Tree pattern queries: learning and teaching

Sławek Staworko, Piotr Wieczorek

University of Wrocław

December 16, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Trees and tree patterns (twigs)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Trees and tree patterns (twigs): embeddings

(c) Embeddings of q_0 in t_0 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Unary tree patterns and decorated trees

(d) Unary path query p_0 . (e) Decorated trees t_1 and t_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

characterizing queries for a given q provide a (polynomial) set of examples CS_q such that for all p it holds $CS_q \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

characterizing queries for a given q provide a (polynomial) set of examples CS_q such that for all p it holds $CS_q \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.

learning provide a polynomial-time algorithm ${\mathcal A}$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

characterizing queries for a given q provide a (polynomial) set of examples CS_q such that for all p it holds $CS_q \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.

learning provide a polynomial-time algorithm $\ensuremath{\mathcal{A}}$ such that

 for any sample S, A return a query consistent with S (soundness),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

characterizing queries for a given q provide a (polynomial) set of examples CS_q such that for all p it holds $CS_q \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.

learning provide a polynomial-time algorithm ${\mathcal A}$ such that

- for any sample S, A return a query consistent with S (soundness),
- for any query q there exists a (polynomial) characteristic sample CS_q^A such that for every sample S that satifies $CS_q^A \subseteq S \subseteq \mathcal{L}(q)$, the algorithm A returns a query equivalent to q(completeness).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

characterizing queries for a given q provide a (polynomial) set of examples CS_q such that for all p it holds $CS_q \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.

learning provide a polynomial-time algorithm ${\mathcal A}$ such that

- for any sample S, A return a query consistent with S (soundness),
- for any query q there exists a (polynomial) characteristic sample CS_q^A such that for every sample S that satifies $CS_q^A \subseteq S \subseteq \mathcal{L}(q)$, the algorithm A returns a query equivalent to q(completeness).

Here, we focus on samples with positive examples only.

characterizing queries for a given q provide a (polynomial) set of examples CS_q such that for all p it holds $CS_q \subseteq \mathcal{L}(p)$ iff $q \subseteq p$.

learning provide a polynomial-time algorithm ${\mathcal A}$ such that

- for any sample S, A return a query consistent with S (soundness),
- for any query q there exists a (polynomial) characteristic sample CS_q^A such that for every sample S that satifies $CS_q^A \subseteq S \subseteq \mathcal{L}(q)$, the algorithm A returns a query equivalent to q(completeness).

Minimality vs. completeness?

sometimes queries are contained but no embedding exists

• sometimes queries are contained but no embedding exists, e.g., r/a//b and r/*/*

- sometimes queries are contained but no embedding exists, e.g., r/a//b and r/*/*
- containment is coNP-complete, subsumption (i.e., the existence of embeddings) is in PTIME

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- sometimes queries are contained but no embedding exists, e.g., r/a//b and r/*/*
- containment is coNP-complete, subsumption (i.e., the existence of embeddings) is in PTIME

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

moreover: exponential samples required

Arbitrary twigs require exponential samples

Theorem

For any natural number n there exists a twig query q such that any set characterizing q contains at least 2^n examples.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Arbitrary twigs require exponential samples

Theorem

For any natural number n there exists a twig query q such that any set characterizing q contains at least 2^n examples.

Proof.

Construct a query q and a set of twig queries U such that:

- 1. for each $p \in U$ we have $q \notin p$;
- 2. no single positive example t can witness the fact that any two distinct $p_1, p_2 \in U$ are not equivalent to q;

3. U contains 2^n queries.

Arbitrary twigs require exponential samples

(g) Query p_v for $v = (k_1, ..., k_n)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Anchored tree patterns: a good class

A twig query is *anchored* if:

- 1. A //-edge can be incident to a $\star\text{-node only}$ if the node is a leaf.
- 2. A *-node may be a leaf only if it is either incident to a //-edge or it is the selecting node.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Anchored tree patterns: a good class

A twig query is *anchored* if:

- 1. A //-edge can be incident to a \star -node only if the node is a leaf.
- 2. A *-node may be a leaf only if it is either incident to a //-edge or it is the selecting node.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Anchored tree patterns: a good class

Theorem

For anchored twigs:

- *P1.* subsumption \equiv containment;
- P2. a small characteristic sample always exists (two trees are enough!).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

P2: Containment characterizing trees

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 ● の Q @

P2: Containment characterizing trees

Lemma

Take any anchored query q and construct t_1^q as above. For any p of height bounded by the height of q and not using labels a_1 and a_2 , $t_1^q \leq p$ implies $q \leq p$.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

э

P2: Containment characterizing trees

Lemma

Take any anchored query q and construct t_1^q as above. For any p of height bounded by the height of q and not using labels a_1 and a_2 , $t_1^q \leq p$ implies $q \leq p$.

Corollary If both t_0^q and t_1^q satisfy p, then $q \subseteq p$.

Input: a sample S of decorated trees **Output:** a minimal unary anchored path query p such that $S \subseteq \mathcal{L}(p)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $w := \min_{\leq_{can}} (SelPath(S))$ let w be of the form $r/a_1/\cdots/a_n$ p := r//*foreach subpath u of $a_1/a_2/\cdots/a_{n-1}$ in the order of decreasing lengths **do**replace in p any //-edge by //u// as long as $S \subseteq \mathcal{L}(p)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

let *p* be of the form
$$r//p_0//b_1$$

if $S \subseteq \mathcal{L}(p\{b_1 \leftarrow a_n\})$ **then**
 $p \coloneqq p\{b_1 \leftarrow a_n\}$

foreach descendant edge α in p do find maximal ℓ s.t. $S \subseteq \mathcal{L}(p\{\alpha \leftarrow //(*/)^{\ell}\})$ if $S \subseteq \mathcal{L}(p\{\alpha \leftarrow /(*/)^{\ell}\})$ then $p \coloneqq p\{\alpha \leftarrow /(*/)^{\ell}\}$

return p

A sample and the constructed queries.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Theorem

Our algorithm is sound and complete (i.e., it is sound and returns q if the input is S such that $S \supseteq CS_q = \{t_0^q, t_1^q\}$).

Proof.

• Assume some *p* is returned for a given sample *S*.

Theorem

Our algorithm is sound and complete (i.e., it is sound and returns q if the input is S such that $S \supseteq CS_q = \{t_0^q, t_1^q\}$).

Proof.

- Assume some *p* is returned for a given sample *S*.
- Obviously, $S \subseteq \mathcal{L}(p)$.

Theorem

Our algorithm is sound and complete (i.e., it is sound and returns q if the input is S such that $S \supseteq CS_q = \{t_0^q, t_1^q\}$).

Proof.

- Assume some *p* is returned for a given sample *S*.
- Obviously, $S \subseteq \mathcal{L}(p)$.
- By case analysis: there is no $p' \neq p$ such that $p' \subseteq p$ and $S \subseteq \mathcal{L}(p')$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem

Our algorithm is sound and complete (i.e., it is sound and returns q if the input is S such that $S \supseteq CS_q = \{t_0^q, t_1^q\}$).

Proof.

- Assume some *p* is returned for a given sample *S*.
- Obviously, $S \subseteq \mathcal{L}(p)$.
- By case analysis: there is no $p' \neq p$ such that $p' \subseteq p$ and $S \subseteq \mathcal{L}(p')$.
- Since CS_q ⊆ S ⊆ L(p) then q ⊆ p (P2). Hence, by the claim above, p and q are equivalent.

Learning anchored queries

Our algorithm can be extended for

- boolean anchored path queries,
- conjunctions of anchored path queries,
- (path-subsumption-free) boolean twigs,

(path-subsumption-free) unary twigs.