Tree pattern queries: learning and teaching

Stawek Staworko, Piotr Wieczorek

University of Wroctaw

December 16, 2021

Trees and tree patterns (twigs)

RN |,

N

LU— 0O —T

(a) Tree to. (b) Twig query go.

Trees and tree patterns (twigs): embeddings

. SN]

b’ a b b b
N T N

.. T

(c) Embeddings of qo in to.

Unary tree patterns and decorated trees

r r
VAN VAN
r abc abc
| I I
” b [a] b b«|9b
| |
B c a ¢ [2]

C
(d) Unary path query po. (e) Decorated trees t; and t.

What is this talk about?

characterizing queries for a given g provide a (polynomial) set of
examples CS, such that for all p it holds CSq ¢ L(p)
iff g € p.

What is this talk about?

characterizing queries for a given g provide a (polynomial) set of
examples CS, such that for all p it holds CSq ¢ L(p)
iff g € p.
learning provide a polynomial-time algorithm A such that

What is this talk about?

characterizing queries for a given g provide a (polynomial) set of
examples CS, such that for all p it holds CSq ¢ L(p)
iff g € p.
learning provide a polynomial-time algorithm A such that
» for any sample S, A return a query consistent
with S (soundness),

What is this talk about?

characterizing queries for a given g provide a (polynomial) set of
examples CS, such that for all p it holds CSq ¢ L(p)
iff g € p.
learning provide a polynomial-time algorithm A such that

» for any sample S, A return a query consistent
with S (soundness),

» for any query q there exists a (polynomial)
characteristic sample CS:;‘ such that for every
sample S that satifies CS;,4 cScL(q), the
algorithm A returns a query equivalent to g
(completeness).

What is this talk about?

characterizing queries for a given g provide a (polynomial) set of
examples CS, such that for all p it holds CSq ¢ L(p)
iff g € p.
learning provide a polynomial-time algorithm A such that

» for any sample S, A return a query consistent
with S (soundness),

» for any query q there exists a (polynomial)
characteristic sample CS:;‘ such that for every
sample S that satifies CS;,4 cScL(q), the
algorithm A returns a query equivalent to g
(completeness).

Here, we focus on samples with positive examples only.

What is this talk about?

characterizing queries for a given g provide a (polynomial) set of
examples CS, such that for all p it holds CSq ¢ L(p)
iff g € p.
learning provide a polynomial-time algorithm A such that

» for any sample S, A return a query consistent
with S (soundness),

» for any query q there exists a (polynomial)
characteristic sample CS:;‘ such that for every
sample S that satifies CS;,4 cScL(q), the
algorithm A returns a query equivalent to g
(completeness).

Minimality vs. completeness?

Arbitrary twigs: problems

» sometimes queries are contained but no embedding exists

Arbitrary twigs: problems

» sometimes queries are contained but no embedding exists, e.g.,
rfa//band r/ x [

Arbitrary twigs: problems

» sometimes queries are contained but no embedding exists, e.g.,
rfa//band r/ x [

» containment is coNP-complete, subsumption (i.e., the existence
of embeddings) is in PTIME

Arbitrary twigs: problems

» sometimes queries are contained but no embedding exists, e.g.,
rfa//band r/ x [

» containment is coNP-complete, subsumption (i.e., the existence
of embeddings) is in PTIME

> moreover: exponential samples required

Arbitrary twigs require exponential samples

Theorem
For any natural number n there exists a twig query q such that
any set characterizing q contains at least 2" examples.

Arbitrary twigs require exponential samples

Theorem

For any natural number n there exists a twig query q such that
any set characterizing q contains at least 2" examples.

Proof.

Construct a query g and a set of twig queries U such that:

1. for each p e U we have g ¢ p;

2. no single positive example t can witness the fact that
any two distinct p1, p2 € U are not equivalent to g;
3. U contains 2" queries.

Arbitrary twigs require exponential samples

A0 aj q r BY: a pv: r
| 1 d IO \ 0 | ”
[[[
a A AL A Bl: ai IIk
I e I 522
Al a; Ag Ag Ag * I
|| Lo ! |
a, a,'
| | | ”
A A AL Bl
(f) Query g (g) Query p, for v = (ki,...

7k")'

Anchored tree patterns: a good class

A twig query is anchored if:
1. A //-edge can be incident to a x-node only if the node is a leaf.

2. A x-node may be a leaf only if it is either incident to a //-edge
or it is the selecting node.

Anchored tree patterns: a good class

A twig query is anchored if:
1. A //-edge can be incident to a x-node only if the node is a leaf.

2. A x-node may be a leaf only if it is either incident to a //-edge
or it is the selecting node.

q, P, a, Po, Po, PO,
I I | | I I

a a * * * *

7 \ = 7 \ / N\ | = | = I
b c b c * b * * *
| I | [I | I

* * a C a a a

not anchored anchored anchored not anchored

Anchored tree patterns: a good class

Theorem
For anchored twigs:

P1. subsumption = containment;

P2. a small characteristic sample always exists (two trees
are enough!).

P2: Containment characterizing trees

qo
qor tO r
I I
a a
VRN / N\
b * b ao
/\ AN 5{
* d a d
I I
c c

P2: Containment characterizing trees

qo 9o
0, to r by
| | |
a a a
7\ 7/ N\ VRN
b * b ao a a
/ \ /A 5{ : /A
x d a d a a1 d
[[o
c c b c

Lemma

Take any anchored query q and construct t{’ as above. For any p of
height bounded by the height of q and not using labels a; and as,
t] < p implies q < p.

P2: Containment characterizing trees

qo 9o
0, to r by
| | |
a a a
7\ 7/ N\ VRN
b * b ao a a
/ \ /A 5{ : /A
x d a d a a1 d
[[o
c c b c

Lemma

Take any anchored query q and construct t{’ as above. For any p of
height bounded by the height of q and not using labels a; and as,
t] < p implies q < p.

Corollary
If both tg and tf satisfy p, then g c p.

Learning for unary anchored path queries

Input: a sample S of decorated trees
Output: a minimal unary anchored path query p such that S c L(p)

Learning for unary anchored path queries

w = ming_,, (SelPath(S))
let w be of the form r/ai/--/ap
pi=rf+
foreach subpath v of ai/ax/---/an-1
in the order of decreasing lengths do
replace in p any //-edge by //u// as long as S ¢ L(p)

Learning for unary anchored path queries

let p be of the form r//po// b1
if Sc L(p{b1 < an}) then
p:=p{b1 < ap}

Learning for unary anchored path queries

foreach descendant edge « in p do

find maximal £ s.t. S < L(p{a < [/(x/)'})

if Sc L(p{a< [(x/)}) then
pi=pla</(x))}

return p

A sample and the constructed queries.

Learning unary anchored path queries

Theorem

Our algorithm is sound and complete (i.e., it is sound and returns q
if the input is S such that S 2 CS, = {tJ,t]}).

Proof.

> Assume some p is returned for a given sample S.

Learning unary anchored path queries

Theorem

Our algorithm is sound and complete (i.e., it is sound and returns q
if the input is S such that S 2 CS, = {tJ,t]}).

Proof.

> Assume some p is returned for a given sample S.
» Obviously, S c L(p).

Learning unary anchored path queries

Theorem
Our algorithm is sound and complete (i.e., it is sound and returns q
if the input is S such that S 2 CS, = {tJ,t]}).
Proof.
> Assume some p is returned for a given sample S.
» Obviously, S c L(p).

» By case analysis: there is no p’ # p such that p’ € p and
ScL(p).

Learning unary anchored path queries

Theorem
Our algorithm is sound and complete (i.e., it is sound and returns q

if the input is S such that S 2 CS, = {tJ,t]}).
Proof.
> Assume some p is returned for a given sample S.
» Obviously, S c L(p).

» By case analysis: there is no p’ # p such that p’ € p and
ScL(p).

» Since CS, < S c L(p) then g < p (P2). Hence, by the claim
above, p and g are equivalent.

O

Learning anchored queries

Our algorithm can be extended for
» boolean anchored path queries,

» conjunctions of anchored path queries,

v

(path-subsumption-free) boolean twigs,

v

(path-subsumption-free) unary twigs.

