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Plan for today

Probability crash course.

Markov chains.

Markov Decision Processes.
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Need for probability theory

Probability P : 2Ω → [0, 1].

Probability over infinite words Ω = Σω.

Problem: only countable many words can have positive probability.

Problem: Vitali set in [0, 1].

Definition
A triple (Ω,F ,P) is a probability space, if
F ⊆ P(Ω) such that F is a σ-field:

I ∅,Ω ∈ F ,
I F is closed under complements, and
I F is closed under countable unions

P : F → [0, 1] such that
I P(Ω) = 1, and
I P is countably additive, i.e., for disjoint A1,A2 . . .

P(
⋃
i≥1Ai) =

∑∞
i=1Ai.
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Probabilistic space on Σω

Basic sets: B = {u · Σω : u ∈ Σ∗}.
The least σ-field FB containing B — Borel sets.

Examples of Borel sets:

A = {aω}.
An = {w | at most n letters a in w}.
A<∞ = {w | finitely many letters a in w}.
Aeven = {w | w has letter a at every even position }.
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Examples of Borel sets:

A = {aω}.
An = {w | at most n letters a in w}.
A<∞ = {w | finitely many letters a in w}.
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All ω-regular sets are Borel.
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Probabilistic space on Σω

Basic sets: B = {u · Σω : u ∈ Σ∗}.
The least σ-field FB containing B — Borel sets.

Pre-measure — measure defined on B (weakly σ-additive).

Theorem (Carathéodory’s extension theorem (specialized))

Any probability pre-measure µ0 defined on ring(B), can be extended to
a measure µ on FB.

Example: Probability defined on basic sets, can be extended to FB.
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Examples

Consider Σ = {a,b} and µ be such that P(uΣω) = 2−|u|.

A = {aω}.
An = {w | at most n letters a in w}.
A<∞ = {w | finitely many letters a in w}.
Aeven = {w | w has letter a at every even position }.

Kolmogorov 0-1 law — if A is prefix-independent, then P(A) = 0 or
P(A) = 1.
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Markov chains
Definition
A Markov chain is a tuple (S, s0,E) such that S is a finite set of states,
and E : S× S→ [0, 1], and for each s we have

∑
t∈S E(s, t) = 1.

Labeled Markov chains.
Generate probability space on Sω.
Matrix representation.

Theorem
Let M be a Markov chain.

Probability of reaching some BSCC is 1.

If M is strongly connected, then for each state t, the probability of
reaching t infinitely often is 1.

Reachability with non-zero (> 0) and almost-sure (= 1)
probability reduces to graph problems.
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Quantitative reachability

Theorem
Let M be a Markov chain and T be a subset of states.

The probability of reaching T is given by the least solution to
~x = A~x + ~b.

If we remove states from which T is unreachable, the solution is
unique.

Example of non-uniqueness.

Corollary
Let M be a Markov chain and T be a subset of states. We can compute
in polynomial time probabilities ps,T of reaching T from s.
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Quantitative model checking

Theorem (Model checking ω-regular properties)

Let M = (S, s0,E) be a Markov chain and let L ⊆ Sω be an ω-regular
languages given by a deterministic Rabin automaton A. We can
compute the probability of L in M in polynomial time in A.
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Markov Decision Processes

Definition
A Markov Decision Process (MDP) is a tuple (S1,SP, s0,E) such that
S1,SP are a finite set of states, and E : (S1 ∪ SP)× (S1 ∪ SP)∪ → [0, 1],
and for each s ∈ SP we have

∑
t∈(S1∪SP) E(s, t) = 1.

Theorem
Let M be an MDP.

Reachability with non-zero (> 0) and almost-sure (= 1)
probability reduces to graph problems.

Quantitative reachability reduces to linear programming.

May 10, 2018 9 / 9



Markov Decision Processes

Definition
A Markov Decision Process (MDP) is a tuple (S1,SP, s0,E) such that
S1,SP are a finite set of states, and E : (S1 ∪ SP)× (S1 ∪ SP)∪ → [0, 1],
and for each s ∈ SP we have

∑
t∈(S1∪SP) E(s, t) = 1.

Theorem
Let M be an MDP.

Reachability with non-zero (> 0) and almost-sure (= 1)
probability reduces to graph problems.

Quantitative reachability reduces to linear programming.

May 10, 2018 9 / 9


