
Modelowanie 
konceptualne i fizyczne

Budowanie bazy danych dla “rzeczywistego” 
problemu



Zagadnienie rzeczywiste

drzewa (jak urosną, to można je ściąć 
uzyskując drewno) drzewa owocowe (można z nich 

zbierać owoce

pola (można orać, siać, zbierać plony; 
można tez nawozić zwiększając plony)

kwiaty (podlewa się i ścina, jak zakwitną)

zwierzęta (nie trzeba ich karmić, ale jak nie mają gdzie 
mieszkać, to nie dają mleka, wełny itp.)

urządzenia (mogą coś produkować: mielić zboże na mąkę, 
palić kawę, robić sery i masło z mleka)



Zagadnienie rzeczywiste (cd.)

● masz magazyn na to, co kupiłeś/zebrałeś/wyprodukowałeś
● zebrane plony/produkty możesz sprzedawać
● masz zasoby waluty (żetony, gotówkę)
● w grze zdobywasz kolejne poziomy i tytuły
● waluta jest potrzebna, by kupować narzędzia, nasiona, 

urządzenia
● w grze masz sąsiadów - znajomych
● można przesyłać sobie prezenty
● można przesyłać sobie wiadomości



Struktura zagadnienia

● Obiekty: na farmie są: pola, drzewa, kwiaty, zwierzęta, urządzenia, 
dekoracje. 

● Procesy: obiekty mogą rosnąć (zmieniać wygląd), poruszać się, 
produkować coś (owoce, plony, mąkę, jaja lub mleko):
○ wzrost kwiatu/drzewa składa się z kilku (niewielu) etapów; obiekt 

rosnący zmienia wygląd; wzrost jest samorzutny;
○ produkcja zwierząt jest samorzutna, ale wymaga odpowiednich 

obiektów (obory, owczarni, kurnika); zwierzeta mogą się poruszać;
○ produkcja w przedsiębiorstwach wymaga składników (zboże, kawa, 

mąka) i jest uruchamiana przez użytkownika; oprócz składników 
wymaga waluty;

○ uprawa składa się z: orania, siania, zbierania plonów. 
● Katalizatory: możesz mieć zasoby (narzędzia, nawozy) przyśpieszające 

procesy;
● Zasoby: w grze zdobywasz:

○ walutę, poziomy i tytuły, katalizatory
○ plony i produkty
○ obiekty (zakupione i umieszczone na farmie lub w magazynie)

● Związki: gracze mogą być sąsiadami



Rozpoznanie struktury zagadnienia

● Wyróżniamy encje (obiekty), tj: użytkownik, farma, pole, 
drzewo, urządzenia, zwierzęta, narzędzia, produkty;

● Dla każdego zbioru encji określamy atrybuty, które będą 
przechowywane w bazie, tj. nazwa użytkownika, obraz i 
pozycja obiektu, etap rozwoju;

● Znajdujemy związki pomiędzy encjami tj.: produkt jest 
produkowany przez rządzenie, obiekt znajduje się na 
farmie, produkt jest potrzebny do wytworzenia innego 
produktu, gracze są sąsiadami.

Po wyróżnieniu encji, atrybutów i związków możemy 
narysować diagram E-R.



Diagram E-R (zbiory encji i atrybuty)
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Diagram E-R (zbiory encji i atrybuty)
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Diagram E-R (związki)
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Diagram E-R (atrybuty związków)
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Diagram E-R (rodzaje związków)
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Diagram E-R (klucze i słabe zbiory encji)
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Obiekt jest albo na farmie, albo w magazynie
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Obiekty w magazynie nie mogą produować
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Obiekt może produkować tylko takie produkty, które są przypisane do 
jego typu.
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Obiekty rozmieszczone na farmie nie mogą kolidować.
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Role (użytkownicy, ich schematy i akcje)
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Role (użytkownicy, ich schematy i akcje)
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Role (użytkownicy, ich schematy i akcje)
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Rola Gracz

● Kupuje farmy.
● Kupuje obiekty i umieszcza je na farmach. Może przesuwać 

obiekty. Może chować je w magazynie.
● Może uprawiać pola: orać, siać, zbierać plony, zakładając że ma na 

to środki (walutę). Może przy tym wykorzystywać posiadane 
narzędzia.

● Może uruchamiać produkcję w przedsiębiorstwach, zakładając, że 
ma walutę i produkty. Po zakończeniu może zebrać produkty.

● Może zbierać produkcję zwierzęcą: mleko, jajka, wełnę, zakładając, 
że ma odpowiednie pomieszczenie (oborę, owczarnię, kurnik).

● Może ścinać drzewa i kwiaty.
● Zebrane produkty są automatycznie dodawane do magazynu. 

Produkty do produkcji też są pobierane z magazynu.
● Może odwiedzać sąsiadów i u nich pracować.
● Może wysyłać wiadomości do sąsiadów.



Rola PROJEKTANT GRY

● Definiuje (nowe) rodzaje obiektów: roślin, zwierząt, produktów, 
przedsiębiorstw, narzędzi.

● Dla każdego obiektu określa jego etapy, czas ich trwania, obrazy obiektu 
na odpowiednim etapie “życia”. 

● Definiuje procesy produkcji: określa składniki, potrzebne urządzenia, 
katalizatory. 

● Może mieć dostęp do statystyk o dotychczasowym przebiegu gry: 
popularności jej elementów i preferencjach graczy.



Rola POLICJA

● Potrzebuje informacji o graczach i ich kontaktach.
● Może poszukiwać zachowań pasujących do 

konkretnego wzorca “niebezpiecznych” zachowań.
● Może poszukiwać potencjalnie niebezpiecznych 

zwrotów w przesyłanych wiadomościach.



Diagram E-R (dodatkowe możliwości)
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Diagram E-R (klasy i podklasy)
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Diagram E-R (klasy i podklasy)
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Diagram E-R (dekompozycja)
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Diagram E-R (dekompozycja)
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Konceptualny projekt bazy danych

● Diagram E-R (lub UML).
● Więzy nieujęte w diagramie zapisane w komentarz.
● Role wraz z podschematami i funkcjonalnościami. Dla 

każdej funkcjonalności trzeba wskazać obszar bazy, do 
którego się odwołuje.



Modelowanie fizyczne - prosty schemat

● utworzenie tabeli dla każdego zbioru encji; każdemu atrybutowi 
odpowiada kolumna w tabeli:
○ atrybuty wyliczane pomijamy
○ atrybuty wielokrotne - rezerwujemy kilka kolumn lub zapisujemy w 

oddzielnej tabeli;
○ dla atrybutów kluczowych nakładamy więzy i zakładamy indeksy

● zapisanie w tabelach związków pomiędzy zbiorami encji:
○ związek 1:n - dopisujemy klucz nadrzędnej encji i atrybuty związku do 

tabeli encji podrzędnej; definiujemy klucz obcy;
○ związek 1:1 - lepiej dopisać (klucz obcy) do tabeli, której udział w 

związku jest wymuszony;
○ związek n:m - trzeba zapisać w oddzielnej tabeli - zapisujemy w niej 

klucze powiązanych encji i atrybuty związku - są to klucze obce;
● słabe zbiory encji - tworzymy dla nich tabele i dodajemy w nich klucze 

encji nadrzędnej (klucze obce);
● związki hierarchczne - nie mieszczą się w prostym schemacie
● więzy ogólne - definiujemy wyzwalacze, które zachowują więzy
● użytkownicy - definiujemy role, uprawnienia, ewentualnie perspektywy 



Model fizyczny - denormalizacja

Kontrolowana redundancja i/lub obniżenie stopnia normalizacji w celu 
uzyskania większej sprawności bazy (dostępu do danych).

Do tabeli USER dodajemy kolumny obliczane przez wyzwalacze:
● ulevel, utitle, next_threshold - przy każdej zmianie punktów 

użytkownika sprawdzamy next_threshold; 
● known_no - zmiana w tabeli KNOWS:

○ jest ignorowana, gdy osoby już się znają
○ jest wycofywana, gdy oferujący jest zablokowany
○ jest wprowadzana (w odpowiednim porządku dla lepszej kontroli 

symetrii) i powoduje uaktualnienie known_no w tabeli USER.



Model fizyczny - właściwe indeksy

Ogólnego zastosowania: B-drzewo, funkcja hashująca
Specjalistyczne: R-drzewo, plik odwrócony, drzewo suffiksowe

Ogólne: wspomagają wyszukiwanie, złączenia, kontrolę unikalności:
● B-drzewo wspomaga też sortowanie i pytania z zakresu
● f.haszująca jest szybsza (~2 razy) przy prostym wyszukiwaniu

Specjalne:
● R-drzewo jest przeznaczone do przechowywania obiektów 

rozmieszczonych na płaszczyźnie; wspomaga przeszukiwanie obszaru, 
poszukiwanie obiektów w pobliżu;

● plik odwrócony pozwala przeszukiwać repozytorium tekstów w 
poszukiwaniu wystąpień słów, fraz, zdań;

● drzewo sufiksowe - nadaje się na indeksy dla tekstów, w których chcemy 
poszukiwać dowolnych podsłów (dane DNA) także z błędami.


