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Trees and tree patterns (twigs)
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(b) Twig query q0.



Trees and tree patterns (twigs): embeddings
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(c) Embeddings of q0 in t0.



Unary tree patterns and decorated trees

r

⋆

a

(d) Unary path query p0.
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(e) Decorated trees t1 and t2.



What is this talk about?

characterizing queries for a given q provide a (polynomial) set of
examples CSq such that for all p it holds CSq ⊆ L(p)
iff q ⊆ p.

learning provide a polynomial-time algorithm A such that

▸ for any sample S , A return a query consistent
with S (soundness),

▸ for any query q there exists a (polynomial)
characteristic sample CSAq such that for every

sample S that satifies CSAq ⊆ S ⊆ L(q), the
algorithm A returns a query equivalent to q
(completeness).

Here, we focus on samples with positive examples only.
Minimality vs. completeness?
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Arbitrary twigs: problems

▸ sometimes queries are contained but no embedding exists

, e.g.,
r/a//b and r/ ∗ /∗

▸ containment is coNP-complete, subsumption (i.e., the existence
of embeddings) is in PTIME

▸ moreover: exponential samples required
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Arbitrary twigs require exponential samples

Theorem
For any natural number n there exists a twig query q such that
any set characterizing q contains at least 2n examples.

Proof.
Construct a query q and a set of twig queries U such that:

1. for each p ∈ U we have q /⊆ p;

2. no single positive example t can witness the fact that
any two distinct p1,p2 ∈ U are not equivalent to q;

3. U contains 2n queries.
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Arbitrary twigs require exponential samples
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Anchored tree patterns: a good class

A twig query is anchored if:

1. A //-edge can be incident to a ⋆-node only if the node is a leaf.

2. A ⋆-node may be a leaf only if it is either incident to a //-edge
or it is the selecting node.
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Anchored tree patterns: a good class

Theorem
For anchored twigs:

P1. subsumption ≡ containment;

P2. a small characteristic sample always exists (two trees
are enough!).



P2: Containment characterizing trees
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Lemma
Take any anchored query q and construct tq1 as above. For any p of
height bounded by the height of q and not using labels a1 and a2,
tq1 ≼ p implies q ≼ p.

Corollary

If both tq0 and tq1 satisfy p, then q ⊆ p.
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Learning for unary anchored path queries

Input: a sample S of decorated trees
Output: a minimal unary anchored path query p such that S ⊆ L(p)



Learning for unary anchored path queries

w ∶= min≤can(SelPath(S))
let w be of the form r/a1/⋯/an
p ∶= r//⋆
foreach subpath u of a1/a2/⋯/an−1

in the order of decreasing lengths do
replace in p any //-edge by //u// as long as S ⊆ L(p)



Learning for unary anchored path queries

let p be of the form r//p0//b1

if S ⊆ L(p{b1 ← an}) then
p ∶= p{b1 ← an}



Learning for unary anchored path queries

foreach descendant edge α in p do
find maximal ` s.t. S ⊆ L(p{α ← //(⋆/)`})

if S ⊆ L(p{α ← /(⋆/)`}) then
p ∶= p{α ← /(⋆/)`}

return p



A sample and the constructed queries.
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Learning unary anchored path queries

Theorem
Our algorithm is sound and complete (i.e., it is sound and returns q
if the input is S such that S ⊇ CSq = {t

q
0 , t

q
1 }).

Proof.
▸ Assume some p is returned for a given sample S .

▸ Obviously, S ⊆ L(p).

▸ By case analysis: there is no p′ ≠ p such that p′ ⊆ p and
S ⊆ L(p′).

▸ Since CSq ⊆ S ⊆ L(p) then q ⊆ p (P2). Hence, by the claim
above, p and q are equivalent.
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Learning anchored queries

Our algorithm can be extended for

▸ boolean anchored path queries,

▸ conjunctions of anchored path queries,

▸ (path-subsumption-free) boolean twigs,

▸ (path-subsumption-free) unary twigs.


