Tree pattern queries: learning and teaching

Stawek Staworko, Piotr Wieczorek

University of Wroctaw

December 16, 2021



Trees and tree patterns (twigs)
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Trees and tree patterns (twigs): embeddings
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Unary tree patterns and decorated trees
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Minimality vs. completeness?



Arbitrary twigs: problems

» sometimes queries are contained but no embedding exists



Arbitrary twigs: problems

» sometimes queries are contained but no embedding exists, e.g.,
rfa//band r/ x [



Arbitrary twigs: problems

» sometimes queries are contained but no embedding exists, e.g.,
rfa//band r/ x [

» containment is coNP-complete, subsumption (i.e., the existence
of embeddings) is in PTIME



Arbitrary twigs: problems

» sometimes queries are contained but no embedding exists, e.g.,
rfa//band r/ x [

» containment is coNP-complete, subsumption (i.e., the existence
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> moreover: exponential samples required
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Theorem

For any natural number n there exists a twig query q such that
any set characterizing q contains at least 2" examples.

Proof.

Construct a query g and a set of twig queries U such that:

1. for each p e U we have g ¢ p;

2. no single positive example t can witness the fact that
any two distinct p1, p2 € U are not equivalent to g;
3. U contains 2" queries.



Arbitrary twigs require exponential samples
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Anchored tree patterns: a good class

A twig query is anchored if:
1. A //-edge can be incident to a x-node only if the node is a leaf.

2. A x-node may be a leaf only if it is either incident to a //-edge
or it is the selecting node.
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Anchored tree patterns: a good class

Theorem
For anchored twigs:

P1. subsumption = containment;

P2. a small characteristic sample always exists (two trees
are enough!).



P2: Containment characterizing trees
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Lemma

Take any anchored query q and construct t{’ as above. For any p of
height bounded by the height of q and not using labels a; and as,
t] < p implies q < p.

Corollary
If both tg and tf satisfy p, then g c p.



Learning for unary anchored path queries

Input: a sample S of decorated trees
Output: a minimal unary anchored path query p such that S c L(p)



Learning for unary anchored path queries

w = ming_,, (SelPath(S))
let w be of the form r/ai/--/ap
pi=rf+
foreach subpath v of ai/ax/---/an-1
in the order of decreasing lengths do
replace in p any //-edge by //u// as long as S ¢ L(p)



Learning for unary anchored path queries

let p be of the form r//po// b1
if Sc L(p{b1 < an}) then
p:=p{b1 < ap}



Learning for unary anchored path queries

foreach descendant edge « in p do

find maximal £ s.t. S < L(p{a < [/(x/)'})

if Sc L(p{a< [(x/)}) then
pi=pla</(x))}

return p



A sample and the constructed queries.
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Learning unary anchored path queries

Theorem
Our algorithm is sound and complete (i.e., it is sound and returns q

if the input is S such that S 2 CS, = {tJ,t]}).
Proof.
> Assume some p is returned for a given sample S.
» Obviously, S c L(p).

» By case analysis: there is no p’ # p such that p’ € p and
ScL(p).

» Since CS, < S c L(p) then g < p (P2). Hence, by the claim
above, p and g are equivalent.
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Learning anchored queries

Our algorithm can be extended for
» boolean anchored path queries,

» conjunctions of anchored path queries,

v

(path-subsumption-free) boolean twigs,

v

(path-subsumption-free) unary twigs.



