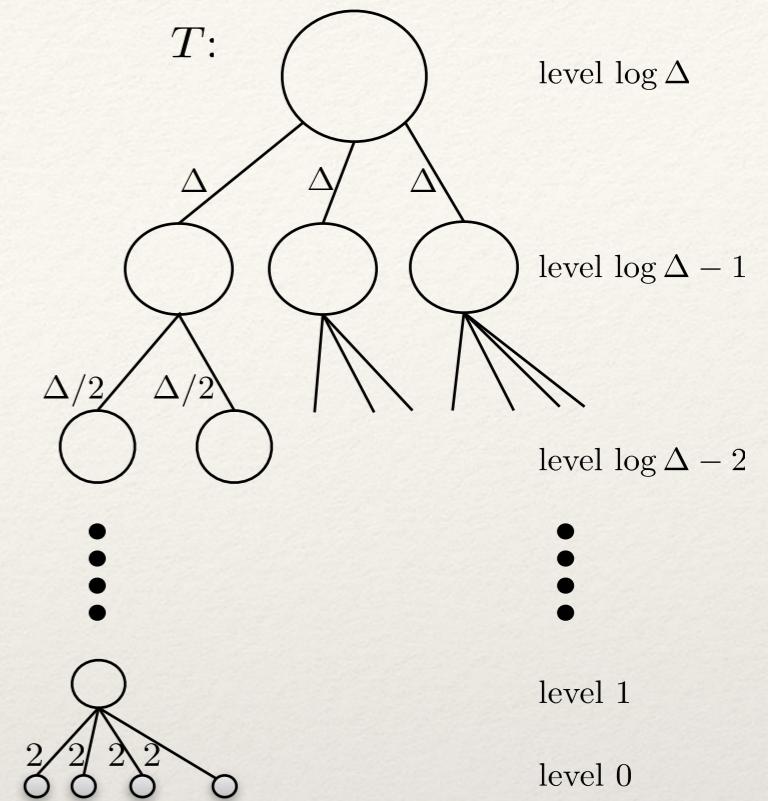


Bounding distances in tree (1)

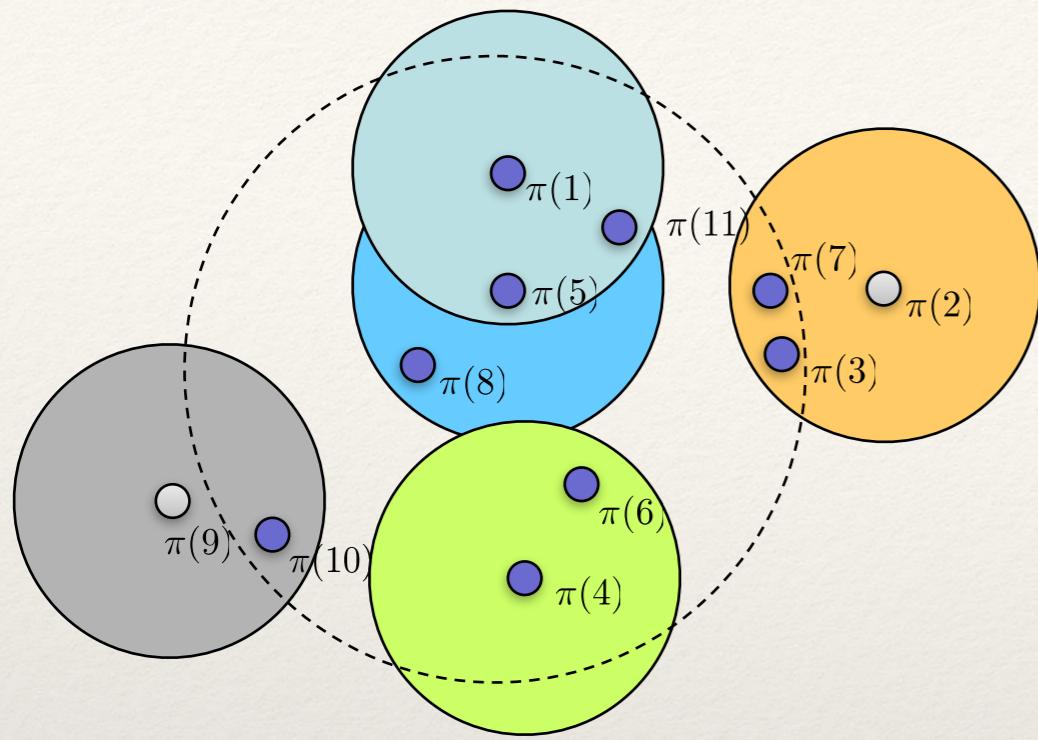


Random variables

- ❖ $r \in [1/2, 1)$
- ❖ permutation π

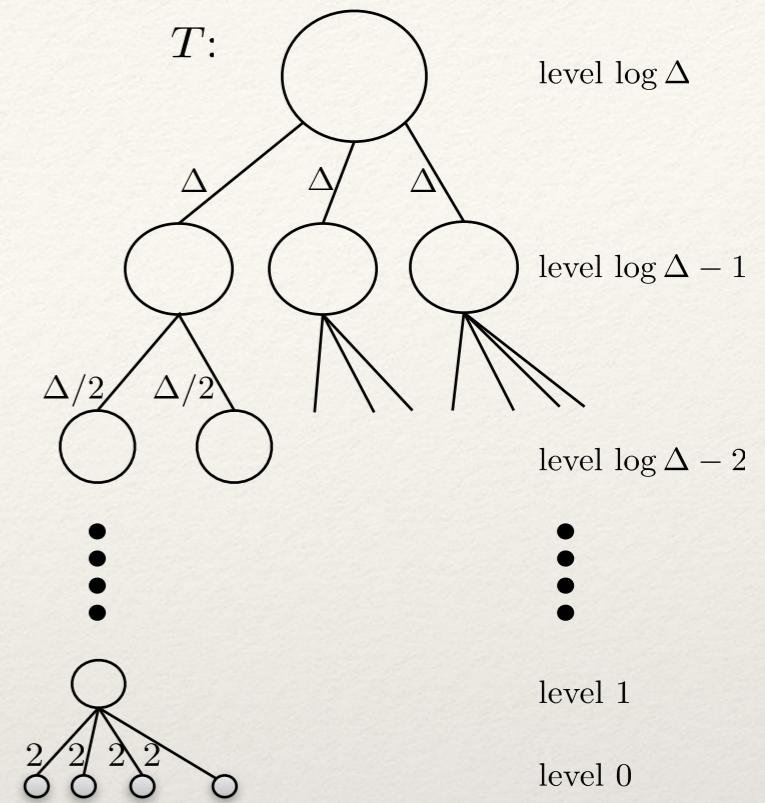


Bounding distances in tree (1)



Random variables

- ❖ $r \in [1/2, 1)$
- ❖ permutation π



Lemma 2. $\mathbf{E}[T_{u,v}] \leq \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^A(w) \wedge \text{Sep}_i^B(w) \right] \cdot 2^{i+3}$

where

- ❖ $\text{Sep}_i^A(w) =$ exactly one from $\{u, v\}$ belongs to $\text{Ball}(w, 2^i \cdot r)$
- ❖ $\text{Sep}_i^B(w) =$ for all w' s.t. $\pi(w') < \pi(w)$ it holds that $u, v \notin \text{Ball}(w', 2^i \cdot r)$

Bounding distances in tree (2)

- ❖ $\text{Sep}_i^A(w)$ = exactly one from $\{u, v\}$ belongs to $\text{Ball}(w, 2^i \cdot r)$
- ❖ $\text{Sep}_i^B(w)$ = for all w' s.t. $\pi(w') < \pi(w)$ it holds that $u, v \notin \text{Ball}(w', 2^i \cdot r)$

Lem 2. $\mathbf{E}[T_{u,v}] \leq \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^A(w) \wedge \text{Sep}_i^B(w) \right] \cdot 2^{i+3}$

$$= \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^B(w) \mid \text{Sep}_i^A(w) \right] \cdot \Pr \left[\text{Sep}_i^A(w) \right] \cdot 2^{i+3}$$

Bounding distances in tree (2)

- ❖ $\text{Sep}_i^A(w)$ = exactly one from $\{u, v\}$ belongs to $\text{Ball}(w, 2^i \cdot r)$
- ❖ $\text{Sep}_i^B(w)$ = for all w' s.t. $\pi(w') < \pi(w)$ it holds that $u, v \notin \text{Ball}(w', 2^i \cdot r)$

Lem 2. $\mathbf{E}[T_{u,v}] \leq \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^A(w) \wedge \text{Sep}_i^B(w) \right] \cdot 2^{i+3}$

$$= \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^B(w) \mid \text{Sep}_i^A(w) \right] \cdot \Pr \left[\text{Sep}_i^A(w) \right] \cdot 2^{i+3}$$

Bounding distances in tree (2)

- ❖ $\text{Sep}_i^A(w)$ = exactly one from $\{u, v\}$ belongs to $\text{Ball}(w, 2^i \cdot r)$
- ❖ $\text{Sep}_i^B(w)$ = for all w' s.t. $\pi(w') < \pi(w)$ it holds that $u, v \notin \text{Ball}(w', 2^i \cdot r)$

$$\begin{aligned}\textbf{Lem 2. } \mathbf{E}[T_{u,v}] &\leq \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^A(w) \wedge \text{Sep}_i^B(w) \right] \cdot 2^{i+3} \\ &= \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^B(w) \mid \text{Sep}_i^A(w) \right] \cdot \Pr \left[\text{Sep}_i^A(w) \right] \cdot 2^{i+3}\end{aligned}$$

$$\textbf{Lemma 3. } \text{for any } i: \sum_{w \in V} \Pr \left[\text{Sep}_i^B(w) \mid \text{Sep}_i^A(w) \right] \leq H_n$$

Bounding distances in tree (2)

- ❖ $\text{Sep}_i^A(w)$ = exactly one from $\{u, v\}$ belongs to $\text{Ball}(w, 2^i \cdot r)$
- ❖ $\text{Sep}_i^B(w)$ = for all w' s.t. $\pi(w') < \pi(w)$ it holds that $u, v \notin \text{Ball}(w', 2^i \cdot r)$

$$\begin{aligned}\textbf{Lem 2. } \mathbf{E}[T_{u,v}] &\leq \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^A(w) \wedge \text{Sep}_i^B(w) \right] \cdot 2^{i+3} \\ &= \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^B(w) \mid \text{Sep}_i^A(w) \right] \cdot \Pr \left[\text{Sep}_i^A(w) \right] \cdot 2^{i+3}\end{aligned}$$

$$\textbf{Lemma 3. } \text{for any } i: \sum_{w \in V} \Pr \left[\text{Sep}_i^B(w) \mid \text{Sep}_i^A(w) \right] \leq H_n$$

$$\textbf{Lemma 4. } \text{for any } w: \sum_{i=0}^{\log \Delta - 1} \Pr \left[\text{Sep}_i^A(w) \right] \cdot 2^{i+3} \leq 16 d_{u,v}$$

Bounding distances in tree (2)

- ❖ $\text{Sep}_i^A(w)$ = exactly one from $\{u, v\}$ belongs to $\text{Ball}(w, 2^i \cdot r)$
- ❖ $\text{Sep}_i^B(w)$ = for all w' s.t. $\pi(w') < \pi(w)$ it holds that $u, v \notin \text{Ball}(w', 2^i \cdot r)$

Lem 2. $\mathbf{E}[T_{u,v}] \leq \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^A(w) \wedge \text{Sep}_i^B(w) \right] \cdot 2^{i+3}$

$$= \sum_{i=0}^{\log \Delta - 1} \sum_{w \in V} \Pr \left[\text{Sep}_i^B(w) \mid \text{Sep}_i^A(w) \right] \cdot \Pr \left[\text{Sep}_i^A(w) \right] \cdot 2^{i+3}$$

Lemma 3. for any i : $\sum_{w \in V} \Pr \left[\text{Sep}_i^B(w) \mid \text{Sep}_i^A(w) \right] \leq H_n$

Lemma 4. for any w : $\sum_{i=0}^{\log \Delta - 1} \Pr \left[\text{Sep}_i^A(w) \right] \cdot 2^{i+3} \leq 16 d_{u,v}$

$$\mathbf{E}[T_{u,v}] \leq 16 \cdot H_n \cdot d_{u,v} = O(\log n) \cdot d_{u,v}$$

Thank you for you attention!
