GandALF — Exercise Sheet 6

Exercise 1. Prove that NPT are closed under intersection.

Exercise 2. Is the language of $\{0, 1\}$ -labelled trees that have exactly one node labelled by 1 recognizable by a NPT?

Exercise 3. Is the language of $\{0, 1\}$ -labelled trees that have exactly one path starting from the root labelled by only 1s recognizable by a NPT?

Exercise 4. Is the language of $\{0, 1\}$ -labelled trees such that every subtree contains a node labelled by 0 recognizable by a NPT?

Exercise 5. Is the following statement true? For every LTL formula φ there is an NPT A such that A recognizes a tree t iff every path of this tree satisfies φ .

We defined tree automata on ordered binary trees. The following open-ended exercises are to encourage you to think about possible solutions to the cases of different kind of trees.

In each case, discuss whether the basic properties of the automata: closure under union and intersection, determination etc.

Exercise 6. Propose an automaton type for unordered (full) binary trees.

Exercise 7. Propose an automaton type for ordered binary trees that are not necessary full, i.e., where a node can have 0, 1 or 2 children.

Exercise 8. Propose an automaton type for ordered unranked (i.e., every node can have arbitrary many children) trees.

Exercise 9. Propose an automaton type for unordered unranked trees.