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Introduction

 Goal: connecting multiple computers
to get higher performance

 Multiprocessors

 Scalability, availability, power efficiency

 Task-level (process-level) parallelism

 High throughput for independent jobs

 Parallel processing program

 Single program run on multiple processors

 Multicore microprocessors

 Chips with multiple processors (cores)
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Hardware and Software

 Hardware

 Serial: e.g., Pentium 4

 Parallel: e.g., quad-core Xeon e5345

 Software

 Sequential: e.g., matrix multiplication

 Concurrent: e.g., operating system

 Sequential/concurrent software can run on 
serial/parallel hardware

 Challenge: making effective use of parallel 
hardware
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What We’ve Already Covered

 §2.11: Parallelism and Instructions

 Synchronization

 §3.6: Parallelism and Computer Arithmetic

 Subword Parallelism

 §4.10: Parallelism and Advanced 
Instruction-Level Parallelism

 §5.10: Parallelism and Memory 
Hierarchies

 Cache Coherence
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Parallel Programming

 Parallel software is the problem

 Need to get significant performance 

improvement

 Otherwise, just use a faster uniprocessor, 

since it’s easier!

 Difficulties

 Partitioning

 Coordination

 Communications overhead
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Amdahl’s Law

 Sequential part can limit speedup

 Example: 100 processors, 90× speedup?

 Tnew = Tparallelizable/100 + Tsequential



 Solving: Fparallelizable = 0.999

 Need sequential part to be 0.1% of original 

time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz





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Scaling Example

 Workload: sum of 10 scalars, and 10 × 10 matrix 
sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd

 10 processors
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd

 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd

 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across 
processors
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Scaling Example (cont)

 What if matrix size is 100 × 100?

 Single processor: Time = (10 + 10000) × tadd

 10 processors

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)

 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)

 Assuming load balanced
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Strong vs Weak Scaling

 Strong scaling: problem size fixed

 As in example

 Weak scaling: problem size proportional to 

number of processors

 10 processors, 10 × 10 matrix

 Time = 20 × tadd

 100 processors, 32 × 32 matrix

 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

 Constant performance in this example
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Instruction and Data Streams

 An alternate classification

Data Streams

Single Multiple

Instruction 

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE 

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

 SPMD: Single Program Multiple Data

 A parallel program on a MIMD computer

 Conditional code for different processors
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Example: DAXPY (Y = a × X + Y)

 Conventional MIPS code

l.d   $f0,a($sp)     ;load scalar a
addiu r4,$s0,#512    ;upper bound of what to load

loop: l.d   $f2,0($s0)     ;load x(i)
mul.d $f2,$f2,$f0    ;a × x(i)
l.d   $f4,0($s1)     ;load y(i)
add.d $f4,$f4,$f2    ;a × x(i) + y(i)
s.d   $f4,0($s1)     ;store into y(i)
addiu $s0,$s0,#8     ;increment index to x
addiu $s1,$s1,#8     ;increment index to y
subu  $t0,r4,$s0     ;compute bound
bne   $t0,$zero,loop ;check if done

 Vector MIPS code

l.d     $f0,a($sp)   ;load scalar a
lv      $v1,0($s0)   ;load vector x
mulvs.d $v2,$v1,$f0  ;vector-scalar multiply
lv      $v3,0($s1)   ;load vector y
addv.d  $v4,$v2,$v3  ;add y to product
sv      $v4,0($s1)   ;store the result
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Vector Processors

 Highly pipelined function units

 Stream data from/to vector registers to units

 Data collected from memory into registers

 Results stored from registers to memory

 Example: Vector extension to MIPS

 32 × 64-element registers (64-bit elements)

 Vector instructions

 lv, sv: load/store vector

 addv.d: add vectors of double

 addvs.d: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth
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Vector vs. Scalar

 Vector architectures and compilers

 Simplify data-parallel programming

 Explicit statement of absence of loop-carried 
dependences
 Reduced checking in hardware

 Regular access patterns benefit from 
interleaved and burst memory

 Avoid control hazards by avoiding loops

 More general than ad-hoc media 
extensions (such as MMX, SSE)

 Better match with compiler technology
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SIMD

 Operate elementwise on vectors of data

 E.g., MMX and SSE instructions in x86
 Multiple data elements in 128-bit wide registers

 All processors execute the same 
instruction at the same time

 Each with different data address, etc.

 Simplifies synchronization

 Reduced instruction control hardware

 Works best for highly data-parallel 
applications
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Vector vs. Multimedia Extensions

 Vector instructions have a variable vector width, 

multimedia extensions have a fixed width

 Vector instructions support strided access, 

multimedia extensions do not

 Vector units can be combination of pipelined and 

arrayed functional units:
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Multithreading

 Performing multiple threads of execution in 
parallel
 Replicate registers, PC, etc.

 Fast switching between threads

 Fine-grain multithreading
 Switch threads after each cycle

 Interleave instruction execution

 If one thread stalls, others are executed

 Coarse-grain multithreading
 Only switch on long stall (e.g., L2-cache miss)

 Simplifies hardware, but doesn’t hide short stalls 
(eg, data hazards)
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Simultaneous Multithreading

 In multiple-issue dynamically scheduled 
processor

 Schedule instructions from multiple threads

 Instructions from independent threads execute 
when function units are available

 Within threads, dependencies handled by 
scheduling and register renaming

 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared 
function units and caches
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Multithreading Example
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Future of Multithreading

 Will it survive? In what form?

 Power considerations  simplified 

microarchitectures

 Simpler forms of multithreading

 Tolerating cache-miss latency

 Thread switch may be most effective

 Multiple simple cores might share 

resources more effectively
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Shared Memory

 SMP: shared memory multiprocessor

 Hardware provides single physical

address space for all processors

 Synchronize shared variables using locks

 Memory access time

 UMA (uniform) vs. NUMA (nonuniform)
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Example: Sum Reduction

 Sum 100,000 numbers on 100 processor UMA
 Each processor has ID: 0 ≤ Pn ≤ 99

 Partition 1000 numbers per processor

 Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

 Now need to add these partial sums
 Reduction: divide and conquer

 Half the processors add pairs, then quarter, …

 Need to synchronize between reduction steps
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Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);
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History of GPUs

 Early video cards

 Frame buffer memory with address generation for 

video output

 3D graphics processing

 Originally high-end computers (e.g., SGI)

 Moore’s Law  lower cost, higher density

 3D graphics cards for PCs and game consoles

 Graphics Processing Units

 Processors oriented to 3D graphics tasks

 Vertex/pixel processing, shading, texture mapping,

rasterization

§
6
.6

 In
tro

d
u
c
tio

n
 to

 G
ra

p
h
ic

s
 P

ro
c
e
s
s
in

g
 U

n
its

Chapter 6 — Parallel Processors from Client to Cloud — 23



Graphics in the System
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GPU Architectures

 Processing is highly data-parallel
 GPUs are highly multithreaded

 Use thread switching to hide memory latency
 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems

 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL

 C for Graphics (Cg), High Level Shader Language 
(HLSL)

 Compute Unified Device Architecture (CUDA)
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Example: NVIDIA Tesla

Streaming 

multiprocessor

8 × Streaming

processors
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Example: NVIDIA Tesla

 Streaming Processors

 Single-precision FP and integer units

 Each SP is fine-grained multithreaded

 Warp: group of 32 threads

 Executed in parallel,
SIMD style
 8 SPs

× 4 clock cycles

 Hardware contexts
for 24 warps
 Registers, PCs, …
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Classifying GPUs

 Don’t fit nicely into SIMD/MIMD model

 Conditional execution in a thread allows an 
illusion of MIMD
 But with performance degredation

 Need to write general purpose code with care

Static: Discovered

at Compile Time

Dynamic: Discovered 

at Runtime

Instruction-Level 

Parallelism

VLIW Superscalar

Data-Level 

Parallelism

SIMD or Vector Tesla Multiprocessor
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GPU Memory Structures
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Putting GPUs into Perspective
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Feature Multicore with SIMD GPU

SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for

SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to 

double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD 

processor

Yes No

Cache coherent Yes No



Guide to GPU Terms
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Message Passing

 Each processor has private physical 
address space

 Hardware sends/receives messages 
between processors
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Loosely Coupled Clusters

 Network of independent computers

 Each has private memory and OS

 Connected using I/O system

 E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks

 Web servers, databases, simulations, …

 High availability, scalable, affordable

 Problems

 Administration cost (prefer virtual machines)

 Low interconnect bandwidth

 c.f. processor/memory bandwidth on an SMP
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Sum Reduction (Again)

 Sum 100,000 on 100 processors

 First distribute 100 numbers to each

 The do partial sums

sum = 0;
for (i = 0; i<1000; i = i + 1)
sum = sum + AN[i];

 Reduction

 Half the processors send, other half receive 

and add

 The quarter send, quarter receive and add, …
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Sum Reduction (Again)

 Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive

dividing line */
if (Pn >= half && Pn < limit)
send(Pn - half, sum);

if (Pn < (limit/2))
sum = sum + receive();

limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

 Send/receive also provide synchronization

 Assumes send/receive take similar time to addition
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Grid Computing

 Separate computers interconnected by 

long-haul networks

 E.g., Internet connections

 Work units farmed out, results sent back

 Can make use of idle time on PCs

 E.g., SETI@home, World Community Grid
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Interconnection Networks

 Network topologies

 Arrangements of processors, switches, and links
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2D Mesh

N-cube (N = 3)

Fully connected
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Multistage Networks
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Network Characteristics

 Performance

 Latency per message (unloaded network)

 Throughput
 Link bandwidth

 Total network bandwidth

 Bisection bandwidth

 Congestion delays (depending on traffic)

 Cost

 Power

 Routability in silicon
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Parallel Benchmarks

 Linpack: matrix linear algebra

 SPECrate: parallel run of SPEC CPU programs
 Job-level parallelism

 SPLASH: Stanford Parallel Applications for 
Shared Memory
 Mix of kernels and applications, strong scaling

 NAS (NASA Advanced Supercomputing) suite
 computational fluid dynamics kernels

 PARSEC (Princeton Application Repository for 
Shared Memory Computers) suite
 Multithreaded applications using Pthreads and 

OpenMP
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Code or Applications?

 Traditional benchmarks

 Fixed code and data sets

 Parallel programming is evolving

 Should algorithms, programming languages, 
and tools be part of the system?

 Compare systems, provided they implement a 
given application

 E.g., Linpack, Berkeley Design Patterns

 Would foster innovation in approaches to 
parallelism
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Modeling Performance

 Assume performance metric of interest is 
achievable GFLOPs/sec

 Measured using computational kernels from 
Berkeley Design Patterns

 Arithmetic intensity of a kernel

 FLOPs per byte of memory accessed

 For a given computer, determine

 Peak GFLOPS (from data sheet)

 Peak memory bytes/sec (using Stream 
benchmark)
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Roofline Diagram

Attainable GPLOPs/sec

= Max ( Peak Memory BW × Arithmetic Intensity, Peak FP Performance )
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Comparing Systems

 Example: Opteron X2 vs. Opteron X4

 2-core vs. 4-core, 2× FP performance/core, 2.2GHz 

vs. 2.3GHz

 Same memory system

 To get higher performance 

on X4 than X2

 Need high arithmetic intensity

 Or working set must fit in X4’s 

2MB L-3 cache
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Optimizing Performance

 Optimize FP performance

 Balance adds & multiplies

 Improve superscalar ILP 
and use of SIMD 
instructions

 Optimize memory usage

 Software prefetch
 Avoid load stalls

 Memory affinity
 Avoid non-local data 

accesses
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Optimizing Performance

 Choice of optimization depends on 

arithmetic intensity of code

 Arithmetic intensity is 

not always fixed

 May scale with 

problem size

 Caching reduces 

memory accesses

 Increases arithmetic 

intensity
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i7-960 vs. NVIDIA Tesla 280/480
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Rooflines
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Benchmarks
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Performance Summary
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 GPU (480) has 4.4 X the memory bandwidth

 Benefits memory bound kernels

 GPU has 13.1 X the single precision throughout, 2.5 X 

the double precision throughput

 Benefits FP compute bound kernels

 CPU cache prevents some kernels from becoming 

memory bound when they otherwise would on GPU

 GPUs offer scatter-gather, which assists with kernels 

with strided data

 Lack of synchronization and memory consistency 

support on GPU limits performance for some kernels



Multi-threading DGEMM
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 Use OpenMP:

void dgemm (int n, double* A, double* B, double* C)

{

#pragma omp parallel for

for ( int sj = 0; sj < n; sj += BLOCKSIZE )

for ( int si = 0; si < n; si += BLOCKSIZE )

for ( int sk = 0; sk < n; sk += BLOCKSIZE )

do_block(n, si, sj, sk, A, B, C);

}



Multithreaded DGEMM
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Multithreaded DGEMM
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Fallacies

 Amdahl’s Law doesn’t apply to parallel 

computers

 Since we can achieve linear speedup

 But only on applications with weak scaling

 Peak performance tracks observed 

performance

 Marketers like this approach!

 But compare Xeon with others in example

 Need to be aware of bottlenecks
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Pitfalls

 Not developing the software to take 

account of a multiprocessor architecture

 Example: using a single lock for a shared 

composite resource

 Serializes accesses, even if they could be done in 

parallel

 Use finer-granularity locking
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Concluding Remarks

 Goal: higher performance by using multiple 

processors

 Difficulties

 Developing parallel software

 Devising appropriate architectures

 SaaS importance is growing and clusters are a 

good match

 Performance per dollar and performance per 

Joule drive both mobile and WSC
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Concluding Remarks (con’t)

 SIMD and vector 

operations match 

multimedia applications 

and are easy to 

program
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