GandALF — Exercise Sheet 2

Let $\Sigma = \{a, b, c, d\}$ and L be the language of all words w such that $inf(w) \cap \{a, b\} = \emptyset$ or $c \in inf(w)$.

Exercise 1. Give a Büchi automaton recognizing L.

Exercise 2. Give a deterministic Muller automaton recognizing L.

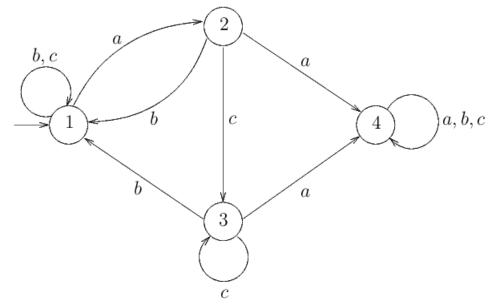
Exercise 3. Give a deterministic Street automaton recognizing L.

Exercise 4. Give a deterministic Rabin automaton recognizing L.

Exercise 5. Is there a deterministic Büchi automaton recognizing *L*?

Exercise 6. Is there a deterministic coBüchi automaton recognizing L?

Exercise 6. This exercise was made by Barbara Morawska. Let $\Sigma := \{a, b, c\}$. From the transition system



we derive four Muller-automata A_1 , A_2 , A_3 and A_4 by selecting the sets \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , \mathcal{F}_4 of set of final states as follows:

- $\mathcal{F}_1 := \{\{1,4\},\{4\}\},\$
- $\mathcal{F}_2 := \{\{1,2\},\{3\}\},\$
- $\mathcal{F}_3 := \{\{1, 2, 3\}\}$ and
- $\mathcal{F}_4 := \{\{1\}, \{1,2\}, \{3\}, \{1,2,3\}\}.$

Determine the ω -languages $L_{\omega}(\mathcal{A}_1)$, $L_{\omega}(\mathcal{A}_2)$, $L_{\omega}(\mathcal{A}_3)$ and $L_{\omega}(\mathcal{A}_4)$.

The following three exercises are from the Ong's book.

1.9 Prove that an ω -language is deterministic Büchi-recognisable iff it is of the form $\lim U$ for some regular U.

1.11 Consider the ω -language

 $L := \{ \alpha \in \{0,1\}^{\omega} \mid \alpha \text{ contains } 00 \text{ infinitely often, but } 11 \text{ only finitely often} \}.$

- (a) Construct a Büchi automaton that recognises L. Explain why it works.
- (b) Show that L is not recognisable by a deterministic Büchi automaton.
- (c) We say that a ω -automaton *co-Büchi recognises* an ω -word α if there is a run ρ of the automaton on α such that from some point onwards, only final states will be visited i.e. there is an $n \geq 0$ such that for every i > n, $\rho(i)$ is a final state.

Is L recognisable by a deterministic co-Büchi automaton? Justify your answer.

1.12

(a) Let L be an ω -language over the alphabet Σ . Define right-congruence $\sim_L \subseteq \Sigma^* \times \Sigma^*$ by

 $u \sim_L v := \forall \alpha \in \Sigma^{\omega} . u \, \alpha \in L \leftrightarrow v \, \alpha \in L.$

Prove that every deterministic Muller automaton that recognises L needs at least as many states as there are \sim_L -equivalence classes.

Show that there is a ω -language L, which is not ω -regular, such that \sim_L has only finitely many equivalence classes.

Hence, or otherwise, state (without proof) a result about regular *-languages (i.e. sets of finite words) that does not generalise to ω -regular ω -languages.

(b) Is it true that an ω -language is ω -regular if and only if it is expressible as a Boolean combination of languages of the form $\lim U$ where U is a regular *-language? Justify your answer.

Exercise 10. Given an non-deterministic Büchi automaton on words A, show that there is an equivalent non-deterministic Muller automaton recognising the same language.

Exercise 11. Given a deterministic Muller automaton A, show that there is an non-deterministic Büchi automaton recognising the same language.

Exercise 12. Prove that deterministic Muller automata are closed under complement, i.e. for every DMW A there exists a DMW B with $L(A) = \overline{L(B)}$.