GandALF: synthesis

Jan Otop

May 16, 2018

Plan for today

- Reactive synthesis
- Distributed synthesis
- Synthesis from components
- Next week: Other approaches to synthesis (CEGIS, SyGus, ...)

From model checking to synthesis

- A system modeled by an automaton M.
- Correct behaviors specified by an LTL formula φ .
- The system is correct \iff M $\models \varphi$.

From model checking to synthesis

- A system modeled by an automaton M.
- Correct behaviors specified by an LTL formula φ .
- The system is correct \iff M $\models \varphi$.

Problem: incorrect systems need to be redesigned. Solution: automatically synthesize M to satisfy φ . Synthesis — "extreme form of declarative programming".

Reactive systems

Reactive system — system with input and output.

Transducers (Mealy machines)

A transducer M is a tuple $\langle \Sigma_I, \Sigma_O, Q, q_0, \delta, F \rangle$ such that $\delta : \Sigma_I \times Q \to \Sigma_O \times Q.$

- A transducer M represents a function $\mathcal{L}(M) : \Sigma_{I}^{\omega} \to \Sigma_{O}^{\omega}$.
- Graph of a transducer: language over $\Sigma_{\rm I} \times \Sigma_{\rm O}.$
- Büchi automata recognize graphs of transducers: Transducers and automata: ⟨a, q⟩ → ⟨b, q'⟩ and ⟨(a, b), q⟩ → q'.

The language of a transducer M represented by a $\Sigma_{\rm O}\text{-labeled}\ \Sigma_{\rm I}\text{-tree}.$

LTL specifications

LTL specifications

An LTL formula is a propositions formula with operators: $G\varphi, F\varphi, X\varphi, \varphi_1 U\varphi_2$.

Semantics of LTL.

Theorem

Given an LTL formula φ over variables $P = \{p_1, \ldots, p_k\}$, we can construct an exponential-size Büchi automaton \mathcal{M} over $\Sigma = 2^P$ such that $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\varphi) = \{w \mid w \models \varphi\}.$

Example: Arbiter

- Two components C_1, C_2 sending requests r_1, r_2 to access a resource.
- Arbiter sends grants g₁, g₂.
- Mutual exclusion: $G(\neg g_1 \lor \neg g_2)$.
- For i=1,2 fairness for $C_i \text{:}~G(r_i \rightarrow Fg_i).$

Synthesis of reactive systems

Realizability

Given an LTL spec. φ decide whether there exists a transducer M such that $\mathcal{L}(M) \subseteq \mathcal{L}(\varphi)$.

The synthesis problem: find such M.

Problems: Domain (partial function) and clairvoyance.

We have all the ingredients to solve it!

Solving reactive synthesis

- **1** Construct a NBW $\mathcal{M}_{\rm B}$ for φ .
- **2** Transform $\mathcal{M}_{\rm B}$ to an equivalent DPW $\mathcal{M}_{\rm P}$.
- **3** Construct a DPT \mathcal{M}_{T} based on \mathcal{M}_{P} .
- 4 Check emptiness of \mathcal{M}_{T} .
- 5 If the language of \mathcal{M}_{T} is non-empty, take a regular tree and transform it into a transducer M.

Solving reactive synthesis

- **1** Construct a NBW $\mathcal{M}_{\rm B}$ for φ .
- **2** Transform $\mathcal{M}_{\rm B}$ to an equivalent DPW $\mathcal{M}_{\rm P}$.
- **3** Construct a DPT \mathcal{M}_{T} based on \mathcal{M}_{P} .
- 4 Check emptiness of \mathcal{M}_{T} .
- 5 If the language of \mathcal{M}_{T} is non-empty, take a regular tree and transform it into a transducer M.

Theorem

The realizability is 2-EXPTIME-complete.

Parametric approach

- **1** Construct a NBW $\mathcal{M}_{\rm B}$ for $\neg \varphi$.
- 2 Complement $\mathcal{M}_{\rm B}$ into an UCW $\mathcal{M}_{\rm U}$.
- 3 Construct an UCT \mathcal{M}_{T} based on \mathcal{M}_{U} .
- 4 Consider UCT \mathcal{M}_{T} as k-UCT $\mathcal{M}_{T,k}$.
- 5 Check emptiness of $\mathcal{M}_{T,k}$.
- **6** If the language of $\mathcal{M}_{T,k}$ is non-empty, take a regular tree and transform it into a transducer M.

Reactive Distributed Systems

Synchronous architecture $\mathcal{A} = (\mathcal{P}, p_e, V, E)$

- \mathcal{P} is a set of n + 1 processes.
- $p_e \in \mathcal{P}$ is the environment.
- V is a set of binary variables.
- $E: \mathcal{P} \times \mathcal{P} \to 2^V$ defines the communication.
- For $p \in \mathcal{P}$ denote input variables with I(p), output variables with O(p).

Strategies

- Process p behaves according to local strategy $\sigma_{\rm p}: (2^{\rm I(p)})^* \to 2^{\rm O(p)}$.
- Can be viewed as the labeling of an infinite $2^{I(p)}$ -tree, T_{σ_p} .

- The collective strategy $\sigma : (2^{O(p_e)})^* \to 2^{V \setminus O(p_e)}$ determines the distributed behavior of the system.
- Can be viewed as the labeling of an infinite $2^{O(p_e)}$ -tree, T_{σ} .

Distributed Realizability is Undecidable

- Distributed realizability was shown to be undecidable for the following architecture.
- Reduction from the halting problem.
- For any Turing machine M, construct ϕ_M which requires that p_1 , p_2 output a legal sequence of configurations of M, and M halts.
 - When p_i receives a start signal, it outputs a sequence of legal configurations of M.
 - 0 Initially p_i outputs the first two configurations of M.
 - **3** If p_1 , p_2 output $C_1C'_1$ and $C_2C'_2$ and $C_1 \vdash C_2$, then $C'_1 \vdash C'_2$.

Parametric on the Architecture

- For which classes of architectures is realizability decidable?
- Complete characterization base on the information fork criterion.
- Processes p_1 , p_2 form an information fork in architecture \mathcal{A} if there exist paths $p_e \rightsquigarrow p_i$ in \mathcal{A} such that do not traverse edges in $I(p_{-i})$.

- Every architecture either:
 - ▶ Has an information fork (undecidable).
 - Can be reduced to a pipeline (decidable).

Synthesis from components

A component C is a transducer. Given C_1, C_2 such that $\Sigma_O^1 = \Sigma_I^2$, we construct a component $C_1 \circ C_2$.

Realizability from components

Given a set $\{C_i \mid i = 1, ..., k\}$ and an LTL spec. φ decide whether there exists x[1], ..., x[n] such that $C_{x[1]} \circ ... \circ C_{x[n]}$ is defined and satisfies φ .

Synthesis from components

A component C is a transducer. Given C_1, C_2 such that $\Sigma_O^1 = \Sigma_I^2$, we construct a component $C_1 \circ C_2$.

Realizability from components

Given a set $\{C_i \mid i = 1, ..., k\}$ and an LTL spec. φ decide whether there exists x[1], ..., x[n] such that $C_{x[1]} \circ ... \circ C_{x[n]}$ is defined and satisfies φ .

Theorem

Realizability from components is undecidable.

Acknowledgements

Slides on distributed synthesis have been prepared by Andreas Pavlogiannis (http://lara.epfl.ch/~pavlogia/).