GandALF - Exercise Sheet 12

Exercise 1. Let \mathcal{A} be a deterministic ω-PDA with Büchi acceptance conditions. Show that the language $\mathcal{L}(\mathcal{A})$ is a Borel set.

In the following two assignments we consider the Büchi automaton $\mathcal{A}_{a a}$, the Markov chain \mathcal{M}_{1} and the MDP \mathcal{M}_{2} depicted below.

Exercise 2. Compute the probability of $\mathcal{L}(\mathcal{A})$ under the probability measure given by \mathcal{M}_{1}.
Exercise 3. Compute the maximal probability of $\mathcal{L}(\mathcal{A})$ w.r.t. \mathcal{M}_{2} and construct a scheduler attaining this maximum.

Exercise 4. Consider input Boolean variables $P_{I}=\left\{r_{1}, r_{2}\right\}$ and output variables $P_{O}=\left\{g_{1}, g_{2}\right\}$. Present all steps of the synthesis procedure for the specification $\left(G\left(\neg g_{1} \vee \neg g_{2}\right)\right) \wedge\left(G\left(r_{1} \rightarrow F g_{2}\right)\right) \wedge$ $\left(G\left(r_{2} \rightarrow F g_{2}\right)\right)$ to obtain a transducer with the input $2^{P_{I}}$ and output $2^{P_{O}}$ that satisfies the specification.

Exercises 5-8 are about a moder approach to synthesis.
Exercise 5. Given an LTL specification φ over variables $P_{I} \cup P_{O}$, construct a universal co-Büchi tree automaton (UCT) recognizing full infinite $2^{P_{O}}$-labeled $2^{P_{I}}$-trees t such that every branch of t satisfies φ. Recall that "universal automata" are the dual to non-deterministic automata, i.e., in an accepting run all possible paths of computation need to be accepting.

Hint: Construct a universal co-Büchi word automaton in an intermediate step.
Exercise 6. k-UTC (universal k-co-Büchi tree automata) are defined similarly to UTC, but the acceptance condition is stronger; it states that along each path, every state from F is visited at most k times. Show that for every $\operatorname{UCT} \mathcal{A}$, there exists k such that $\mathcal{L}(\mathcal{A})$ is non-empty if and only if the language of \mathcal{A} considered as k-UCT is non-empty. Give a bound on k w.r.t. the size of \mathcal{A} ?

Exercise 7. Construct an algorithm checking emptiness of the language of k-UTC. Discuss its complexity w.r.t. k and the size of the input automaton.
Exercise 8. Combine Exercises 5, 6, and 7 to give an alternative synthesis algorithm.
Exercise 9. Prove undecidability of the realizability from components problem.

