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The POWER8i processor is the latest RISC (Reduced Instruction
Set Computer) microprocessor from IBM. It is fabricated using
the company’s 22-nm Silicon on Insulator (SOI) technology with
15 layers of metal, and it has been designed to significantly improve
both single-thread performance and single-core throughput over
its predecessor, the POWER7A processor. The rate of increase
in processor frequency enabled by new silicon technology
advancements has decreased dramatically in recent generations,
as compared to the historic trend. This has caused many processor
designs in the industry to show very little improvement in either
single-thread or single-core performance, and, instead, larger
numbers of cores are primarily pursued in each generation. Going
against this industry trend, the POWER8 processor relies on a much
improved core and nest microarchitecture to achieve approximately
one-and-a-half times the single-thread performance and twice
the single-core throughput of the POWER7 processor in several
commercial applications. Combined with a 50% increase in the
number of cores (from 8 in the POWER7 processor to 12 in the
POWER8 processor), the result is a processor that leads the industry
in performance for enterprise workloads. This paper describes the
core microarchitecture innovations made in the POWER8 processor
that resulted in these significant performance benefits.

Introduction
Based on principles adopted in the POWER7* multi-core
processor [1–4], the POWER8* processor continues to
emphasize a balanced multi-core design, with significant
improvements in both single-thread and core performance
and modest increases in the core count per chip. This
contrasts with other multi-core processor designs in the
industry today, for which an increase in the core count is
primarily pursued with little improvement in single-thread
or core performance. In this eighth-generation POWER*
processor, IBM continues to innovate its RISC (Reduced
Instruction Set Computer) product line by introducing a
twelve-core multi-chip design, with large on-chip eDRAM
(embedded Dynamic Random Access Memory) caches,
and high-performance eight-way multi-threaded cores,
implementing the Power ISA (Instruction Set Architecture)
version 2.07 [5].

Our goal for the POWER8 processor was to significantly
improve the socket-level, core-level and thread-level
performance in each of the multiple simultaneous
multithreading (SMT) modes relative to the POWER7
processor. This was achieved by keeping the area and power
requirement of each POWER8 processor core (BPOWER8
core[) sufficiently low to allow twelve such cores on the
processor chip while maintaining its power at the same level
as that of the POWER7 processor chip. An Bat-a-glance[
comparison between the POWER7 and the POWER8
processors can be seen in Table 1.
Because of the slowdown in frequency increases from

silicon technology, thread and core performance were
improved through microarchitectural enhancements such
as an advanced branch prediction mechanism; extensive
out-of-order execution; dual pipelines for instruction
decode, dispatch, issue, and execution; advanced eight-way
simultaneous multi-threading; advanced prefetching
with more precise application software control over the
prefetching mechanism; doubled bandwidth throughout
the cache and memory hierarchy; and a significant
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reduction in memory latency relative to the POWER7
processor design.
We enhanced the POWER8 core microarchitecture with

support for fast access to unaligned and little-endian data.
This simplifies application development and porting of
applications across different processor architectures. It
also facilitates data exchange between devices of different
architectures, including system-level accelerators such as
GPUs (graphical processing units).
The POWER8 core also supports several new

differentiating features such as advanced security,
dynamic compiler optimizations enablement, hybrid
computation, cryptography acceleration, advanced SIMD
(Single-Instruction, Multiple-Data) features, and business
analytics optimizations enablement, among others.
The POWER* processor line [6–9] has continuously

delivered high performance and reliability for commercial
workloads and business applications. In addition to its
performance in traditional commercial workloads, the
POWER8 processor is highly optimized for cloud-based
workloads, as well as big data, business analytics, and
systems of engagement applications. These emerging
workloads and applications have their own performance
requirements and challenges, and we had to provide
corresponding innovations in the POWER8 core.
Business analytics applications are increasingly important

in the enterprise and are both data and compute intensive.
For that reason, the POWER8 core delivers improved
SIMD performance, through symmetric vector pipelines,
doubled data buses, and larger caches. These same
enhancements also improve the performance of the POWER8
core on scientific and technical computing, also known
as HPC (high-performance computing). Similar to the
POWER7+* processor core [10], a POWER8 core has a peak
computational throughput of 8 double-precision (64-bit) and
16 single-precision (32-bit) floating-point operations per
cycle (four double-precision and eight single-precision fused
multiply-adds per cycle, respectively). We also expanded
the repertoire of SIMD integer instructions in the POWER8

processor to include 64-bit integer operations and other
fixed-point operations such as 32-bit vector multiply
instructions. These instructions significantly improve the
performance of data warehouse and analytics applications.
Many business analytics applications run in thread-rich

configurations, to exploit the inherent parallelism in these
computations. To accommodate them, the POWER8
core doubled the hardware thread parallelism to 8-way
multithreading (referred to as SMT8). Because of the
doubling in size of the L1 data cache and L2 and L3 caches,
each thread in a POWER8 core can have as much resident
memory footprint as a thread in a POWER7 core. In
fact, it was a design requirement that at each common
multithreading levelVST (single-thread), SMT2 (two-way
multithreading), and SMT4 (four-way multithreading)Vthe
individual thread performance on a POWER8 core should
be better than on a POWER7 core. In single-thread mode,
practically all of the core resources can be used by the
single thread. At the same time, these core resources can
efficiently support eight threads per core. The core can
dynamically change mode among ST, SMT2, SMT4, and
SMT8, depending on the number of active threads.
Cloud instances often do not have enough simultaneously

active application threads to utilize all eight hardware
threads on the POWER8 core. To instead exploit the
parallelism across cloud instances, the POWER8 core can
be put in a Bsplit-core mode,[ so that four partitions can
run on one core at the same time, with up to two hardware
threads per partition.
Modern computing environments, and cloud systems in

particular, require extra layers of security and protection
in order to deliver a safe and usable solution to the end user.
For that reason, the POWER8 processor includes several
features that accelerate cryptographic codes. In particular,
the POWER8 core includes a cryptographic unit supporting
new Power ISA instructions for the computation of AES
(Advanced Encryption Standard), SHA (Secure Hash
Algorithm), and CRC (Cyclic Redundancy Check) codes.
Big data applications typically have a larger memory

footprint and working set than traditional commercial
applications. Correspondingly, compared to the POWER7
core, the POWER8 core has an L1 data cache that is
twice as large, has twice as many ports from that data cache
for higher read/write throughput, and has four times as
many entries in its TLB (Translation Lookaside Buffer).
In addition, POWER8 technology expands the addressing
range of memory accesses using fusion to allow applications
to access large data sets more quickly. As mentioned, the
L2 and L3 caches in the POWER8 processor are also
twice the size of the corresponding POWER7 processor
caches, on a per core basis.
Dynamic scripting languages, such as Ruby, Python, and

JavaScript**, are often dominant in the new systems of
engagement being deployed. The POWER8 core improves

Table 1 Summary of characteristics of the POWER7
and POWER8 processors.
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on the performance of the POWER7 core for these workloads
through better branch prediction mechanisms, increased
instruction level parallelism, efficient unaligned data access,
and support for run-time monitoring and optimization. These
microarchitectural improvements of the POWER8 core have
resulted in significant single-thread and throughput gains
over the POWER7 core.
Also supporting emerging workloads, the POWER8

processor includes an optimized implementation of hardware
TM (Transactional Memory). This implementation has a
low overhead to start a transaction and additional features
that support the exploitation of transactions in Java and
other programming languages, in many cases without any
changes to the user code. For more information on TM,
please see [11].

Organization of the POWER8 processor core
Figure 1 shows the POWER8 core floorplan. The core
consists primarily of the following six units: instruction fetch
unit (IFU), instruction sequencing unit (ISU), load-store
unit (LSU), fixed-point unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit (DFU). The instruction
fetch unit contains a 32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-cache (data cache),
which are both backed up by a tightly integrated 512 KB
unified L2 cache.
In a given cycle, the core can fetch up to eight instructions,

decode and dispatch up to eight instructions, issue and

execute up to ten instructions, and commit up to eight
instructions. There are sixteen execution pipelines within
the core: two fixed-point pipelines, two load/store pipelines,
two load pipelines, four double-precision floating-point
pipelines (which can also act as eight single-precision
floating-point pipelines), two fully symmetric vector
pipelines that execute instructions from both the VMX
(Vector eXtensions) and VSX (Vector-Scalar eXtensions)
instruction categories in the Power ISA, one cryptographic
pipeline, one branch execution pipeline, one condition
register logical pipeline, and one decimal floating-point
pipeline. The two load/store pipes and the two load pipes
have the additional capability to execute simple fixed-point
operations. The four floating-point pipelines are each capable
of executing double precision multiply-add operations,
accounting for eight double-precision, 16 single-precision,
floating-point operations per cycle per core. In addition,
these pipelines can also execute 64-bit integer SIMD
operations. The decimal floating point unit, first introduced
in the POWER6* processor [12], accelerates many
commercial applications.
To satisfy the high bandwidth requirement of many

commercial, big data, and HPC workloads, the POWER8
core has significantly higher load/store bandwidth capability
compared to its predecessor. While the POWER7 processor
can perform two load/store operations in a given cycle,
the POWER8 processor can perform two load operations
in the load pipes, in addition to two load or store operations
in the load/store pipes in a given cycle.
For advanced virtualization capability, the POWER8

processor can be run in POWER7 or POWER6 compatibility
modes. When put in these past processor modes, the
POWER8 core will only recognize non-privileged
instructions that were available in the past machines and
generate an illegal instruction interrupt if newer instructions
are attempted to be executed. This allows dynamic partition
mobility between POWER6, POWER7, and POWER8
processor based systems. As was the case with the
POWER7 processor, the large TLB of the POWER8
processor is not required to be invalidated on a partition
swap. Instead, the TLB entries can persist across
partition swapping, so that if a partition is swapped back
again, some of its translation entries are likely to be found
in the TLB. Additionally, the POWER8 processor introduces
a Bpartition prefetch[ capability, which restores the cache
state when a partition is swapped back into a processor core.
This feature is described in more detail in [13].
The POWER8 processor allows dynamic SMT mode

switches among the various ST and SMT modes. The core
supports the execution of up to eight hardware architected
threads, named T0 through T7. Unlike the POWER7 core,
where the ST mode required the thread to run on the T0
position, in the POWER8 core the single thread can run
anywhere from T0 to T7. As long as it is the only thread

Figure 1

POWER8 processor core floorplan.
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running, the core can execute in ST mode. Similarly, as long
as only two threads are running, the core can execute in SMT2
mode, and it does not matter which hardware thread positions
those two threads are running. This makes the SMT mode
switch in the POWER8 core significantly easier and does
not require software to invoke an expensive thread move
operation to put the thread(s) in the right position to switch
into the desired SMT mode. In addition, the performance
difference of running one single thread on the core when
the core is in ST mode versus in any of the SMT modes is
significantly lower in the POWER8 processor than in the
POWER7 processor.
The POWER8 processor implements robust RAS

(reliability, availability, and serviceability) features. It
can detect most soft-errors that occur during instruction
execution. On soft-error detection, the core automatically
uses its out-of-order execution features to flush the
instructions in the pipeline and re-fetch and re-execute
them, so that there is no loss of data integrity.
Figure 2 shows the instruction flow in POWER8 processor

core. Instructions flow from the memory hierarchy through

various issue queues and then are sent to the functional units
for execution. Most instructions (except for branches and
condition register logical instructions) are processed through
the Unified Issue Queue (UniQueue), which consists of
two symmetric halves (UQ0 and UQ1). There are also two
copies (not shown) of the general-purpose (GPR0 and GPR1)
and vector-scalar (VSR0 and VSR1) physical register files.
One copy is used by instructions processed through UQ0
while the other copy is for instructions processed through
UQ1. The fixed-point, floating-point, vector, load and
load-store pipelines are similarly split into two sets
(FX0, FP0, VSX0, VMX0, L0, LS0 in one set, and FX1,
FP1, VSX1, VMX1, L1, LS1 in the other set) and each
set is associated with one UniQueue half.
Which issue queue, physical register file, and functional

unit are used by a given instruction depends on the
simultaneous multi-threading mode of the processor core
at run time. In ST mode, the two physical copies of the
GPR and VSR have identical contents. Instructions from
the thread can be dispatched to either one of the UniQueue
halves (UQ0 or UQ1). Load balance across the two

Figure 2

POWER8 processor core pipeline flow. QW-aligned refers to a quadword or 16-byte aligned address.

2 : 4 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 59 NO. 1 PAPER 2 JANUARY/FEBRUARY 2015



UniQueue halves is maintained by dispatching alternate
instructions of a given type to alternating UniQueue halves.
In the SMT modes (SMT2, SMT4, SMT8), the two copies

of the GPR and VSR have different contents. The threads
are split into two thread sets and each thread set is restricted to
using only one UniQueue half and associated registers and
execution pipelines. Fixed-point, floating-point, vector and
load/store instructions from even threads (T0, T2, T4, T6) can
only be placed in UQ0, can only access GPR0 and VSR0,
and can only be issued to FX0, LS0, L0, FP0, VSX0, and
VMX0 pipelines. Fixed-point, floating-point, vector and
load/store instructions from odd threads (T1, T3, T5, T7)
can only be placed in UQ1, can only access GPR1 and VSR1,
and can only be issued to FX1, LS1, L1, FP1, VSX1, and
VMX1 pipelines. Cryptographic and decimal floating-point
instructions from a thread can only be placed in the
corresponding UniQueue half, but since there is only
one instance of each of these units, all instructions are
issued to the same unit.
Branches and condition register logical instructions have

their own dedicated issue queues and execution pipelines,
which are shared by all threads.

Instruction Fetch Unit
The Instruction Fetch Unit (IFU) in the POWER8 processor
(POWER8 IFU) is responsible for feeding the rest of
the instruction pipeline with the most likely stream of
instructions from each active hardware thread. It uses branch
prediction mechanisms, described below, to produce this
stream well ahead of the point of execution of the latest
committed instruction. The IFU is also responsible for
maintaining a balance of instruction execution rates
from the active threads using software-specified thread
priorities, decoding and forming groups of instructions
for the rest of the instruction pipeline, and executing
branch instructions. The normal flow of instructions
through the IFU includes six fetch and five decode
pipeline stages, as shown in Figure 3. (The last fetch
and first decode stages overlap.)
The POWER8 IFU has several new features relative to the

POWER7 processor IFU. Support for SMT8 and additional
concurrent LPARs (logical partitions) required changes in
sizes for many resources in the IFU. In addition,
the following changes were made to improve the overall
performance of the POWER8 core: First, instruction
cache alignment improvements result in a higher average
number of instructions fetched per fetch operation. Second,
branch prediction mechanism improvements result in more
accurate target and direction predictions. Third, group
formation improvements allow more instructions per dispatch
group, on average. Fourth, instruction address translation
hit rates were improved. Fifth, instruction fusion is used
to improve performance of certain common instruction
sequences. Finally, better pipeline hazard avoidance

mechanisms reduce pipeline flushes. These improvements are
describes in detail in the following sections.

Instruction fetching and predecoding
The POWER8 core has a dedicated 32 KB, 8-way set
associative L1 I-cache. It is based on a 16-way banked
design to avoid read and write collisions. A 32 � 8-entry
Instruction Effective Address Directory (IEAD) provides
fast prediction for way selection to choose one fetch line from
the eight ways. A traditional full I-cache directory (I-dir) is
accessed in parallel to confirm the way selection prediction
in the next cycle. The I-cache can be addressed on any
16-byte boundary within the 128-byte cache line.
Fast instruction address translation for instruction fetch

is supported by a fully associative 64-entry Instruction
Effective to Real Address translation Table (IERAT). The
IERAT is shared among all threads. The IERAT directly
supports 4 KB, 64 KB, and 16 MB page sizes. Other
page sizes are supported by storing entries with the next
smaller supported page size.
The IFU reads instructions into the I-cache from the L2

unified cache. Each read request for instructions from the
L2 returns four sectors of 32 bytes each. These reads are
either demand loads that result from I-cache misses or
instruction prefetches. For each demand load request, the
prefetch engine initiates additional prefetches for sequential
cache lines following the demand load. Demand and prefetch
requests are made for all instruction threads independently,
and instructions may return in any order, including
interleaving of sectors for different cache lines. Up to
eight instruction read requests can be outstanding from the
core to the L2 cache. Instruction prefetching is supported in
ST, SMT2, and SMT4 modes only. Up to three sequential
lines are prefetched in ST mode and one sequential line per
thread in SMT2 and SMT4 modes. There is no instruction
prefetching in SMT8 mode to save on memory bandwidth.
Prefetches are not guaranteed to be fetched and depending
on the congestion in the POWER8 processor nest, some
prefetches may be dropped.
When instructions are read from the L2 cache, the IFU

uses two cycles to create predecode and parity bits for each
of the instructions, before they are written into the I-cache.
The predecode bits are used to scan for taken branches,
help group formation, and denote several exception cases.
Branch instructions are modified in these stages to help
generate target addresses during the branch scan process that
happens during the instruction fetch stages of the pipeline.
The modified branch instruction, with a partially computed
target address, is stored in the I-cache. Three cycles after
a 32-byte sector of instructions arrives on the I-cache/L2
interface, the sector is written into the I-cache. If the
requesting thread is waiting for these instructions, they
are bypassed around the I-cache to be delivered to the
instruction buffers and the branch scan logic.
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Instruction Fetch Address Registers (IFARs) track
program counter addresses for each thread. On each cycle,
the IFAR register for one of the threads is selected to provide
the fetch address to the I-cache complex and the branch
prediction arrays. The I-cache fetch process reads quad-word
aligned block of up to eight instructions per cycle from the
I-cache and writes them into the instruction buffers where
they are later formed into dispatch groups. Quadword-aligned
fetch ensures that for a non-sequential fetch at least
one instruction from the first quadword and four instructions
from the second quadword are fetched as long as there is
a cache hit and both quadwords are within the cache line.
Thread priority, pending cache misses, instruction buffer
fullness, and thread balancing metrics are used to determine
which thread is selected for instruction fetching in a
given cycle.
The IFU allocates fetch cycles within threads of the same

partition based on the priorities associated with each thread.

The POWER8 IFU includes a new Relative Priority Register
(RPR) allowing the software to optimize the weightings of
each of the thread priorities for optimal performance. Thread
priority is based on the Relative Priority Register and
partition fairness. If a thread does not have space for new
instructions in its instruction buffer, another thread can be
chosen so no cycles are wasted. The RPR value determines
the relative number of cycles that will be allocated to each
thread. When there are multiple partitions running on the
same core (as in the Bsplit core mode[ discussed in the
Introduction) the fetch cycles are divided equally between the
partitions. If one of the partitions does not have any threads
that are ready to fetch, its fetch cycles are relinquished to
the next partition that has threads that are ready to fetch.

Group formation
Fetched instructions are processed by the branch scan logic
and are also stored in the instruction buffers (IBUF) for

Figure 3

POWER8 instruction fetch unit logical flow. The labels on the right of the figure denote the instruction fetch (IF) and instruction decode (ID) stages.
(EAT: effective address table, eatag: effective address tag; iop: internal operation.)
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group formation. The IBUF can hold up to 32 entries, each
four instructions wide. Each thread can have four entries in
SMT8 mode, eight entries in SMT4 mode and 16 entries
in SMT2 and ST modes. Instructions are retrieved from the
IBUF and collected into groups. Thread priority logic selects
one group of up to six non-branch and two branch
instructions in ST mode or two groups (from two
different threads) of up to three non-branch and one
branch instructions in SMT modes per cycle for
group formation.

Instruction decode
After group formation, the instructions are either decoded or
routed tomicrocode hardware that breaks complex instructions
into a series of simple internal operations. Simple instructions
are decoded and sent to dispatch. Complex instructions that
can be handled by two or three simple internal operations are
cracked into multiple dispatch slots. Complex instructions
requiring more than three simple internal operations are
handled in the microcode engine using a series of simple
internal operations. Microcode handling continues until

the architected instruction is fully emulated. The decode
and dispatch section of the IFU also handles illegal
special-purpose register (SPR) detection, creation of
execution route bits and marking of instructions for
debugging and performance monitoring purposes.

Instruction fusion
For select combinations of instructions, the POWER8 core is
capable of fusing two adjacent architected instructions into
a single internal operation. Programs exploiting new features
introduced via fusion execute correctly on older processors,
thus enabling compatibility across the POWER processor
line while exploiting the latest POWER8 features. In
addition, fusion-based sequences can specify operations
that cannot traditionally be encoded in the POWER 32-bit
fixed-width RISC ISA. Figure 4 shows examples of the
three different types of fusion.
One class of fusable sequences accelerates address

computations for data accesses: the instruction fetch unit
decodes a sequence of add-immediate instructions together
with certain load instructions and optimizes them. One

Figure 4

Instruction fusion in the POWER8 processor can be used for a variety of purposes that improve performance. (a) Two dependent instructions are
transformed into two independent internal operations. (b) Two dependent instructions are transformed into a single internal operation. (c) A branch is
transformed into predicated execution.
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such sequence combines add immediate instructions used
to load a displacement with register indexed load instructions
to create register plus displacement internal instructions
which allow the load instructions to execute in parallel
with the add immediate instructions [Figure 4(a)]. Another
form of fusion directed at address calculation merges
add-immediate-shifted and load with 16-bit displacement
into a single internal load instruction with a wider
displacement. On POWER processors, this sequence is
commonly used by software to extend the addressing
range of memory access instructions beyond the 16-bit
displacement that can be specified with register plus
displacement address mode instructions. This optimization
supports faster processing of load operations with
displacements up to �1 MB (i.e., 21 bits), caused by the
growing data sets of traditional and emerging applications
[Figure 4(b)].
A second class of fusion is for conditional branches

skipping over a single instruction. When a conditional branch
is followed by certain fixed-point or store instructions,
the second instruction can be converted into a predicated
operation to eliminate branch processing, including any
possible mispredictions [Figure 4(c)].

Branch prediction
The POWER8 core uses separate mechanisms to predict the
branch direction (that is, whether a conditional branch is
predicted to be taken, or not taken) and the branch target
address. In the Power ISA, the target address for a
conventional branch instruction can be computed from the
instruction encoding and its address, as the displacement
is an immediate field in the instruction. The target address
of a branch-to-link or branch-to-count instruction is
architecturally available in the link or count register. Since
the link or count register can be updated anytime before the
execution of these instructions, the target address of these
branches cannot be computed ahead of time and hence it
needs to be predicted to enable instruction fetch to stay well
ahead of the point of execution.
The POWER8 IFU supports a three-cycle branch scan

mechanism that fetches 32 bytes (corresponding to eight
instructions) from the I-cache, scans the fetched instructions
for branches that are predicted taken, computes their target
addresses (or predicts the target address for a branch-to-link
or branch-to-count instruction), determines if any of these
branches (in the path of execution) is unconditional or
predicted taken and if so, makes the target address of the
first such branch available for next fetch for the thread.
It takes three cycles to obtain the next fetch address when

there is a taken branch, and for two of these cycles there
is no fetch for the thread. However, in SMT mode, those
two cycles will normally be allocated to other active threads,
and thus not lost. If the fetched instructions do not contain
any branch that is unconditional or predicted taken, the

next sequential address is used for the next fetch for that
thread and no fetch cycles are lost.
The direction of a conditional branch is predicted using

a complex of Branch History Tables (BHT), consisting of a
16K-entry local BHT array (LBHT), a 16K-entry global
BHT array (GBHT) and a 16K-entry global selection array
(GSEL). These arrays are shared by all active threads and
provide branch direction predictions for all the instructions
in a fetch sector in each cycle. A fetch sector can have up
to eight instructions, all of which can be branches. The LBHT
is directly indexed by 14 bits from the instruction fetch
address. The GBHT and GSEL arrays are indexed by the
instruction fetch address hashed with a 21-bit Global History
Vector (GHV) folded down to 11 bits. The value in the GSEL
entry is used to choose between the LBHT and GBHT,
for the direction prediction of each individual branch. All
BHT entries consist of two bits with the higher order bit
determining direction (taken or not taken), and the lower order
bit providing hysteresis. There is one GHV for every thread
in the POWER8 core to track the past branch history for
that particular thread.
If the effect of a conditional branch is only to conditionally

skip over a subsequent fixed-point (FX) or load/store (LS)
instruction (called a Bbc+8[ branch) and the branch is highly
unpredictable, the POWER8 processor can often detect
such a branch, remove it from the instruction pipeline and
conditionally execute the FX/LS instruction. The conditional
branch is converted to a Bresolve[ internal operation (iop) and
the subsequent FX/LS instruction is made dependent on the
resolve iop. When the condition is resolved, depending on the
taken/not-taken determination of the condition, the FX/LS
instruction is either executed or ignored. This may cause a
delayed issue of the FX/LS instruction, but it prevents a
potential pipeline flush due to a mispredicted branch.
Branch target addresses are predicted using two distinct

mechanisms with a selection process to determine which
mechanism should be used to make the final target
prediction. Indirect branches that are not subroutine returns
are predicted using a 256-entry local count cache and a
512-entry global count cache, shared by all active threads.
The local count cache is indexed using eight bits from the
instruction fetch address. The global count cache is indexed
using an address obtained by doing an XOR of nine bits each
from the instruction fetch address and the GHV. Each
entry in the global count cache contains a 30-bit predicted
address along with two confidence bits. The upper 32 address
bits are assumed to match the current fetch address. Each
entry in the local count cache contains a 62-bit predicted
address along with a confidence bit. The confidence bits are
used to determine when an entry should be replaced if an
indirect branch prediction is incorrect. In addition, there
is a 2-bit saturating counter in each entry of the local count
cache which is used to determine which of the two count
cache should be used for prediction. This 2-bit counter is

2 : 8 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 59 NO. 1 PAPER 2 JANUARY/FEBRUARY 2015



incremented or decremented, based on which of the two
mechanisms is successful in making the correct prediction.
Subroutine returns are predicted using a link stack, one per

thread. Whenever a branch-and-link (BL) instruction is found
in the path of fetched instructions by the branch scanning
logic, the address of the next instruction is Bpushed down[
in the link stack for that thread. The link stack is Bpopped[
whenever a branch-to-link (BLR) instruction is scanned.
Entries are pushed and popped speculatively, as the
instructions fetched depend on the previously predicted
execution path, which is possibly wrong. The POWER8 link
stack contains a graph of subroutine addresses. At any given
time, only one path linking the root node and a leaf node
is the valid link stack; other paths must be stored because
control flow that created the multiple paths is not resolved yet.
Because of this method, the POWER8 link stack supports
subroutine return predictions for programs with complex
nested subroutine call-return structures. In ST and SMT2
modes, each thread uses a 32-entry link stack. In SMT4 mode,
each thread uses a 16-entry link stack. In SMT8, each thread
uses an 8-entry link stack.

Pipeline hazards
The POWER8 IFU also implements mechanisms to mitigate
performance degradation associated with pipeline hazards.
A Store-Hit-Load (SHL) is an out-of-order pipeline hazard
condition, where an older store executes after a younger
overlapping load, thus signaling that the load received stale
data. The POWER8 IFU has logic to detect when this
condition exists and provide control to avoid the hazard by
flushing the load instruction which received stale data (and
any following instructions). When a load is flushed due
to detection of a SHL, the fetch address of the load is saved
and the load is marked on subsequent fetches allowing the

downstream logic to prevent the hazard. When a marked load
instruction is observed, the downstream logic introduces an
explicit register dependency for the load to ensure that it is
issued after the store operation.

Dynamic configuration of IFU mechanisms
The POWER8 processor also added a Workload
Optimization Register for Thread control (WORT) to
allow dynamic control over some of the IFU mechanisms.
The mechanisms can be used to specifically tune the
microarchitecture for a given workload. While these controls
can generally provide improved performance for a specific
workload, they can also degrade the performance for other
workloads. WORT control includes the use of the global
predictors in branch prediction, I-cache prefetch, instruction
speculation, bc+8 conversion to predication, SHL avoidance
and instruction group ending on backward branch.

Instruction Sequencing Unit
The Instruction Sequencing Unit (ISU) dispatches instructions
to the various issue queues, renames registers in support of
out-of-order execution, issues instructions from the various
issues queues to the execution pipelines, completes executing
instructions, and handles exception conditions. Figure 5
illustrates the logical flow of instructions in the ISU.
The POWER8 processor dispatches instructions on a

group basis. In ST mode, it can dispatch a group of up to
eight instructions per cycle. In SMT mode, it can dispatch
two groups per cycle from two different threads and each
group can have up to four instructions. All resouces such
as the renaming registers and various queue entries must
be available for the instructions in a group before the group
can be dispatched. Otherwise, the group will be held at the
dispatch stage. An instruction group to be dispatched can

Figure 5

POWER8 instruction sequencing unit (logical flow).

B. SINHAROY ET AL. 2 : 9IBM J. RES. & DEV. VOL. 59 NO. 1 PAPER 2 JANUARY/FEBRUARY 2015



have at most two branch and six non-branch instructions
from the same thread in ST mode. If there is a second branch,
it will be the last instruction in the group. In SMT mode,
each dispatch group can have at most one branch and
three non-branch instructions.
The ISU employs a Global Completion Table (GCT) to

track all in-flight instructions after dispatch. The GCT has
28 entries that are dynamically shared by all active threads.
In ST mode, each GCT entry corresponds to one group of
instructions. In SMT modes, each GCT entry can contain
up to two dispatch groups, both from the same thread.
This allows the GCT to track a maximum of 224 in-flight
instructions after dispatch.
Each GCT entry contains finish bits for each instruction

in the group. At dispatch, the finish bits are set to reflect
the valid instructions. Instructions are issued out of order and
executed speculatively. When an instruction has executed
successfully (without a reject), it is marked as Bfinished.[
When all the instructions in a group are marked Bfinished,[
and the group is the oldest for a given thread, the group can
Bcomplete.[ When a group completes, the results of all its
instructions are made architecturally visible and the resources
held by its instructions are released. In SMT modes, the
POWER8 core can complete one group per thread set per
cycle, for a maximum total of two group completions per
cycle. In ST mode, only one group, consisting of up to eight
instructions, can complete per cycle. When a group is
completed, a completion group tag (GTAG) is broadcast so
that resources associated with the completing group can be
released and reused by new instructions.
Flush generation for the core is also handled by the ISU.

There are many reasons to flush speculative instructions
from the instruction pipeline such as branch misprediction,
load/store out-of-order execution hazard detection, execution
of a context synchronizing instruction, and exception
conditions. The GCT combines flushes for all groups to
be discarded into a 28-bit mask, one bit for each group.
The GCT also sends out the GTAG for partial-group flushes,
which occurs when the first branch is not the last instruction
in the group, and it mispredicts, causing a need to flush all
subsequent instructions from the thread. A 6-bit slot mask
accompanies the partial flush GTAG to point out which
instructions in the group need to be partially flushed. In
addition to discarding some of the operations in the partially
flushed group, all the operations in all the flushed groups
are also discarded.
Register renaming is performed using the Mapper logic

before the instructions are placed in their respective issue
queues. The following Power ISA registers are renamed
in the POWER8 core: GPR (general-purpose registers), VSR
(vector-and-scalar registers), XER (fixed-point exception
register), CR (condition register), FPSCR (floating-point status
and control register), LR (link register), CTR (count register),
and TAR (target address register, new in Power ISA 2.07).

In all single thread and SMT modes, a total of 106 rename
(non-architected) states are available across all the threads
for GPR and VSR. Two levels of register files are used in
POWER8 design to track all the renamed and architected
states, as well as checkpointing the GPR/VSR architected
states for transactional memory. The first level, GPR and
VSR register files, contain all the renames and some of the
architected states. The second level, Software Architected
Registers (SAR), can contain the entire GPR
and VSR architected states, along with the checkpointed
architected states due to transactional memory.
GPR registers are mapped onto a pair of 124-entry GPR

register files. In ST mode, the two register files have the
same contents and 92 entries are available for renaming, while
32 entries are used for architected states. In SMT2 mode,
each thread uses one GPR register file and 92 renames and
32 architected registers are available to each thread from its
GPR register file. In SMT4 mode, each GPR register file
supports two threads with 60 available for rename and
64 available for architected states. In SMT8 mode, each
GPR register file supports four threads with 60 available for
rename and 64 available for architected states. Since 64 is not
enough to store the GPR archiected states for the four threads,
SAR contains the entirety of the GPR architected states.
VSR registers are mapped onto a pair of 144-entry VSR

register files. In ST mode the two register files have the same
contents and 80 entries are available for renaming, while
64 entries are used for architected states. In SMT2 mode,
each thread uses a separate VSR register file and 80 renames
and 64 archtiected registers are available to each thread
from its VSR register files. In SMT4 and SMT8 modes, each
VSR register file supports half the threads with 60 available
for rename and 64 available for architected states, while
SAR contains the entirety of the VSR architected states.
There are two sets of SAR register files, one for GPR and

the other for VSR. GPR/VSR SAR contains castouts of
the architected states from the GPR/VSR register files.
The GPR SAR register file has 72 entries per thread:
32 architected GPR, 4 eGPR that are used for micro-coded
instructions and another 32+4 for checkpointing the
architected states due to Transactional Memory. The VSR
SAR register file has 128 entries per thread: 64 architected
VSR, and another 64 for checkpointing the architected
states due to Transactional Memory.
As mentioned earlier, the total number of GPR and VSR

rename states is limited to 106 in all modes. Renames are
available only in the GPR or VSR register files, while the
architected states can be found either in the GPR/VSR
register files or in their corresponding SAR register files. ISU
maintains a tracking mechanism to determine where a given
register’s architected state can be found in a given cycle.
The CR registers (one per thread) are mapped onto a

32-entry rename mapper plus a 64-entry Architected Register
File for the complete architected state (eight CR fields per
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thread). The XER register is broken into four separately
renamed fields, and one non-renamed field per thread. The
renamed fields of the XER registers are mapped onto a
30-entry rename mapper plus 32-entry Architected Register
File for the architected state of the (up to) eight threads. The
LR, CTR and TAR registers are mapped onto a 20-entry
rename mapper plus 24-entry Architected Register File
(one LR, one CTR, and one TAR for each of eight threads).
The FPSCR is renamed using a 28-entry buffer to keep
the state of the FPSCR associated with the instructions
in the corresponding entry in the GCT. Each of the above
resources has a separate rename pool which can be accessed
independently and shared by all active threads. Instructions
that update more than one destination registers are broken into
sub-instructions.
The ISU assigns Load Tags (LTAG) and Store Tags

(STAG) to manage the flow of load and store instructions.
An LTAG corresponds to a pointer to the Load Reorder
Queue (LRQ) entry assigned to a load instruction. An STAG
corresponds to a pointer to the Store Reorder Queue (SRQ)
entry assigned to a store instruction. Store instructions are
issued twice, once as a store data internal operation (to fetch
the store data from a register) and once as a store address
internal operation (to compute the address of the store). The
STAG is used to match up the store data internal operation
with the store address internal operation in the SRQ. A virtual
STAG/LTAG scheme is used to minimize dispatch holds
due to running out of physical SRQ/LRQ entries. When a
physical entry in the LRQ is freed up, a virtual LTAG will
be converted to a real LTAG. When a physical entry in the
SRQ is freed up, a virtual STAG will be converted to a
real STAG. Virtual STAG/LTAGs are not issued to the
LSU until they are subsequently marked as being real in
the UniQueue. The ISU can assign up to 128 virtual LTAGs
and 128 virtual STAGs to each thread.
The POWER8 processor employs three separate issue

queues: a 15-entry Branch Issue Queue (BRQ) for branch
instructions, an 8-entry Condition Register Queue (CRQ) for
condition register instructions, and a 64-entry UniQueue
consisting of the UQ0 and UQ1 halves for all other
instructions. Dispatched instructions are stored in the
corresponding issue queues and then issued to the execution
units one cycle after dispatch at the earliest for the BRQ/CRQ
and three cycles after dispatch at the earliest for the UniQueue.
The BRQ and CRQ are shifting queues, where dispatched

instructions are placed at the top of the queue and then
trickle downward toward the bottom of the queue. To
save power, the UniQueue is implemented as a non-shifting
queue and managed by queue position pointers. The queue
position pointers are shifted, but the UniQueue entries
themselves do not move, which significantly reduces the
switching power in the large UniQueue.
Instructions can issue in out-of-order from all of these

queues, with higher priority given to the older ready

instructions. An instruction in an issue queue is selected
for isssuing when all source operands for that instruction
are available. In addition, the LTAG or STAG must have
a real entry for a load or store instruction respectively,
before it can be issued. For the BRQ and CRQ, instruction
dependencies are checked by comparing the destination
physical pointer of the renamed resource against all
outstanding source physical pointers. For the UniQueue,
dependencies are tracked using queue pointers via a
dependency matrix. The issue queues together can issue a
total of ten intructions per cycle: one branch, one condition
register logical, two fixed-point instructions to the FXU,
two load, store or simple fixed-point instructions to the LSU,
two load or simple fixed point instructions to the LU, and
two vector-scalar instructions (floating-point, VMX or VSX)
to the VSU. DFU and Crypto instructions can also be issued
using the VSU slots (up to one of each type per cycle).
The BRQ contains only branch instructions and it receives

up to two branches per cycle from the dispatch stage, and
can issue one branch instruction per cycle for execution to
the IFU. The CRQ contains the CR logical instructions and
move from SPR instructions for the IFU, the ISU, and the
Pervasive Control Unit (PCU). The CRQ can receive up to
two instructions per cycle from dispatch, and can issue one
instruction per cycle to the IFU.
The UniQueue is implemented as a 64-entry queue that

is split into two halves (UQ0 and UQ1) of 32 entries each.
Each half of the queue contains all instructions that are
executed by the FXU, LSU, LU, VSU, DFU, or Crypto
units. Instructions are steered at the dispatch stage to the
appropriate UniQueue half. The UniQueue can receive up
to three instructions from dispatch per cycle per UniQueue
half. Relative age of the instructions in the UniQueue is
determined by an age matrix, since it is a non-shifting queue,
that is written at dispatch time.
Each half of the UniQueue can issue one fixed-point

instruction to the FXU, one load, store or simple
fixed-point instruction to the LSU, one load or simple
fixed-point instruction to the LU, and one vector-and-scalar
instruction to the VSU per cycle, for a total of four
instructions per cycle. Simple fixed-point instructions may
be selected for issue to the LSU and LU for improved
fixed-point throughput, with the same latency as a load
operation from L1 D-cache.
Instructions are issued speculatively, and hazards can

occur, for example, when a fixed-point operation dependent
on a load operation is issued before it is known that the l
oad misses the D-cache or the DERAT (see the Load/Store
Unit description below). On a mis-speculation, the
instruction is rejected and re-issued a few cycles later.

Load/Store Unit
The Load/Store Unit (LSU) is responsible for executing all
the load and store instructions, managing the interface of
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the core with the rest of the systems through the unified
L2 cache and the Non-Cacheable Unit (NCU), and
implementing address translation as specified in the Power
ISA. The POWER8 LSU contains two symmetric load
pipelines (L0 and L1) and two symmetric load/store pipelines
(LS0 and LS1). Figure 6 illustrates the microarchitecture
of the POWER8 LS0 pipeline.

Data fetching
Each of the LS0 and LS1 pipelines are capable of executing
a load or a store operation in a cycle. Furthermore, each of L0
and L1 pipelines are capable of executing a load operation
in a cycle. In addition, simple fixed-point operations can
also be executed in each of the four pipelines in the LSU,
with a latency of three cycles.

The LSU contains several subunits, including the load/store
address generation (AGEN) and execution subunits, the store
reorder queue (SRQ), the store data queue (SDQ), the load
reorder queue (LRQ), the load miss queue (LMQ), and the
L1 data cache array (D-cache) with its supporting set predict
and directory arrays (DDIR), and the data prefetch engine
(PRQ). The address translationmechanism in the LSU includes
the Effective-to-Real Address Translation for data (DERAT),
the Effective-to-Real Address Translation (ERAT)Miss Queue
(EMQ), the Segment Lookaside Buffer (SLB), and TLB.

Load/store execution
In ST mode, a given load/store instruction can execute in any
appropriate pipeline: LS0, LS1, L0 and L1 for loads, LS0
and LS1 for stores. In SMT2, SMT4, and SMT8 mode,

Figure 6

POWER8 LSU micro architecture (LS0 pipe shown).
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instructions from half of the threads execute in pipelines
LS0 and L0, while instructions from the other half of the
threads execute in pipelines LS1 and L1.
Instructions are issued to the load/store unit out-of-order,

with a bias towards the oldest instructions first. Stores are
issued twice; an address generation operation is issued to
the LS0 or LS1 pipeline, while a data operation to retrieve
the contents of the register being stored is issued to the L0 or
L1 pipeline.
Main dataflow buses into and out of the LSU include

a 64-byte reload data bus from and a 16-byte store data bus to
the L2 cache, two 16-byte load data buses (one per execution
pipeline) to and two 16-byte store data buses from the VSU,
and two 8-byte store data buses (one per execution pipeline)
from the FXU. The load data buses to the VSU have each
a tap off of 8-byte load data to a corresponding FXU
execution pipeline.
Fixed-point loads have a three-cycle load-to-use latency

on a L1 D-cache hit. That is, two cycles of bubbles are
introduced between a load and a dependent FXU operation.
VSU loads have a five-cycle load-to-use latency on a L1
D-cache hit. That is, four cycles of bubbles are introduced
between a load and a dependent VSU operation.
Each of the four LSU pipelines can also execute fixed-point

add and logical instructions (simple fixed-point), allowing
more fixed-point execution capability for the POWER8 core
and greater flexibility to the ISU in the issuing of instructions.

Load/store ordering
The LSU must ensure the effect of architectural program order
of execution of the load and store instructions, even though
the instructions can be issued and executed out-of-order. To
achieve that, the LSU employs two main queues: the store
reorder queue (SRQ) and the load reorder queue (LRQ).
The SRQ is a 40-entry, real address based CAM structure.

Whereas 128 virtual entries per thread are available to
allow a total of 128 outstanding stores to be dispatched per
thread, only a total of 40 outstanding stores may be issued,
since a real, physical SRQ entry is required for the store
to be issued. The SRQ is dynamically shared among the
active threads. An SRQ entry is allocated at issue time and
de-allocated after the completion point when the store is
written to the L1 D-cache and/or sent to the L2 Cache. For
each SRQ entry, there is a corresponding store data queue
(SDQ) entry of 16 bytes. Up to 16 bytes of data for a store
instruction can be sent to the L2 Cache (and also written
to the L1 D-Cache on a hit) in every processor cycle. Store
forwarding is supported, where data from an SRQ entry is
forwarded to an inclusive, subsequent load, even if the store
and load instructions are speculative.
Similar to the SRQ, the LRQ is a 44-entry, real address

based, CAM structure. Again, 128 virtual entries per thread
are available to allow a total of 128 outstanding loads to
be dispatched per thread, but only a total of 44 outstanding

loads may be issued, since a real, physical LRQ entry is
required for the load to be issued. The LRQ is dynamically
shared among the threads. The LRQ keeps track of
out-of-order loads, watching for hazards. Hazards generally
exist when a younger load instruction executes out-of-order
before an older load or store instruction to the same address
(in part or in whole). When such a hazard is detected, the
LRQ initiates a flush of the younger load instruction and all its
subsequent instructions from the thread, without impacting
the instructions from other threads. The load is then re-fetched
from the I-cache and re-executed, ensuring proper load/store
ordering.

Address translation
In the Power ISA, programs execute in a 64-bit effective
addresses space. (A 32-bit operating mode supports the
execution of programs with 32-bit general purpose registers
and 32-bit effective addresses.) During program execution,
64-bit effective addresses are translated by the first level
translation into 50-bit real addresses that are used for
all addressing in the cache and memory subsystem.
The first level translation consists of a primary Data

Effective-to-Real Address Translation (DERAT), a secondary
DERAT, and an Instruction Effective-to-Real Address
Translation (IERAT, already discussed in the Instruction
Fetch Unit Section). When a data reference misses the
primary DERAT, it looks up the address translation in
the secondary DERAT. If the translation is found in the
secondary DERAT, it is then loaded into the primary DERAT.
If the translation is not found in either the primary or the

secondary DERAT, the second-level translation process is
invoked to generate the translation. When an instruction
reference misses the IERAT, the second-level translation is
also invoked to generate the translation. The second-level
translation consists of a per-thread Segment Lookaside
Buffer (SLB) and a TLB that is shared by all active threads.
Effective addresses are first translated into 78-bit virtual

addresses using the segment table and the 78-bit virtual
addresses are then translated into 50-bit real addresses using
the page frame table. While the architected segment and
page frame tables are large and reside in main memory, the
SLB and TLB serve as caches of the recently used entries
from the segment table and page frame table, respectively.
The POWER8 processor supports two segment sizes,
256 MB and 1 TB, and four page sizes: 4 KB, 64 KB,
16 MB, and 16 GB.
The primary DERAT is a 48-entry, fully-associative,

Content Addressed Memory (CAM) based cache. Physically,
there are four identical copies of the primary DERAT,
associated with the two load/store pipelines and two load
pipelines. In ST mode, the four copies of the primary
DERAT are kept synchronized with identical contents. So,
in ST mode, logically there are a total of 48 entries available.
In the SMT modes, two synchronized primary DERATs
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(in LS0 and L0 pipes) contain translation entries for half of
the active threads while the two other synchronized primary
DERATs (in LS1 and L1 pipes) contain translation entries
for the other half of the active threads. In the SMT modes, the
first two paired primary DERATs contain addresses that can
be different from the other two paired primary DERATs,
for a total of 96 logical entries. Each Primary DERAT
entry translates either 4 KB, 64 KB, or 16 MB pages. The
16 GB pages are broken into 16 MB pages in the primary
DERAT. The primary DERAT employs a binary tree Least
Recently Used (LRU) replacement policy.
The secondary DERAT is a 256-entry, fully associative,

CAM-based cache. In single thread mode, all 256 entries are
available for that thread. In SMT mode, the secondary
DERAT is treated as two 128-entry arrays, one for each
thread set. The secondary DERAT replacement policy is a
simple First-In First-Out (FIFO) scheme.
The SLB is a 32-entry-per-thread, fully associative,

CAM-based buffer. Each SLB entry can support 256 MB or
1 TB segment sizes. The Multiple Pages Per Segment (MPSS)
extension of Power ISA is supported in the POWER8
processor. With MPSS, a segment with a base page size of
4 KB can have 4 KB, 64 KB, and 16 MB pages concurrently
present in the segment. For a segment with a base page size
of 64 KB, pages of size 64 KB and 16 MB are allowed
concurrently. The SLB is managed by supervisor code,
with the processor generating a data or instruction segment
interrupt when an SLB entry needed for translation is
not found.
The TLB is a 2,048-entry, 4-way set associative buffer.

The TLB is managed by hardware, and employs a true LRU
replacement policy. A miss in the TLB causes a table-walk
operation, by which the TLB is reloaded from the page
frame table in memory. There can be up to four concurrent
outstanding table-walks for TLB misses. The TLB also
provides a hit-under-miss function, where the TLB can be
accessed and return translation information to the DERAT
while a table-walk is in progress. In the POWER8 LSU, each
TLB entry is tagged with the LPAR (logical partition)
identity. For a TLB hit, the LPAR identity of the TLB
entry must match the LPAR identity of the active partition
running on the core. When a partition is swapped in, there
is no need to explicitly invalidate the TLB entries. If a
swapped-in partition has run previously on the same core,
there is a chance that some of its TLB entries are still available
which reduces TLB misses and improves performance.

L1 data cache organization
The POWER8 LSU contains a dedicated 64 KB, 8-way
set-associative, banked L1 D-cache. The cache line size is
128 bytes, consisting of four sectors of 32 bytes each. There
is a dedicated 64-byte reload data interface from the L2
cache, which can supply 64 or 32 bytes of data in every
processor cycle. The cache line is validated on a sector

basis as each 32-byte sector is returned from the memory
subsystem. Loads can hit against a valid sector before the
entire cache line is validated.
The L1 D-cache has five ports: four read ports and one

write port. The four read ports are available for up to four load
instructions per cycle. The one write port is available for a
cache line reload or a cache store operation per cycle. The
cache store operation is distinct from the issue and execution
of a store instruction. The cache store operation drains
in-order from the store queue (SRQ/SDQ) after the
completion of the store instruction and sends the store data
to both the L1 data cache and the L2 cache at the same time.
A write has higher priority over a read, and a write for a
cache line reload has higher priority than a write for a
completed store instruction. Logic ahead of the L1 D-cache
access can determine whether it is possible to access data
for all four load instructions in a given cycle given the
bank access restrictions described below. If all four loads
cannot access data in a given cycle, two of them will
execute and the other two will be rejected and re-issued.
The L1 D-cache consists of 16 physical macros organized

by data bytes, each macro partitioned into 16 banks based
on effective address bits, for a total of 256 banks. The
physical cache macros are built with 6T cells with dual
read or a single write capability. A bank can do one write
or two read in a given cycle. The cache banking allows for
one write and two reads to occur in the same cycle within one
physical macro, so long as the reads are not to the same
bank(s) as the write. If a read has a bank conflict with a write,
the load instruction is rejected and re-issued. A 64 byte
cache line reload spans 32 banks, and a 32 byte cache line
reload spans 16 banks, while a completed store instruction
spans from one to eight banks depending on data length and
data alignment (nine banks for 16B unaligned data access).
A load is naturally aligned when the address of the load

is an integer multiple of the size of the data being loaded.
All aligned load operations perform at the three-cycle L1
D-cache access latency. Unaligned accesses that do not cross
the 128B boundary also perform at the same latency, if
there is a L1 D-cache hit. An unaligned data access that
crosses the 128B boundary (that is, the cache line boundary)
can incur additional latency compared to a normal data access.
The L1 D-cache is a store-through design. All stored data

are sent to the L2 cache, and no L1 cast outs are required.
The L1 D-cache and L2 cache of the POWER8 processor
follow a strictly inclusive policy. The L1 D-cache is not
allocated on a store miss. Instead, the store is just sent
to the L2 cache. The L1 D-cache has byte write capability
of up to 16 bytes in support of the different types of store
instructions in the Power ISA.
The L1 D-cache is indexed with the effective address (EA)

of a load or store operation. The L1 D-cache directory
employs a hybrid true/binary tree LRU replacement policy.
A capacity of 64 KB and 8-way set associativity results in

2 : 14 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 59 NO. 1 PAPER 2 JANUARY/FEBRUARY 2015



8 KB per way. Therefore, bits 51 through 56 of the effective
address [EA(51:56)] are used to index into the L1 D-cache.
[EA(0) is the most significant bit of the effective address.
EA(57:63) are used to index within a cache line.] A
way-predict array is used to reduce the L1 D-cache load hit
latency. The way-predict array is based on EA and is used
as a mini-directory to select which one of the eight L1
D-cache ways contains the load data. The way-predict array
is organized as the L1 D-cache: indexed with EA(51:56)
and 8-way set-associative. Each entry contains 11 hash bits
obtained from hashing bits EA(32:50), a valid bit for each
thread, and a parity bit.
When a load executes, the generated EA(51:56) is used to

index into the way-predict array, and EA(32:50) is hashed
and compared to the contents of the eight ways of the
indexed entry. When an EA hash match occurs and the
appropriate thread valid bit is active, the match signal is used
as the way select for the L1 D-cache data. If there is no
EA hash match, it indicates a cache miss. However, an EA
hash match does not necessarily mean a L1 D-cache hit.
For L1 D-cache hit determination, the effective address
is used to look up the L1 data cache directory for the real
address and then compare this real address with the real
address obtained from the DERAT for the given EA.
When a cache line is first loaded into the L1 D-cache,

the default is to enter it in a shared mode where all thread
valid bits for the line are set. A non-shared mode is
dynamically selected on an entry-by-entry basis to allow
only one thread valid bit to be active. This is beneficial
to avoid thrashing among the threads, allowing the same
EA hash to exist for each thread separately at the same time
when they are assigned to different real addresses (RA).

Storage alignment
The LSU performs most loads and stores that are unaligned
with the same timing as naturally aligned loads and stores.
If data referenced by a load instruction crosses a cache line
boundary and both cache lines are in the L1 data cache,
the access will have only a 5-cycle penalty over a normal L1
D-cache access. In the POWER8 processor all loads that
are allowed to cross a cache line can get this treatment
with any byte alignment. The implementation saves the bytes
from the first cache line access and then 5 cycles later
accesses the second cache line and merges data from the
first cache line with the data from the second cache line.

Load miss handling
Loads that miss the L1 D-cache initiate a cache line reload
request to the L2 Cache. The load releases the issue queue
entry and creates an entry in the Load Miss Queue (LMQ) to
track the loading of the cache line into the L1 D-cache
and also to support the forwarding of the load data to the
destination register. When the load data returns from the
L2 Cache, it gets higher priority in the LSU pipeline and the

data is transferred to the destination register. The LMQ is real
address based, and consists of sixteen entries, dynamically
shared among the active threads. The LMQ tracks all
cache line misses that result in reload data to the L1 D-cache,
which also includes hardware data prefetch requests and
data touch (or software prefetch) instructions, in addition
to load instructions. The LMQ can support multiple misses
(up to eight) to a given L1 D-cache congruence class (also
called a set).

Data prefetch
The purpose of the data prefetch mechanism is to reduce
the negative performance impact of memory latencies,
particularly for technical workloads. These programs often
access memory in regular, sequential patterns. Their working
sets are also so large that they often do not fit into the
cache hierarchy used in the POWER8 processor.
Designed into the load-store unit, the prefetch engine can

recognize streams of sequentially increasing or decreasing
accesses to adjacent cache lines and then request anticipated
lines from more distant levels of the cache/memory
hierarchy. The usefulness of these prefetches is reinforced
as repeated demand references are made along such a path
or stream. The depth of prefetch is then increased until
enough lines are being brought into the L1, L2, and L3
caches so that much or all of the load latency can be hidden.
The most urgently needed lines are prefetched into the
nearest cache levels.
During stream start up, several lines ahead of the current

demand reference can be requested from the memory
subsystem. After steady state is achieved, each stream
confirmation causes the engine to bring one additional line
into the L1 cache, one additional line into the L2 cache,
and one additional line into the L3 cache. To effectively hide
the latency of the memory access while minimizing the
potentially detrimental effects of prefetching such as cache
pollution, the requests are staged such that the line that is
being brought into the L3 cache is typically several lines
ahead of the one being brought into the L1 cache. Because
the L3 cache is much larger than the L1 cache, it can
tolerate the most speculative requests more easily than
the L1 cache can.
Prefetch begins by saving the effective address of the

L1 D-cache misses in a 16-entry queue, offset up or down
by one line address. Prefetch streams are tracked by their
effective addresses and are allowed to cross small (4 KB)
and medium (64 KB) memory page boundaries, but will be
invalidated when crossing a large (16 MB) memory page
boundary. All prefetch requests must therefore go through
address translation before being sent to thememory subsystem.

Fixed-Point Unit
The Fixed-Point Unit (FXU) is composed of two identical
pipelines (FX0 and FX1). As shown in Figure 7, each FXU
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pipeline consists of a multiport General Purpose Register
(GPR) file, an arithmetic and logic unit (ALU) to execute
add, subtract, compares and trap instructions, a rotator (ROT)
to execute rotate, shift and select instructions, a count unit
(CNT) to execute count leading zeros instruction, a bit
select unit (BSU) to execute bit permute instruction, a
miscellaneous execution unit (MXU) to execute population
count, parity and binary-coded decimal assist instructions,
a multiplier (MUL), and a divider (DIV). Certain resources
such as the Software Architected Register file (SAR) and
Fixed-Point Exception Register (XER) file are shared
between the two pipelines.
The most frequent fixed-point instructions are executed

in one cycle and dependent operations may issue back
to back to the same pipeline, if they are dispatched to the
same UniQueue half (otherwise, a one-cycle bubble is
introduced). Other instructions may take two, four, or a
variable number of cycles.
At the heart of each FXU pipeline is a GPR file with

124 entries which holds all the rename and a subset of
the architected registers for up to four threads. Additional
architected registers are kept in the SAR register files. The
GPR has eight read ports, two supplying operands for the
fixed-point pipeline, two supplying operands to the load/store
pipeline, two supplying operands to the load pipeline, and two
supplying register data to the SAR. The GPR has six write
ports: two for the fixed-point pipelines, two for the load/store
pipelines, and two for the load pipelines. (Updates to a
particular GPR can come from either set of
fixed-point, load/store and load pipelines when the core is in
ST mode.) The write ports from the remote fixed-point and
load/store pipelines are shared with write ports from the SAR.
In SMT modes, writes from remote pipelines are disabled
and the ports can be used exclusively to load data from the
SAR. The POWER8 core implements a VSU extract bus
which is routed to the result multiplexer of each FXU pipe.
The extract bus significantly reduces latency for VSR to
GPR transfers.

Figure 7

POWER8 FXU overview (FX0 pipe shown).
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The contents of the two GPR register files in each pipeline
are managed by the ISU to be identical in STmode, but distinct
in SMT2, SMT4, and SMT8 modes. That is, in SMT2,
SMT4, or SMT8 mode the GPR in one pipeline contains the
registers for one set of threads, while the GPR in the other
pipeline contains the registers for the other set of threads.
Each of the two POWER8 FXU pipelines contain a 32- or

64-bit divider implemented using a Sweeney, Robertson, and
Tocher (SRT) algorithm with a radix of r ¼ 16. To improve
throughput during the multi-cycle divide, instructions can
be issued to other execution units (ALU, ROT, BSU, CNT,
MXU, MUL) under a divide operation except when there
is a result bus conflict.
The POWER8 FXU supports Transactional Memory (TM)

by doubling the register space to hold a backup copy of
all the architected registers. Rather than doubling the size
of the GPR, the SAR was added to expand the state space
of the architected GPR registers. The XER, which is the
other architected register in the FXU, had to grow for
TM support. The XER is implemented as a Reorder Buffer
(ROB) and Architected Register File (ARF) structure to
accommodate the increase in state space.

Vector-and-Scalar/Decimal Floating-Point Units
The POWER8 processor Vector-and-Scalar Unit (VSU),
shown in Figure 8, has been completely redesigned from
its initial implementation in the POWER7 processor [4] to
support the growing computation and memory bandwidth
requirements of business analytics and big data applications.
The POWER8 VSU now supports dual issue of all scalar and
vector instructions of the Power ISA defined in Chapter 4
Bfloating point facility[ (FPU), Chapter 5 BVector Facility[
(VMX), and Chapter 7 BVector-Scalar Floating Point
Operations[ (VSX) of Power ISA Book I [5]. Further
improvements include a two-cycle VMX/VSX Permute (PM)
pipeline latency, doubling of the store bandwidth to two
16-byte vectors/cycle to match the 32-byte/cycle load
bandwidth, and execution of all floating-point compare
instructions using the two-cycle Simple Unit (XS) pipeline to
speedup branch execution. Other latencies remain unchanged
from the POWER7 processor design point, supporting fast
six-cycle bypass within the floating-point unit.
The POWER8VSU implements full architected state storage

for 8-way simultaneous multi-threaded (SMT8) execution,
alongside additional checkpoint storage for transactional

Figure 8

POWER8 fully symmetric VSU pipelines. (SPFP: single-precision floating-point; DPFP: double-precision floating-point.)
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memory (TM) support. The total number of 1,024 � 16-byte
VSX registers is implemented as a two-level register space.
The second level, namely the Software Architected Registers
(SAR), maintains all 64 architected VSX registers plus up to
64 TM checkpointed registers per thread. Two copies of a
144-entry vector register file (VRF), one associated with each
UniQueue, constitute the first level register space. Each VRF
contains up to 64 recently used architected registers and up
to 80 in-flight rename registers shared across all threads in
the corresponding UniQueue half. In ST mode, the contents
of both VRFs are kept synchronized. When running in
SMT modes, the two VSU issue ports and VRFs work
separately, thereby doubling the number of in-flight copies
of architected and rename registers. The SAR space always
appears as shared resource of the nine ports and all
eight threads allowing for dynamic movement of threads or
alternation of ST/SMT mode.
The VSU features a large number of new instructions and

architectural refinements for applications like business
analytics, big data, string processing, and security. The VSX
pipelines now supports 2-way 64-bit vector and 128-bit
scalar integer data types and new direct GPR-to/from-VSR
move operations that provide a fixed-latency and high
bandwidth data exchange between the vector and general
purpose registers. The added VMX crypto instruction set is
targeted towards AES, SHA2 and CRC computations and
several instructions have been promoted into VSX to gain
access to all 64 architected vector registers.
Also new vector 32-bit multiply instructions were

introduced to speed-up applications like hashing in business
analytics. By reusing the multiplier hardware in the floating
point units, the new 32-bit multiply instructions could be
added with little additional chip area, while still executing in a
fully pipelined fashion. On signed and unsigned integer data
types, the POWER8 VSU is capable of performing eight word
(32-bit) or 16 halfword (16-bit) or 32 byte multiplies per
cycle. If executing floating point vector instructions, the two
POWER8 Floating Point Units on either VSU pipe operate
pair wise. A single FPU can either operate on 64-bit double
precision data, or on two 32-bit single precision data. As in
the POWER7+ processor [10], the computation bandwidth
of the processor is 16 single-precision floating-point
operations (eight fused-multiply-add operations) per cycle
per core (twice as high as in the POWER7 processor) or
eight double-precision floating-point operations (four
fused-multiply-add operations) per cycle per core. Finally the
POWER8 floating point units support the new VSX Scalar
Floating Point Single Precision instruction set to enable the
use of all 64 VSX registers for single-precision data.
The Decimal Floating Point Unit (DFU) [12] in the

POWER8 core allows fully pipelined execution of the Power
ISA BDecimal Floating Point[ instructions (described in
Power ISA Book I, Chapter 6). The DFU attachment has
greatly been improved to provide symmetrical, conflict-free

access from both UniQueue ports, resulting inmore predictable
execution latencies. The issue-to-issue latency is 13 cycles
for dependent instructions. The DFU is IEEE 754-2008
compliant and includes native support for signed decimal
fixed-point add and fixed-point subtract with an operand
length of up to 31 decimal digits, which speeds up the
execution of business analytics applications such asDB2BLU.
The new VSU microarchitecture doubles the number of

VSX/VMX simple integer and permute units, supports many
new instructions, adds a new crypto engine and greatly
improves attachment of the redesigned DFU pipeline. With
all these enhancements, the overall performance for many
of the new computational intensive workloads is greatly
improved in the POWER8 processor.

Performance monitoring and
adaptive optimization
The POWER8 core was designed with support for adaptive
workload optimization using a variety of technologies.
It introduces a robust and versatile performance monitoring
infrastructure as a key enabler of making such workload
optimization decisions. The POWER8 performance
monitoring unit (PMU) can be used to guide system level
optimizations and settings (such as using the new WORT
microarchitectural control), to collect program profiles for
profile-directed feedback optimization and to support a range
of dynamic compilation and optimization technologies, such
as for Java** just-in-time (JIT) compilers, commonly used
to support a range of business-critical enterprise applications.
To more efficiently integrate the performance monitoring

unit with dynamic compilers, the POWER8 processor
introduces a number of new architected interfaces, including
application-level ones, for configuring and reading collected
performance statistics. In addition, the POWER8 core also
provides a low latency interface for reporting PMU events
with the introduction of event-based branches as a user-level
interrupt facility.
In addition to expanding the possible events available

for execution sampling and summary statistics collection
provided in previous designs, the POWER8 PMU also
supports the collection of path histories. These capture
control flow decisions over a sliding window of the last
n conditional branches executed, giving dynamic compilers
(such as Java JIT compilers) the opportunity to understand
and optimize the dynamic control flow in applications.

Summary and conclusion
The POWER8 processor continues the tradition of
innovation in the POWER line of processors. In addition
to being the best-of-breed design for IBM’s commercial
workloads, the POWER8 processor design is also targeted
for big data, analytics, and cloud application environments
and provides the highest performance design in the industry.
The POWER8 core is designed with high throughput
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performance in mind and supports eight powerful threads
per core. For many commercial workloads, each POWER8
core can provide about 1.5 times more single thread
performance and twice the throughput performance over
a POWER7 core.
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several different processor designs. His research interests are computer
architecture and performance analysis. He has authored many papers
and has been awarded 40 U.S. patents with others pending. He
has been named an IBM Master Inventor. He has received several
IBM awards including two IBM Corporate Awards.

Hung Q. Le IBM Systems and Technology Group, Austin,
TX 78758 USA (hung@us.ibm.com). Mr. Le is an IBM Fellow in the
POWER development team of the Systems and Technology Group.
He joined IBM in 1979 after graduating from Clarkson University with
a B.S. degree in electrical and computer engineering. He worked on
the development of several IBM mainframe and POWER/PowerPC*
processors and has been contributing to the technical advancement
of IBM processor technology such as advanced high-frequency
out-of-order instruction processing, simultaneous multithreading, and
transactional memory. He led the POWER8 chip development and
is developing the microarchitecture of the next Power processor.
He holds more than 100 U.S. patents.

Jens Leenstra IBM Systems and Technology Group,
Boeblingen DE 71032 Germany (leenstra@de.ibm.com). Mr. Leenstra
is an IBM Senior Technical Staff Member and the lead for the IBM
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POWER7 and POWER8 VSU. He worked on the design and
verification of I/O chips, multiprocessor system verification of the
IBM S/390* G2 and G3 mainframe computers, the Cell Broadband
Engine processor SPEs (synergistic processor elements), and
POWER6 processor VMX unit. He has 30 issued patents and is an
IBM Master Inventor.

Dung Q. Nguyen IBM Systems and Technology Group, Austin,
TX 78758 USA (dqnguyen@us.ibm.com) Mr. Nguyen is a Senior
Engineer in the POWER development team of the Systems and
Technology Group. He joined IBM in 1986 after graduating from the
University of Michigan with an M.S. degree in materials engineering.
He has worked on the development of many processors, including
POWER3 through POWER8 processors. He is currently the unit lead
for the Instruction Sequencing Unit on future POWER microprocessors.
He has more than 80 issued patents and is an IBM Master Inventor.

Brian Konigsburg IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (brk@us.ibm.com)
Mr. Konigsburg earned a B.S.E.E. and a B.S.C.S. degree from the
University of Florida. He is a Senior Technical Staff Member in
IBM Research in the Design Automation area. He joined IBM in
1995 and has worked on several IBM POWER and IBM mainframe
processor development teams as a processor core unit lead including
instruction, load/store, and floating point units. He was also
the performance lead for POWER7 and POWER8 processors.
Mr. Konigsburg holds numerous patents in the area of instruction
fetch and out-of-order instruction processing.

Kenneth Ward IBM Systems and Technology Group, Austin,
TX 78758 USA (wardk@us.ibm.com). Mr. Ward earned a B.S. degree
in mathematics and an M.S. degree in electrical engineering from
the University of Florida. He is a Senior Engineer in the POWER
development team of the Systems and Technology Group. He joined
IBM in 1989 and has held a variety of positions in systems integration,
systems development, card design, and processor development. He
has worked in the areas of POWER5 Elastic I/O, POWER6 core
recovery, POWER7 nest fabric, and recently as the unit lead for
the POWER8 Fixed Point Unit (FXU). He is currently working
on the POWER9 completion and flush implementation.

Mary D. Brown IBM Systems and Technology Group, Austin,
TX 78758 USA. Dr. Brown received her B.S. degree in computer
science from Florida State University, her M.S. degree in computer
science and engineering from the University of Michigan, and her
Ph.D. degree in computer engineering from the University of Texas
at Austin. She started working at IBM in 2005 as a logic designer
for the ISU for POWER7. On POWER8, she was the issue queue lead,
and she was the Instruction Fetch Unit Lead starting in 2013.

José E. Moreira IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (jmoreira@us.
ibm.com). Dr. Moreira is a Distinguished Research Staff Member in the
Commercial Systems department at the IBM T. J. Watson Research
Center. He received a B.S. degree in physics and B.S. and M.S. degrees
in electrical engineering from the University of Sao Paulo, Brazil,
in 1987, 1988, and 1990, respectively. He also received a Ph.D.
degree in electrical engineering from the University of Illinois at
Urbana-Champaign in 1995. Since joining IBM at the T. J. Watson
Research Center, he has worked on a variety of high-performance
computing projects. He was system software architect for the
Blue Gene*/L supercomputer, for which he received an IBM Corporate
Award, and chief architect of the Commercial Scale Out project.
He currently leads IBM Research work on the architecture of Power
processor. He is author or coauthor of over 100 technical papers and
ten patents. Dr. Moreira is a member of the Institute of Electrical
and Electronics Engineers (IEEE) and a Distinguished Scientist
of the Association for Computing Machinery (ACM).

David Levitan IBM Systems and Technology Group, Austin,
TX 78750 USA (levitan@us.ibm.com). Mr. Levitan received his
bachelor’s degree in electrical engineering from McGill University
in 1981, and his master’s degree in computer engineering from
Syracuse University in 1987. He is Senior Engineer and a Master
Inventor who has reached the sixteenth invention achievement
plateau at IBM. Mr. Levitan started work at IBM in Poughkeepsie,
New York, in 1981. From 1981 until 1987, he worked in system
simulation on various 3090 processors, and then from 1987 until
1990, he worked in the System Assurance Kernel Group. From
1990 until the present, Mr. Levitan has worked in PowerPC
microprocessor development on various PowerPC microprocessors.

Steve Tung IBM Systems and Technology Group, Austin,
TX 78758 USA (stung@us.ibm.com). Mr. Tung is a senior engineer
in the POWER development team of the Systems and Technology
Group. He has worked on the development of several POWER/PowerPC
processors, particularly in load and store units. Mr. Tung received an
M.S. degree in computer engineering from Syracuse University.

David Hrusecky IBM Systems and Technology Group, Austin,
TX 78758 USA (hrusecky@us.ibm.com). Mr. Hrusecky is an advisory
engineer in the POWER development team of the Systems and
Technology Group. He has worked on core development L1 caches
of several POWER processors, including POWER6, POWER7,
and POWER8. He received a B.S. degree in computer engineering
from Rochester Institute of Technology.

James W. Bishop IBM Systems and Technology Group,
Endicott, NY 13760 USA (bish@us.ibm.com). Mr. Bishop is a Senior
Engineer in the POWER development team of the Systems and
Technology Group. He joined IBM in 1984 after graduating from the
University of Cincinnati with a B.S. degree in electrical engineering. He
subsequently earned an M.S. degree in computer engineering from
Syracuse University in 1993. While at IBM, he has been a logic
designer on memory and processor subsystems for System/390*,
AS/400*, and Power. He has worked on the development of several
POWER processors including POWER6, POWER7, and POWER8.
Mr. Bishop is the author of 12 technical disclosures and 17 patents.

Michael Gschwind IBM Systems and Technology Group,
Poughkeepsie, NY 12601 USA (mkg@us.ibm.com). Dr. Gschwind is
a Senior Technical Staff Member and Senior Manager of the Systems
Architecture team. In this role, Dr. Gschwind is responsible for
the definition of the Power Systems and mainframe architecture.
Previously, he was Chief Floating-Point Architect and Technical Lead
for core reliability for Blue Gene/Q, was the architecture lead for the
PERCS (Productive, Easy-to-use, Reliable Computing System) project
defining the future POWER7 processor, and had key architecture and
microarchitecture roles for the Cell Broadband Engine, Xbox 360**,
and POWER7 processors. Dr. Gschwind also developed the first Cell
compiler and served as technical lead and architect for the development
of the Cell software-development environment. Dr. Gschwind has
published numerous articles and received about 100 patents in the area
of computer architecture. In 2006, Dr. Gschwind was recognized as IT
Innovator and Influencer by ComputerWeek. Dr. Gschwind is a member
of the ACM SIGMICRO Executive Board, a Member of the IBM
Academy of Technology, an IBM Master Inventor, an ACM
Distinguished Speaker, and an IEEE Fellow.

Maarten Boersma IBM Systems and Technology Group,
Boeblingen DE 71032 Germany (mboersma@de.ibm.com).
Mr. Boersma received his M.Sc. degree in electrical engineering
from the University of Twente, the Netherlands. He joined IBM in
2005 to work on the design of high-performance floating point units
for the PowerXCell* 8i, POWER7, POWER7+, and POWER8
microprocessors. His focus is on power-efficient design and formal
verification techniques.
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Michael Kroener IBM Systems and Technology Group,
Boeblingen DE 71032 Germany (mkroener@de.ibm.com).
Mr. Kroener is the lead for the IBM POWER7 and POWER8 DFU unit.
Since 1994, he worked in the floating point area, first on IBM
mainframe z System processors and later on POWER6 processor.
He has 26 issued patents.

Markus Kaltenbach IBM Systems and Technology Group,
Boeblingen DE 71032 Germany (kaltenba@de.ibm.com).
Mr. Kaltenbach received his diploma degree in computer science from
the University of Tuebingen, Germany. Joining IBM in 2005 working
on the IBM z10* mainframe processor and designs for the POWER7
processor, he acts as logic design lead for the POWER8 VSU unit. His
focus is on microarchitecture, accelerators, synthesis, and timing.

Tejas Karkhanis IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (tkarkha@us.ibm.
com). Dr. Karkhanis is a Research Staff Member at the IBM
T. J. Watson Research Center since 2008. His research interests
are in various aspects of enterprise-class and high-performance class
computing systems. From 2006 to 2008, Dr. Karkhanis worked
at Advanced Micro Devices, where he contributed to consumer-class
microprocessors. Dr. Karkhanis received his B.S., M.S., and Ph.D.
degrees in 2000, 2001, and 2006, respectively, all from University
of Wisconsin-Madison. He has filed several patents and authored
several papers in top conferences and journals.

Kimberly M. Fernsler IBM Systems and Technology Group,
Austin, TX 78758 USA (kimfern@us.ibm.com). Ms. Fernsler is an
Advisory Engineer in the POWER development team of the Systems
and Technology Group. She has worked on the development of several
POWER/PowerPC processors, particularly on load and store units.
Ms. Fernsler joined IBM in 1999 after receiving an M.S. degree in
computer engineering from Carnegie Mellon University.
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