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Applications…
… for most of optimization problems on graphs, whose objective function 
is linear in distances. 

In particular:

❖ metrical task systems

❖ group Steiner tree

❖ buy-at-bulk network design

❖ distributed paging

❖ k-server

❖ k-median

❖ …
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Is small distortion possible? (1)

❖ The distortion is n-1.

❖ Actually, this is more complicated as T may contain additional 
nodes, but the distortion is Ω(n).                   [Rabinovich, Raz 2005]

❖ No good deterministic choice of T, what about random one?
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Is small distortion possible? (2)
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❖ Fix any two nodes u and v, let k = du,v.  
 
Then, 
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The (slightly modified) problem

Given an arbitrary graph  
G = (V,E) of n nodes…
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The (slightly modified) problem

Given an arbitrary graph  
G = (V,E) of n nodes…
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… that (approximately) preserves the distances between  
any pair u, v of vertices:  du,v ≤ Tu,v  and  E[Tu,v] ≤  α ⋅ du,v 

… construct a random 
tree T = (V’,E’) with V ⊆ V’ …

distortion



Historical Notes
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Bounding distortion:

❖                                                      [Alon, Karp, Peleg, West, SIAM Jcomp ’91]

❖ O(log2 n)                                                                          [Bartal, FOCS ’96]

❖ O(log n log log n)                        [Bartal, STOC ’98]

❖ O(log n)                  [Fakcharoenphol, Rao, Talwar, STOC ’03]

The last three results use hierarchical partitioning of the graph.
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❖                                                      [Alon, Karp, Peleg, West, SIAM Jcomp ’91]

❖ O(log2 n)                                                                          [Bartal, FOCS ’96]

❖ O(log n log log n)                        [Bartal, STOC ’98]

❖ O(log n)                  [Fakcharoenphol, Rao, Talwar, STOC ’03]

The last three results use hierarchical partitioning of the graph.
asymptotically optimal
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Hierarchical decomposition

❖ Iteratively partition set V 

❖ Leaves of T = singleton sets

❖ Nodes of V’ \ V = other sets in partitioning

❖ How to choose partitioning of G?

❖ How to choose distances in T?
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Choosing tree distances
❖ W.l.o.g. du,v ≥ 1

❖ Δ = smallest power of 2  
greater than 2 ⋅ max du,v 

❖ FRT decomposition guarantee: 
for a set S on level i,  
there exists a ball of radius < 2i  
(centered at some node) 
containing nodes of S.
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Choosing tree distances
❖ W.l.o.g. du,v ≥ 1

❖ Δ = smallest power of 2  
greater than 2 ⋅ max du,v 

❖ FRT decomposition guarantee: 
for a set S on level i,  
there exists a ball of radius < 2i  
(centered at some node) 
containing nodes of S.

Observation. For nodes u, v ∈ V,  
s.t. lca(u,v) is on level i it holds 
that Tu,v  = 2i+2 - 4. 

Lemma 1. du,v  ≤ Tu,v
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Partitioning of a single set

At the beginning randomly choose r ∈ [1/2, 1) and a random  
permutation π of all nodes.

Partitioning of S on level i+1:    
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Random variables

❖ r ∈ [1/2, 1)

❖ permutation π 

Bounding distances in tree (1)
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Random variables
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❖ permutation π 

Bounding distances in tree (1)

Lemma 2.

where

❖              = exactly one from {u,v} belongs to Ball(w, 2i ⋅ r)

❖               = for all w’ s.t. π(w’) < π(w) it holds that u,v ∉ Ball(w’, 2i ⋅ r)
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Bounding distances in tree (2)
❖               = exactly one from {u,v} belongs to Ball(w, 2i ⋅ r)

❖               = for all w’ s.t. π(w’) < π(w) it holds that u,v ∉ Ball(w’, 2i ⋅ r)

 
Lem 2.
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Thank you for you attention!


