GandALF — Exercise Sheet 12

Exercise 1. Let \mathcal{A} be a deterministic ω -PDA with Büchi acceptance conditions. Show that the language $\mathcal{L}(\mathcal{A})$ is a Borel set.

In the following two assignments we consider the Büchi automaton \mathcal{A}_{aa} , the Markov chain \mathcal{M}_1 and the MDP \mathcal{M}_2 depicted below.

Exercise 2. Compute the probability of $\mathcal{L}(\mathcal{A})$ under the probability measure given by \mathcal{M}_1 .

Exercise 3. Compute the maximal probability of $\mathcal{L}(\mathcal{A})$ w.r.t. \mathcal{M}_2 and construct a scheduler attaining this maximum.

Exercise 4. Consider input Boolean variables $P_I = \{r_1, r_2\}$ and output variables $P_O = \{g_1, g_2\}$. Present all steps of the synthesis procedure for the specification $(G(\neg g_1 \lor \neg g_2)) \land (G(r_1 \to Fg_2)) \land (G(r_2 \to Fg_2))$ to obtain a transducer with the input 2^{P_I} and output 2^{P_O} that satisfies the specification.

Exercises 5–8 are about a moder approach to synthesis.

Exercise 5. Given an LTL specification φ over variables $P_I \cup P_O$, construct a universal co-Büchi tree automaton (UCT) recognizing full infinite 2^{P_O} -labeled 2^{P_I} -trees t such that every branch of t satisfies φ . Recall that "universal automata" are the dual to non-deterministic automata, i.e., in an accepting run all possible paths of computation need to be accepting.

Hint: Construct a universal co-Büchi word automaton in an intermediate step.

Exercise 6. k-UTC (universal k-co-Büchi tree automata) are defined similarly to UTC, but the acceptance condition is stronger; it states that along each path, every state from F is visited at most k times. Show that for every UCT \mathcal{A} , there exists k such that $\mathcal{L}(\mathcal{A})$ is non-empty if and only if the language of \mathcal{A} considered as k-UCT is non-empty. Give a bound on k w.r.t. the size of \mathcal{A} ?

Exercise 7. Construct an algorithm checking emptiness of the language of k-UTC. Discuss its complexity w.r.t. k and the size of the input automaton.

Exercise 8. Combine Exercises 5, 6, and 7 to give an alternative synthesis algorithm.

Exercise 9. Prove undecidability of the realizability from components problem.