GandALF — Exercise Sheet 9

Exercise 1. Let Σ be the set of agents and $\Gamma \subseteq \Sigma$. Consider the following ATL formulas:

- (1) $\langle\!\langle \Gamma \rangle\!\rangle Xp \iff \neg \langle\!\langle \Sigma \setminus \Gamma \rangle\!\rangle X \neg p$,
- $(2) \ \langle\!\langle \Gamma \rangle\!\rangle F(p \lor q) \iff \langle\!\langle \Gamma \rangle\!\rangle F(p) \lor \langle\!\langle \Gamma \rangle\!\rangle F(q),$

(3) $\langle\!\langle \Gamma \rangle\!\rangle F(p \wedge q) \iff \langle\!\langle \Gamma \rangle\!\rangle F(p) \wedge \langle\!\langle \Gamma \rangle\!\rangle F(q)$, and

(4) $\langle\!\langle \Gamma \rangle\!\rangle F(\langle\!\langle \Gamma \rangle\!\rangle Fp) \iff \langle\!\langle \Gamma \rangle\!\rangle Fp.$

Which of the above formulas are tautologies? Consider all four semantics: perfect vs. imperfect information, and perfect vs. imperfect recall.

Remark. Let \mathcal{A} be a weighted automaton. We have defined the value of a word w as the infimum over the values of all accepting runs of \mathcal{A} on w. Therefore, if \mathcal{A} has no accepting runs on w, the value of w is the infimum of the empty set, which is ∞ .

Exercise 2. Present algorithms deciding the emptiness and the universality problems for weighted automata with the LIMSUP value function. Recall that, if $\vec{a} = a_1, a_2...$ is a sequence of values from a finite set A, then LIMSUP(\vec{a}) is the maximal value from A that appears infinitely often in \vec{a} .

Exercise 3. Construct a weighted automaton \mathcal{A} over the SUM value function such that \mathcal{A} has accepting runs only over words from $(\#a^*)^*$, and for all $w \in (\#a^*)^*$, which are of the form $w = \#a^{x_1}\#a^{x_2}\dots\#a^{x_k}\#$ we have: $\mathcal{L}_{\mathcal{A}}(w) = 0$ if for all $1 \leq i < k$, the absolute value of $x_i - x_{i+1}$ is less or equal to 1, and $\mathcal{L}_{\mathcal{A}}(w) \leq -1$ otherwise.

Exercise 4. Consider a function $f: \{a, \#\}^{\omega} \to \mathbb{R}$ such that $f(w) < \infty$ if $w \in (\#a^*)^{\omega}$, and $f(\#a^{x_1}\#a^{x_2}\ldots) = \text{LIMAVG}(x_1x_2\ldots)$. If f can be expressed by a weighted automaton with the LIMAVG value function, construct such an automaton. Otherwise, show that it is impossible.

Exercise 5. Show that f_3 defined for every w as the edit distance of w from $L = a^*b^*$ cannot be computed by a deterministic weighted automaton with the SUM value function.

Exercise 6. Present Karp's algorithm computing the minimal mean cycle (prove its correctness and present complexity analysis).