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Applications...

... for most of optimization problems on graphs, whose objective function
is linear in distances.

In particular:
metrical task systems
group Steiner tree
buy-at-bulk network design
distributed paging
k-server

k-median
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The distortion is n-1.

Actually, this is more complicated as T may contain additional
nodes, but the distortion is Q(n). [Rabinovich, Raz 2005]

No good deterministic choice of T, what about random one?
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Is small distortion possible? (2)

Cut a random edge from the circle (each with probability 1/n)
obtaining a random tree.

distortion < 2
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Historical Notes

Bounding distortion:

20(‘/1Og nloglogn) [Alon, Karp, Peleg, West, SIAM Jcomp "91]

O(log? n) [Bartal, FOCS ’96]
O(log n log log n) [Bartal, STOC "98]
O( log 1) [Fakcharoenphol, Rao, Talwar, STOC "03]

The last three results use hierarchical partitioning of the graph.
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Bounding distortion:

20(‘/1Og nloglogn) [Alon, Karp, Peleg, West, SIAM Jcomp "91]

O(log? n) [Bartal, FOCS ’96]
O(log n log log n) [Bartal, STOC "98]
O( log 1) [Fakcharoenphol, Rao, Talwar, STOC "03]

asymptotically optimal

The last three results use hierarchical partitioning of the graph.



Hierarchical decomposition

G =(VE)

Iteratively partition set V



Hierarchical decomposition

G—(VE) -0 F)

Iteratively partition set V
Leaves of T = singleton sets

Nodes of V' \ V = other sets in partitioning



Hierarchical decomposition

G = (V,E) =0 B)

Iteratively partition set V
Leaves of T = singleton sets
Nodes of V' \ V = other sets in partitioning

How to choose partitioning of G?

@



Hierarchical decomposition

G = (V,E) =0 B)

» Iteratively partition set V

+ Leaves of T = singleton sets

*  Nodes of V' \ V = other sets in partitioning
* How to choose partitioning of G?

+ How to choose distances in T?
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Choosing tree distances

L
W.lo.g. dyv>1 level log A

A = smallest power of 2
greater than 2 - max d,

A A A
FRT decomposition guarantee: a ‘ ‘ level log A — 1
for a set S on level i,
there exists a ball of radius < 2:
(centered at some node) AL N2

containing nodes of S. @ ‘ level log A — 9

o o
o o
Observation. For nodes u, v e V, : :
s.t. lca(u,v) is on level i it holds
that?,, — 2 =2 | level 1
B A level 0

Lemma 1. du/v == Tu,v
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Bounding distances in tree (1)
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Bounding distances in tree (1)

Random variables evel log A
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log A—1
Lemma?2. E[T,,| < Z Z Pr [Sepf‘(w) A Sep?(w)] . 9i+3
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Thank you for you attention!



