Tree pattern queries: learning and teaching

Sławek Staworko, Piotr Wieczorek

University of Wrocław
December 16, 2021

Trees and tree patterns (twigs)

(a) Tree t_{0}.
(b) Twig query q_{0}.

Trees and tree patterns (twigs): embeddings

(c) Embeddings of q_{0} in t_{0}.

Unary tree patterns and decorated trees

(d) Unary path query p_{0}.

(e) Decorated trees t_{1} and t_{2}.

What is this talk about?

characterizing queries for a given q provide a (polynomial) set of examples $C S_{q}$ such that for all p it holds $C S_{q} \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.

What is this talk about?

characterizing queries for a given q provide a (polynomial) set of examples $C S_{q}$ such that for all p it holds $C S_{q} \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.
learning provide a polynomial-time algorithm \mathcal{A} such that

What is this talk about?

characterizing queries for a given q provide a (polynomial) set of examples $C S_{q}$ such that for all p it holds $C S_{q} \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.
learning provide a polynomial-time algorithm \mathcal{A} such that

- for any sample S, \mathcal{A} return a query consistent with S (soundness),

What is this talk about?

characterizing queries for a given q provide a (polynomial) set of examples $C S_{q}$ such that for all p it holds $C S_{q} \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.
learning provide a polynomial-time algorithm \mathcal{A} such that

- for any sample S, \mathcal{A} return a query consistent with S (soundness),
- for any query q there exists a (polynomial) characteristic sample $C S_{q}^{\mathcal{A}}$ such that for every sample S that satifies $C S_{q}^{\mathcal{A}} \subseteq S \subseteq \mathcal{L}(q)$, the algorithm \mathcal{A} returns a query equivalent to q (completeness).

What is this talk about?

characterizing queries for a given q provide a (polynomial) set of examples $C S_{q}$ such that for all p it holds $C S_{q} \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.
learning provide a polynomial-time algorithm \mathcal{A} such that

- for any sample S, \mathcal{A} return a query consistent with S (soundness),
- for any query q there exists a (polynomial) characteristic sample $C S_{q}^{\mathcal{A}}$ such that for every sample S that satifies $C S_{q}^{\mathcal{A}} \subseteq S \subseteq \mathcal{L}(q)$, the algorithm \mathcal{A} returns a query equivalent to q (completeness).
Here, we focus on samples with positive examples only.

What is this talk about?

characterizing queries for a given q provide a (polynomial) set of examples $C S_{q}$ such that for all p it holds $C S_{q} \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.
learning provide a polynomial-time algorithm \mathcal{A} such that

- for any sample S, \mathcal{A} return a query consistent with S (soundness),
- for any query q there exists a (polynomial) characteristic sample $C S_{q}^{\mathcal{A}}$ such that for every sample S that satifies $C S_{q}^{\mathcal{A}} \subseteq S \subseteq \mathcal{L}(q)$, the algorithm \mathcal{A} returns a query equivalent to q (completeness).

Minimality vs. completeness?

Arbitrary twigs: problems

- sometimes queries are contained but no embedding exists

Arbitrary twigs: problems

- sometimes queries are contained but no embedding exists, e.g., $r / a / / b$ and $r / * / *$

Arbitrary twigs: problems

- sometimes queries are contained but no embedding exists, e.g., $r / a / / b$ and $r / * / *$
- containment is coNP-complete, subsumption (i.e., the existence of embeddings) is in PTIME

Arbitrary twigs: problems

- sometimes queries are contained but no embedding exists, e.g., $r / a / / b$ and $r / * / *$
- containment is coNP-complete, subsumption (i.e., the existence of embeddings) is in PTIME
- moreover: exponential samples required

Arbitrary twigs require exponential samples

Theorem
For any natural number n there exists a twig query q such that any set characterizing q contains at least 2^{n} examples.

Arbitrary twigs require exponential samples

Theorem
For any natural number n there exists a twig query q such that any set characterizing q contains at least 2^{n} examples.

Proof.
Construct a query q and a set of twig queries U such that:

1. for each $p \in U$ we have $q \nsubseteq p$;
2. no single positive example t can witness the fact that any two distinct $p_{1}, p_{2} \in U$ are not equivalent to q;
3. U contains 2^{n} queries.

Arbitrary twigs require exponential samples

(f) Query q
(g) Query p_{v} for $v=\left(k_{1}, \ldots, k_{n}\right)$.

Anchored tree patterns: a good class

A twig query is anchored if:

1. A //-edge can be incident to a \star-node only if the node is a leaf.
2. A *-node may be a leaf only if it is either incident to a //-edge or it is the selecting node.

Anchored tree patterns: a good class

A twig query is anchored if:

1. A //-edge can be incident to a *-node only if the node is a leaf.
2. A *-node may be a leaf only if it is either incident to a //-edge or it is the selecting node.

Anchored tree patterns: a good class

Theorem
For anchored twigs:
P1. subsumption \equiv containment;
P2. a small characteristic sample always exists (two trees are enough!).

P2: Containment characterizing trees

P2: Containment characterizing trees

Lemma

Take any anchored query q and construct t_{1}^{q} as above. For any p of height bounded by the height of q and not using labels a_{1} and a_{2}, $t_{1}^{q} \leqslant p$ implies $q \leqslant p$.

P2: Containment characterizing trees

Lemma

Take any anchored query q and construct t_{1}^{q} as above. For any p of height bounded by the height of q and not using labels a_{1} and a_{2}, $t_{1}^{q} \leqslant p$ implies $q \leqslant p$.

Corollary
If both t_{0}^{q} and t_{1}^{q} satisfy p, then $q \subseteq p$.

Learning for unary anchored path queries

Input: a sample S of decorated trees
Output: a minimal unary anchored path query p such that $S \subseteq \mathcal{L}(p)$

Learning for unary anchored path queries

$w:=\min _{\leq_{\text {can }}}(\operatorname{SelPath}(S))$
let w be of the form $r / a_{1} / \cdots / a_{n}$
$p:=r / / \star$
foreach subpath u of $a_{1} / a_{2} / \cdots / a_{n-1}$
in the order of decreasing lengths do replace in p any $/ /$-edge by $/ / u / /$ as long as $S \subseteq \mathcal{L}(p)$

Learning for unary anchored path queries

let p be of the form $r / / p_{0} / / b_{1}$
if $S \subseteq \mathcal{L}\left(p\left\{b_{1} \leftarrow a_{n}\right\}\right)$ then
$p:=p\left\{b_{1} \leftarrow a_{n}\right\}$

Learning for unary anchored path queries

foreach descendant edge α in p do find maximal ℓ s.t. $S \subseteq \mathcal{L}\left(p\left\{\alpha \leftarrow / /(\star /)^{\ell}\right\}\right)$
if $S \subseteq \mathcal{L}\left(p\left\{\alpha \leftarrow /(\star /)^{\ell}\right\}\right)$ then
$p:=p\left\{\alpha \leftarrow /(\star /)^{\ell}\right\}$
return p

A sample and the constructed queries.

Learning unary anchored path queries

Theorem
Our algorithm is sound and complete (i.e., it is sound and returns q if the input is S such that $\left.S \supseteq C S_{q}=\left\{t_{0}^{q}, t_{1}^{q}\right\}\right)$.

Proof.

- Assume some p is returned for a given sample S.

Learning unary anchored path queries

Theorem
Our algorithm is sound and complete (i.e., it is sound and returns q if the input is S such that $\left.S \supseteq C S_{q}=\left\{t_{0}^{q}, t_{1}^{q}\right\}\right)$.

Proof.

- Assume some p is returned for a given sample S.
- Obviously, $S \subseteq \mathcal{L}(p)$.

Learning unary anchored path queries

Theorem

Our algorithm is sound and complete (i.e., it is sound and returns q if the input is S such that $\left.S \supseteq C S_{q}=\left\{t_{0}^{q}, t_{1}^{q}\right\}\right)$.

Proof.

- Assume some p is returned for a given sample S.
- Obviously, $S \subseteq \mathcal{L}(p)$.
- By case analysis: there is no $p^{\prime} \neq p$ such that $p^{\prime} \subseteq p$ and $S \subseteq \mathcal{L}\left(p^{\prime}\right)$.

Learning unary anchored path queries

Theorem

Our algorithm is sound and complete (i.e., it is sound and returns q if the input is S such that $\left.S \supseteq C S_{q}=\left\{t_{0}^{q}, t_{1}^{q}\right\}\right)$.

Proof.

- Assume some p is returned for a given sample S.
- Obviously, $S \subseteq \mathcal{L}(p)$.
- By case analysis: there is no $p^{\prime} \neq p$ such that $p^{\prime} \subseteq p$ and $S \subseteq \mathcal{L}\left(p^{\prime}\right)$.
- Since $C S_{q} \subseteq S \subseteq \mathcal{L}(p)$ then $q \subseteq p(\mathrm{P} 2)$. Hence, by the claim above, p and q are equivalent.

Learning anchored queries

Our algorithm can be extended for

- boolean anchored path queries,
- conjunctions of anchored path queries,
- (path-subsumption-free) boolean twigs,
- (path-subsumption-free) unary twigs.

