GandALF: probabilistic models

Jan Otop

May 10, 2018

Plan for today

- Probability crash course.
- Markov chains.
- Markov Decision Processes.

Need for probability theory

- Probability P : $2^{\Omega} \rightarrow[0,1]$.
- Probability over infinite words $\Omega=\Sigma^{\omega}$.
- Problem: only countable many words can have positive probability.

Need for probability theory

- Probability P : $2^{\Omega} \rightarrow[0,1]$.
- Probability over infinite words $\Omega=\Sigma^{\omega}$.
- Problem: only countable many words can have positive probability. Problem: Vitali set in $[0,1]$.

Need for probability theory

- Probability P : $2^{\Omega} \rightarrow[0,1]$.
- Probability over infinite words $\Omega=\Sigma^{\omega}$.
- Problem: only countable many words can have positive probability. Problem: Vitali set in $[0,1]$.

Definition

A triple $(\Omega, \mathcal{F}, \mathrm{P})$ is a probability space, if

- $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ such that \mathcal{F} is a σ-field:
$\emptyset, \Omega \in \mathcal{F}$,
- \mathcal{F} is closed under complements, and
\mathcal{F} is closed under countable unions
- $\mathrm{P}: \mathcal{F} \rightarrow[0,1]$ such that

$$
\mathrm{P}(\Omega)=1, \text { and }
$$

P is countably additive, i.e., for disjoint $\mathrm{A}_{1}, \mathrm{~A}_{2} \ldots$
$\mathrm{P}\left(\bigcup_{\mathrm{i} \geq 1} \mathrm{~A}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\infty} \mathrm{A}_{\mathrm{i}}$.

Probabilistic space on Σ^{ω}

- Basic sets: $B=\left\{u \cdot \Sigma^{\omega}: u \in \Sigma^{*}\right\}$.
- The least σ-field \mathcal{F}_{B} containing B - Borel sets.

Examples of Borel sets:

- $A=\left\{a^{\omega}\right\}$.
- $A_{n}=\{w \mid$ at most n letters a in $w\}$.
- $\mathrm{A}_{<\infty}=\{\mathrm{w} \mid$ finitely many letters a in w$\}$.
- $A_{\text {even }}=\{\mathrm{w} \mid \mathrm{w}$ has letter a at every even position $\}$.

Probabilistic space on Σ^{ω}

- Basic sets: $B=\left\{u \cdot \Sigma^{\omega}: u \in \Sigma^{*}\right\}$.
- The least σ-field \mathcal{F}_{B} containing $\mathrm{B}-$ Borel sets.

Examples of Borel sets:

- $A=\left\{a^{\omega}\right\}$.
- $\mathrm{A}_{\mathrm{n}}=\{\mathrm{w} \mid$ at most n letters a in w$\}$.
- $\mathrm{A}_{<\infty}=\{\mathrm{w} \mid$ finitely many letters a in $w\}$.
- $A_{\text {even }}=\{\mathrm{w} \mid \mathrm{w}$ has letter a at every even position $\}$.

All ω-regular sets are Borel.

Probabilistic space on Σ^{ω}

- Basic sets: $B=\left\{u \cdot \Sigma^{\omega}: u \in \Sigma^{*}\right\}$.
- The least σ-field \mathcal{F}_{B} containing B - Borel sets.

Pre-measure - measure defined on B (weakly σ-additive).

Theorem (Carathéodory's extension theorem (specialized))
Any probability pre-measure μ_{0} defined on ring(B), can be extended to a measure μ on \mathcal{F}_{B}.

Example: Probability defined on basic sets, can be extended to \mathcal{F}_{B}.

Examples

Consider $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and μ be such that $\mathrm{P}\left(\mathrm{u} \Sigma^{\omega}\right)=2^{-|\mathrm{u}|}$.

- $A=\left\{a^{\omega}\right\}$.
- $A_{n}=\{w \mid$ at most n letters a in $w\}$.
- $\mathrm{A}_{<\infty}=\{\mathrm{w} \mid$ finitely many letters a in w$\}$.
- $A_{\text {even }}=\{\mathrm{w} \mid \mathrm{w}$ has letter a at every even position $\}$.

Examples

Consider $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and μ be such that $\mathrm{P}\left(\mathrm{u} \Sigma^{\omega}\right)=2^{-|\mathrm{u}|}$.

- $A=\left\{a^{\omega}\right\}$.
- $A_{n}=\{\mathrm{w} \mid$ at most n letters a in w$\}$.
- $\mathrm{A}_{<\infty}=\{\mathrm{w} \mid$ finitely many letters a in w$\}$.
- $\mathrm{A}_{\text {even }}=\{\mathrm{w} \mid \mathrm{w}$ has letter a at every even position $\}$.

Kolmogorov 0-1 law - if A is prefix-independent, then $\mathrm{P}(\mathrm{A})=0$ or $\mathrm{P}(\mathrm{A})=1$.

Markov chains

Definition

A Markov chain is a tuple ($\mathrm{S}, \mathrm{s}_{0}, \mathrm{E}$) such that S is a finite set of states, and $E: S \times S \rightarrow[0,1]$, and for each s we have $\sum_{t \in S} E(s, t)=1$.

- Labeled Markov chains.
- Generate probability space on S^{ω}.
- Matrix representation.

Markov chains

Definition

A Markov chain is a tuple ($\mathrm{S}, \mathrm{s}_{0}, \mathrm{E}$) such that S is a finite set of states, and $E: S \times S \rightarrow[0,1]$, and for each s we have $\sum_{t \in S} E(s, t)=1$.

- Labeled Markov chains.
- Generate probability space on S^{ω}.
- Matrix representation.

Theorem

Let M be a Markov chain.

- Probability of reaching some BSCC is 1 .
- If M is strongly connected, then for each state t, the probability of reaching t infinitely often is 1 .
- Reachability with non-zero (>0) and almost-sure $(=1)$ probability reduces to graph problems.

Quantitative reachability

Theorem

Let M be a Markov chain and T be a subset of states.

- The probability of reaching T is given by the least solution to $\overrightarrow{\mathrm{x}}=\mathrm{A} \overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{b}}$.
- If we remove states from which T is unreachable, the solution is unique.

Example of non-uniqueness.

Corollary

Let M be a Markov chain and T be a subset of states. We can compute in polynomial time probabilities $\mathrm{p}_{\mathrm{s}, \mathrm{T}}$ of reaching T from s .

Quantitative model checking

Theorem (Model checking ω-regular properties)
Let $\mathrm{M}=\left(\mathrm{S}, \mathrm{s}_{0}, \mathrm{E}\right)$ be a Markov chain and let $\mathcal{L} \subseteq \mathrm{S}^{\omega}$ be an ω-regular languages given by a deterministic Rabin automaton \mathcal{A}. We can compute the probability of \mathbb{L} in M in polynomial time in \mathcal{A}.

Markov Decision Processes

Definition

A Markov Decision Process (MDP) is a tuple ($\mathrm{S}_{1}, \mathrm{~S}_{\mathrm{P}}, \mathrm{s}_{0}, \mathrm{E}$) such that $\mathrm{S}_{1}, \mathrm{~S}_{\mathrm{P}}$ are a finite set of states, and $\mathrm{E}:\left(\mathrm{S}_{1} \cup \mathrm{~S}_{\mathrm{P}}\right) \times\left(\mathrm{S}_{1} \cup \mathrm{~S}_{\mathrm{P}}\right) \cup \rightarrow[0,1]$, and for each $s \in S_{P}$ we have $\sum_{t \in\left(S_{1} \cup S_{P}\right)} E(s, t)=1$.

Markov Decision Processes

Definition

A Markov Decision Process (MDP) is a tuple ($\mathrm{S}_{1}, \mathrm{~S}_{\mathrm{P}}, \mathrm{s}_{0}, \mathrm{E}$) such that $\mathrm{S}_{1}, \mathrm{~S}_{\mathrm{P}}$ are a finite set of states, and $\mathrm{E}:\left(\mathrm{S}_{1} \cup \mathrm{~S}_{\mathrm{P}}\right) \times\left(\mathrm{S}_{1} \cup \mathrm{~S}_{\mathrm{P}}\right) \cup \rightarrow[0,1]$, and for each $s \in S_{P}$ we have $\sum_{t \in\left(S_{1} \cup S_{P}\right)} E(s, t)=1$.

Theorem

Let M be an MDP.

- Reachability with non-zero (>0) and almost-sure $(=1)$ probability reduces to graph problems.
- Quantitative reachability reduces to linear programming.

