
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 6

Parallel Processors from

Client to Cloud

Introduction

 Goal: connecting multiple computers
to get higher performance

 Multiprocessors

 Scalability, availability, power efficiency

 Task-level (process-level) parallelism

 High throughput for independent jobs

 Parallel processing program

 Single program run on multiple processors

 Multicore microprocessors

 Chips with multiple processors (cores)

§
6
.1

 In
tro

d
u
c
tio

n

Chapter 6 — Parallel Processors from Client to Cloud — 2

Hardware and Software

 Hardware

 Serial: e.g., Pentium 4

 Parallel: e.g., quad-core Xeon e5345

 Software

 Sequential: e.g., matrix multiplication

 Concurrent: e.g., operating system

 Sequential/concurrent software can run on
serial/parallel hardware

 Challenge: making effective use of parallel
hardware

Chapter 6 — Parallel Processors from Client to Cloud — 3

What We’ve Already Covered

 §2.11: Parallelism and Instructions

 Synchronization

 §3.6: Parallelism and Computer Arithmetic

 Subword Parallelism

 §4.10: Parallelism and Advanced
Instruction-Level Parallelism

 §5.10: Parallelism and Memory
Hierarchies

 Cache Coherence

Chapter 6 — Parallel Processors from Client to Cloud — 4

Parallel Programming

 Parallel software is the problem

 Need to get significant performance

improvement

 Otherwise, just use a faster uniprocessor,

since it’s easier!

 Difficulties

 Partitioning

 Coordination

 Communications overhead

§
6
.2

 T
h
e
 D

iffic
u
lty

 o
f C

re
a
tin

g
 P

a
ra

lle
l P

ro
c
e
s
s
in

g
 P

ro
g
ra

m
s

Chapter 6 — Parallel Processors from Client to Cloud — 5

Amdahl’s Law

 Sequential part can limit speedup

 Example: 100 processors, 90× speedup?

 Tnew = Tparallelizable/100 + Tsequential



 Solving: Fparallelizable = 0.999

 Need sequential part to be 0.1% of original

time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz






Chapter 6 — Parallel Processors from Client to Cloud — 6

Scaling Example

 Workload: sum of 10 scalars, and 10 × 10 matrix
sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd

 10 processors
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd

 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd

 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across
processors

Chapter 6 — Parallel Processors from Client to Cloud — 7

Scaling Example (cont)

 What if matrix size is 100 × 100?

 Single processor: Time = (10 + 10000) × tadd

 10 processors

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)

 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)

 Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 8

Strong vs Weak Scaling

 Strong scaling: problem size fixed

 As in example

 Weak scaling: problem size proportional to

number of processors

 10 processors, 10 × 10 matrix

 Time = 20 × tadd

 100 processors, 32 × 32 matrix

 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

 Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 9

Instruction and Data Streams

 An alternate classification

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

 SPMD: Single Program Multiple Data

 A parallel program on a MIMD computer

 Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 10

§
6
.3

 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, a

n
d
 V

e
c
to

r

Example: DAXPY (Y = a × X + Y)

 Conventional MIPS code

l.d $f0,a($sp) ;load scalar a
addiu r4,$s0,#512 ;upper bound of what to load

loop: l.d $f2,0($s0) ;load x(i)
mul.d $f2,$f2,$f0 ;a × x(i)
l.d $f4,0($s1) ;load y(i)
add.d $f4,$f4,$f2 ;a × x(i) + y(i)
s.d $f4,0($s1) ;store into y(i)
addiu $s0,$s0,#8 ;increment index to x
addiu $s1,$s1,#8 ;increment index to y
subu $t0,r4,$s0 ;compute bound
bne $t0,$zero,loop ;check if done

 Vector MIPS code

l.d $f0,a($sp) ;load scalar a
lv $v1,0($s0) ;load vector x
mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
lv $v3,0($s1) ;load vector y
addv.d $v4,$v2,$v3 ;add y to product
sv $v4,0($s1) ;store the result

Chapter 6 — Parallel Processors from Client to Cloud — 11

Vector Processors

 Highly pipelined function units

 Stream data from/to vector registers to units

 Data collected from memory into registers

 Results stored from registers to memory

 Example: Vector extension to MIPS

 32 × 64-element registers (64-bit elements)

 Vector instructions

 lv, sv: load/store vector

 addv.d: add vectors of double

 addvs.d: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 12

Vector vs. Scalar

 Vector architectures and compilers

 Simplify data-parallel programming

 Explicit statement of absence of loop-carried
dependences
 Reduced checking in hardware

 Regular access patterns benefit from
interleaved and burst memory

 Avoid control hazards by avoiding loops

 More general than ad-hoc media
extensions (such as MMX, SSE)

 Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 13

SIMD

 Operate elementwise on vectors of data

 E.g., MMX and SSE instructions in x86
 Multiple data elements in 128-bit wide registers

 All processors execute the same
instruction at the same time

 Each with different data address, etc.

 Simplifies synchronization

 Reduced instruction control hardware

 Works best for highly data-parallel
applications

Chapter 6 — Parallel Processors from Client to Cloud — 14

Vector vs. Multimedia Extensions

 Vector instructions have a variable vector width,

multimedia extensions have a fixed width

 Vector instructions support strided access,

multimedia extensions do not

 Vector units can be combination of pipelined and

arrayed functional units:

Chapter 6 — Parallel Processors from Client to Cloud — 15

Multithreading

 Performing multiple threads of execution in
parallel
 Replicate registers, PC, etc.

 Fast switching between threads

 Fine-grain multithreading
 Switch threads after each cycle

 Interleave instruction execution

 If one thread stalls, others are executed

 Coarse-grain multithreading
 Only switch on long stall (e.g., L2-cache miss)

 Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

§
6
.4

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

Chapter 6 — Parallel Processors from Client to Cloud — 16

Simultaneous Multithreading

 In multiple-issue dynamically scheduled
processor

 Schedule instructions from multiple threads

 Instructions from independent threads execute
when function units are available

 Within threads, dependencies handled by
scheduling and register renaming

 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 17

Multithreading Example

Chapter 6 — Parallel Processors from Client to Cloud — 18

Future of Multithreading

 Will it survive? In what form?

 Power considerations  simplified

microarchitectures

 Simpler forms of multithreading

 Tolerating cache-miss latency

 Thread switch may be most effective

 Multiple simple cores might share

resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 19

Shared Memory

 SMP: shared memory multiprocessor

 Hardware provides single physical

address space for all processors

 Synchronize shared variables using locks

 Memory access time

 UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 20

§
6
.5

 M
u
ltic

o
re

 a
n
d
 O

th
e
r S

h
a
re

d
 M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

Example: Sum Reduction

 Sum 100,000 numbers on 100 processor UMA
 Each processor has ID: 0 ≤ Pn ≤ 99

 Partition 1000 numbers per processor

 Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

 Now need to add these partial sums
 Reduction: divide and conquer

 Half the processors add pairs, then quarter, …

 Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 21

Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Chapter 6 — Parallel Processors from Client to Cloud — 22

History of GPUs

 Early video cards

 Frame buffer memory with address generation for

video output

 3D graphics processing

 Originally high-end computers (e.g., SGI)

 Moore’s Law  lower cost, higher density

 3D graphics cards for PCs and game consoles

 Graphics Processing Units

 Processors oriented to 3D graphics tasks

 Vertex/pixel processing, shading, texture mapping,

rasterization

§
6
.6

 In
tro

d
u
c
tio

n
 to

 G
ra

p
h
ic

s
 P

ro
c
e
s
s
in

g
 U

n
its

Chapter 6 — Parallel Processors from Client to Cloud — 23

Graphics in the System

Chapter 6 — Parallel Processors from Client to Cloud — 24

GPU Architectures

 Processing is highly data-parallel
 GPUs are highly multithreaded

 Use thread switching to hide memory latency
 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems

 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL

 C for Graphics (Cg), High Level Shader Language
(HLSL)

 Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 25

Example: NVIDIA Tesla

Streaming

multiprocessor

8 × Streaming

processors

Chapter 6 — Parallel Processors from Client to Cloud — 26

Example: NVIDIA Tesla

 Streaming Processors

 Single-precision FP and integer units

 Each SP is fine-grained multithreaded

 Warp: group of 32 threads

 Executed in parallel,
SIMD style
 8 SPs

× 4 clock cycles

 Hardware contexts
for 24 warps
 Registers, PCs, …

Chapter 6 — Parallel Processors from Client to Cloud — 27

Classifying GPUs

 Don’t fit nicely into SIMD/MIMD model

 Conditional execution in a thread allows an
illusion of MIMD
 But with performance degredation

 Need to write general purpose code with care

Static: Discovered

at Compile Time

Dynamic: Discovered

at Runtime

Instruction-Level

Parallelism

VLIW Superscalar

Data-Level

Parallelism

SIMD or Vector Tesla Multiprocessor

Chapter 6 — Parallel Processors from Client to Cloud — 28

GPU Memory Structures

Chapter 6 — Parallel Processors from Client to Cloud — 29

Putting GPUs into Perspective

Chapter 6 — Parallel Processors from Client to Cloud — 30

Feature Multicore with SIMD GPU

SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for

SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to

double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD

processor

Yes No

Cache coherent Yes No

Guide to GPU Terms

Chapter 6 — Parallel Processors from Client to Cloud — 31

Message Passing

 Each processor has private physical
address space

 Hardware sends/receives messages
between processors

§
6
.7

 C
lu

s
te

rs
, W

S
C

, a
n
d
 O

th
e
r M

e
s
s
a
g
e

-P
a
s
s
in

g
 M

P
s

Chapter 6 — Parallel Processors from Client to Cloud — 32

Loosely Coupled Clusters

 Network of independent computers

 Each has private memory and OS

 Connected using I/O system

 E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks

 Web servers, databases, simulations, …

 High availability, scalable, affordable

 Problems

 Administration cost (prefer virtual machines)

 Low interconnect bandwidth

 c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 33

Sum Reduction (Again)

 Sum 100,000 on 100 processors

 First distribute 100 numbers to each

 The do partial sums

sum = 0;
for (i = 0; i<1000; i = i + 1)
sum = sum + AN[i];

 Reduction

 Half the processors send, other half receive

and add

 The quarter send, quarter receive and add, …

Chapter 6 — Parallel Processors from Client to Cloud — 34

Sum Reduction (Again)

 Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive

dividing line */
if (Pn >= half && Pn < limit)
send(Pn - half, sum);

if (Pn < (limit/2))
sum = sum + receive();

limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

 Send/receive also provide synchronization

 Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 35

Grid Computing

 Separate computers interconnected by

long-haul networks

 E.g., Internet connections

 Work units farmed out, results sent back

 Can make use of idle time on PCs

 E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 36

Interconnection Networks

 Network topologies

 Arrangements of processors, switches, and links

§
6
.8

 In
tro

d
u
c
tio

n
 to

 M
u
ltip

ro
c
e
s
s
o
r N

e
tw

o
rk

 T
o
p
o
lo

g
ie

s

Bus Ring

2D Mesh

N-cube (N = 3)

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 37

Multistage Networks

Chapter 6 — Parallel Processors from Client to Cloud — 38

Network Characteristics

 Performance

 Latency per message (unloaded network)

 Throughput
 Link bandwidth

 Total network bandwidth

 Bisection bandwidth

 Congestion delays (depending on traffic)

 Cost

 Power

 Routability in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 39

Parallel Benchmarks

 Linpack: matrix linear algebra

 SPECrate: parallel run of SPEC CPU programs
 Job-level parallelism

 SPLASH: Stanford Parallel Applications for
Shared Memory
 Mix of kernels and applications, strong scaling

 NAS (NASA Advanced Supercomputing) suite
 computational fluid dynamics kernels

 PARSEC (Princeton Application Repository for
Shared Memory Computers) suite
 Multithreaded applications using Pthreads and

OpenMP

§
6
.1

0
 M

u
ltip

ro
c
e
s
s
o
r B

e
n
c
h
m

a
rk

s
 a

n
d
 P

e
rfo

rm
a
n
c
e
 M

o
d
e
ls

Chapter 6 — Parallel Processors from Client to Cloud — 40

Code or Applications?

 Traditional benchmarks

 Fixed code and data sets

 Parallel programming is evolving

 Should algorithms, programming languages,
and tools be part of the system?

 Compare systems, provided they implement a
given application

 E.g., Linpack, Berkeley Design Patterns

 Would foster innovation in approaches to
parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 41

Modeling Performance

 Assume performance metric of interest is
achievable GFLOPs/sec

 Measured using computational kernels from
Berkeley Design Patterns

 Arithmetic intensity of a kernel

 FLOPs per byte of memory accessed

 For a given computer, determine

 Peak GFLOPS (from data sheet)

 Peak memory bytes/sec (using Stream
benchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 42

Roofline Diagram

Attainable GPLOPs/sec

= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Chapter 6 — Parallel Processors from Client to Cloud — 43

Comparing Systems

 Example: Opteron X2 vs. Opteron X4

 2-core vs. 4-core, 2× FP performance/core, 2.2GHz

vs. 2.3GHz

 Same memory system

 To get higher performance

on X4 than X2

 Need high arithmetic intensity

 Or working set must fit in X4’s

2MB L-3 cache

Chapter 6 — Parallel Processors from Client to Cloud — 44

Optimizing Performance

 Optimize FP performance

 Balance adds & multiplies

 Improve superscalar ILP
and use of SIMD
instructions

 Optimize memory usage

 Software prefetch
 Avoid load stalls

 Memory affinity
 Avoid non-local data

accesses

Chapter 6 — Parallel Processors from Client to Cloud — 45

Optimizing Performance

 Choice of optimization depends on

arithmetic intensity of code

 Arithmetic intensity is

not always fixed

 May scale with

problem size

 Caching reduces

memory accesses

 Increases arithmetic

intensity

Chapter 6 — Parallel Processors from Client to Cloud — 46

i7-960 vs. NVIDIA Tesla 280/480
§
6
.1

1
 R

e
a
l S

tu
ff: B

e
n
c
h
m

a
rk

in
g
 a

n
d
 R

o
o
flin

e
s
 i7

 v
s
. T

e
s
la

Chapter 6 — Parallel Processors from Client to Cloud — 47

Rooflines

Chapter 6 — Parallel Processors from Client to Cloud — 48

Benchmarks

Chapter 6 — Parallel Processors from Client to Cloud — 49

Performance Summary

Chapter 6 — Parallel Processors from Client to Cloud — 50

 GPU (480) has 4.4 X the memory bandwidth

 Benefits memory bound kernels

 GPU has 13.1 X the single precision throughout, 2.5 X

the double precision throughput

 Benefits FP compute bound kernels

 CPU cache prevents some kernels from becoming

memory bound when they otherwise would on GPU

 GPUs offer scatter-gather, which assists with kernels

with strided data

 Lack of synchronization and memory consistency

support on GPU limits performance for some kernels

Multi-threading DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 51

§
6
.1

2
 G

o
in

g
 F

a
s
te

r: M
u
ltip

le
 P

ro
c
e
s
s
o
rs

 a
n
d
 M

a
trix

 M
u
ltip

ly

 Use OpenMP:

void dgemm (int n, double* A, double* B, double* C)

{

#pragma omp parallel for

for (int sj = 0; sj < n; sj += BLOCKSIZE)

for (int si = 0; si < n; si += BLOCKSIZE)

for (int sk = 0; sk < n; sk += BLOCKSIZE)

do_block(n, si, sj, sk, A, B, C);

}

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 52

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 53

Fallacies

 Amdahl’s Law doesn’t apply to parallel

computers

 Since we can achieve linear speedup

 But only on applications with weak scaling

 Peak performance tracks observed

performance

 Marketers like this approach!

 But compare Xeon with others in example

 Need to be aware of bottlenecks

§
6
.1

3
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 6 — Parallel Processors from Client to Cloud — 54

Pitfalls

 Not developing the software to take

account of a multiprocessor architecture

 Example: using a single lock for a shared

composite resource

 Serializes accesses, even if they could be done in

parallel

 Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 55

Concluding Remarks

 Goal: higher performance by using multiple

processors

 Difficulties

 Developing parallel software

 Devising appropriate architectures

 SaaS importance is growing and clusters are a

good match

 Performance per dollar and performance per

Joule drive both mobile and WSC

§
6
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Chapter 6 — Parallel Processors from Client to Cloud — 56

Concluding Remarks (con’t)

 SIMD and vector

operations match

multimedia applications

and are easy to

program

Chapter 6 — Parallel Processors from Client to Cloud — 57

