
Modelowanie
konceptualne i fizyczne

Budowanie bazy danych dla “rzeczywistego”
problemu

Zagadnienie rzeczywiste

drzewa (jak urosną, to można je ściąć
uzyskując drewno) drzewa owocowe (można z nich

zbierać owoce

pola (można orać, siać, zbierać plony;
można tez nawozić zwiększając plony)

kwiaty (podlewa się i ścina, jak zakwitną)

zwierzęta (nie trzeba ich karmić, ale jak nie mają gdzie
mieszkać, to nie dają mleka, wełny itp.)

urządzenia (mogą coś produkować: mielić zboże na mąkę,
palić kawę, robić sery i masło z mleka)

Zagadnienie rzeczywiste (cd.)

● masz magazyn na to, co kupiłeś/zebrałeś/wyprodukowałeś
● zebrane plony/produkty możesz sprzedawać
● masz zasoby waluty (żetony, gotówkę)
● w grze zdobywasz kolejne poziomy i tytuły
● waluta jest potrzebna, by kupować narzędzia, nasiona,

urządzenia
● w grze masz sąsiadów - znajomych
● można przesyłać sobie prezenty
● można przesyłać sobie wiadomości

Struktura zagadnienia

● Obiekty: na farmie są: pola, drzewa, kwiaty, zwierzęta, urządzenia,
dekoracje.

● Procesy: obiekty mogą rosnąć (zmieniać wygląd), poruszać się,
produkować coś (owoce, plony, mąkę, jaja lub mleko):
○ wzrost kwiatu/drzewa składa się z kilku (niewielu) etapów; obiekt

rosnący zmienia wygląd; wzrost jest samorzutny;
○ produkcja zwierząt jest samorzutna, ale wymaga odpowiednich

obiektów (obory, owczarni, kurnika); zwierzeta mogą się poruszać;
○ produkcja w przedsiębiorstwach wymaga składników (zboże, kawa,

mąka) i jest uruchamiana przez użytkownika; oprócz składników
wymaga waluty;

○ uprawa składa się z: orania, siania, zbierania plonów.
● Katalizatory: możesz mieć zasoby (narzędzia, nawozy) przyśpieszające

procesy;
● Zasoby: w grze zdobywasz:

○ walutę, poziomy i tytuły, katalizatory
○ plony i produkty
○ obiekty (zakupione i umieszczone na farmie lub w magazynie)

● Związki: gracze mogą być sąsiadami

Rozpoznanie struktury zagadnienia

● Wyróżniamy encje (obiekty), tj: użytkownik, farma, pole,
drzewo, urządzenia, zwierzęta, narzędzia, produkty;

● Dla każdego zbioru encji określamy atrybuty, które będą
przechowywane w bazie, tj. nazwa użytkownika, obraz i
pozycja obiektu, etap rozwoju;

● Znajdujemy związki pomiędzy encjami tj.: produkt jest
produkowany przez rządzenie, obiekt znajduje się na
farmie, produkt jest potrzebny do wytworzenia innego
produktu, gracze są sąsiadami.

Po wyróżnieniu encji, atrybutów i związków możemy
narysować diagram E-R.

Diagram E-R (zbiory encji i atrybuty)

USERFARM

OBJECT

PRODUCT
TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.
name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

STORAGE

capacity

Diagram E-R (zbiory encji i atrybuty)

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

STORAGE

capacity

Diagram E-R (związki)

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

knows

STORAGE owns

capacity

is on

has

Diagram E-R (atrybuty związków)

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

Diagram E-R (rodzaje związków)

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

Diagram E-R (klucze i słabe zbiory encji)

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

Obiekt jest albo na farmie, albo w magazynie

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

Obiekty w magazynie nie mogą produować

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

Obiekt może produkować tylko takie produkty, które są przypisane do
jego typu.

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

Obiekty rozmieszczone na farmie nie mogą kolidować.

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

Role (użytkownicy, ich schematy i akcje)

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

GRACZ

Role (użytkownicy, ich schematy i akcje)

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

GRACZ

PROJEKTANT GRY

Role (użytkownicy, ich schematy i akcje)

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

GRACZ

PROJEKTANT GRY

POLICJ
A

Rola Gracz

● Kupuje farmy.
● Kupuje obiekty i umieszcza je na farmach. Może przesuwać

obiekty. Może chować je w magazynie.
● Może uprawiać pola: orać, siać, zbierać plony, zakładając że ma na

to środki (walutę). Może przy tym wykorzystywać posiadane
narzędzia.

● Może uruchamiać produkcję w przedsiębiorstwach, zakładając, że
ma walutę i produkty. Po zakończeniu może zebrać produkty.

● Może zbierać produkcję zwierzęcą: mleko, jajka, wełnę, zakładając,
że ma odpowiednie pomieszczenie (oborę, owczarnię, kurnik).

● Może ścinać drzewa i kwiaty.
● Zebrane produkty są automatycznie dodawane do magazynu.

Produkty do produkcji też są pobierane z magazynu.
● Może odwiedzać sąsiadów i u nich pracować.
● Może wysyłać wiadomości do sąsiadów.

Rola PROJEKTANT GRY

● Definiuje (nowe) rodzaje obiektów: roślin, zwierząt, produktów,
przedsiębiorstw, narzędzi.

● Dla każdego obiektu określa jego etapy, czas ich trwania, obrazy obiektu
na odpowiednim etapie “życia”.

● Definiuje procesy produkcji: określa składniki, potrzebne urządzenia,
katalizatory.

● Może mieć dostęp do statystyk o dotychczasowym przebiegu gry:
popularności jej elementów i preferencjach graczy.

Rola POLICJA

● Potrzebuje informacji o graczach i ich kontaktach.
● Może poszukiwać zachowań pasujących do

konkretnego wzorca “niebezpiecznych” zachowań.
● Może poszukiwać potencjalnie niebezpiecznych

zwrotów w przesyłanych wiadomościach.

Diagram E-R (dodatkowe możliwości)

USER

FARM

OBJECT

PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prd

OBJECT
TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is on

has

Diagram E-R (klasy i podklasy)

USER

FARM

OBJECT PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prdOBJECT

TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y

z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is in

has

FOBJECT
SOBJECT

number

Diagram E-R (klasy i podklasy)

USER

FARM

OBJECT PRODUCT

TOOL

name

size

name

e-mail

coins

name

prod.cost

sell for

no of ingr.

name cost fuel

oid

img
prdOBJECT

TYPE

name

type

cost

is of

has

is on

stored

is
ingredient

produces

can
produce

with

position

x

y

z

amount

amount

stime amount

ptime
pcost

knows since

STORAGE owns

capacity

is in

has

FOBJECT
SOBJECT

number

Diagram E-R (dekompozycja)

OBJECT
TYPE

name
type

cost

TREE
TYPE

ANIMAL
TYPE

FLOWER
TYPE

FIELD
TYPE

FACILITY
TYPE

tree_produces

ptime

water_period

flower_produces

ptime

field_produces

ptime

facility_produces

ptime

batch_size

animal_produces

ptime

SHED
TYPE

needs
shelter

capacity

Mandatory, Or

Diagram E-R (dekompozycja)

FOBJECT

oid

TREE

ANIMAL

FLOWER

FIELD

FACILITY

tree_produces

last_harvest

last_watered

flower_produces

last_harvest

field_produces

sew_time

facility_produces

start_time
number_of_batches

animal_produces

last_collected

SHED
in shelter

number_of_animals

Mandatory, Or

plowed?

position

Konceptualny projekt bazy danych

● Diagram E-R (lub UML).
● Więzy nieujęte w diagramie zapisane w komentarz.
● Role wraz z podschematami i funkcjonalnościami. Dla

każdej funkcjonalności trzeba wskazać obszar bazy, do
którego się odwołuje.

Modelowanie fizyczne - prosty schemat

● utworzenie tabeli dla każdego zbioru encji; każdemu atrybutowi
odpowiada kolumna w tabeli:
○ atrybuty wyliczane pomijamy
○ atrybuty wielokrotne - rezerwujemy kilka kolumn lub zapisujemy w

oddzielnej tabeli;
○ dla atrybutów kluczowych nakładamy więzy i zakładamy indeksy

● zapisanie w tabelach związków pomiędzy zbiorami encji:
○ związek 1:n - dopisujemy klucz nadrzędnej encji i atrybuty związku do

tabeli encji podrzędnej; definiujemy klucz obcy;
○ związek 1:1 - lepiej dopisać (klucz obcy) do tabeli, której udział w

związku jest wymuszony;
○ związek n:m - trzeba zapisać w oddzielnej tabeli - zapisujemy w niej

klucze powiązanych encji i atrybuty związku - są to klucze obce;
● słabe zbiory encji - tworzymy dla nich tabele i dodajemy w nich klucze

encji nadrzędnej (klucze obce);
● związki hierarchczne - nie mieszczą się w prostym schemacie
● więzy ogólne - definiujemy wyzwalacze, które zachowują więzy
● użytkownicy - definiujemy role, uprawnienia, ewentualnie perspektywy

Model fizyczny - denormalizacja

Kontrolowana redundancja i/lub obniżenie stopnia normalizacji w celu
uzyskania większej sprawności bazy (dostępu do danych).

Do tabeli USER dodajemy kolumny obliczane przez wyzwalacze:
● ulevel, utitle, next_threshold - przy każdej zmianie punktów

użytkownika sprawdzamy next_threshold;
● known_no - zmiana w tabeli KNOWS:

○ jest ignorowana, gdy osoby już się znają
○ jest wycofywana, gdy oferujący jest zablokowany
○ jest wprowadzana (w odpowiednim porządku dla lepszej kontroli

symetrii) i powoduje uaktualnienie known_no w tabeli USER.

Model fizyczny - właściwe indeksy

Ogólnego zastosowania: B-drzewo, funkcja hashująca
Specjalistyczne: R-drzewo, plik odwrócony, drzewo suffiksowe

Ogólne: wspomagają wyszukiwanie, złączenia, kontrolę unikalności:
● B-drzewo wspomaga też sortowanie i pytania z zakresu
● f.haszująca jest szybsza (~2 razy) przy prostym wyszukiwaniu

Specjalne:
● R-drzewo jest przeznaczone do przechowywania obiektów

rozmieszczonych na płaszczyźnie; wspomaga przeszukiwanie obszaru,
poszukiwanie obiektów w pobliżu;

● plik odwrócony pozwala przeszukiwać repozytorium tekstów w
poszukiwaniu wystąpień słów, fraz, zdań;

● drzewo sufiksowe - nadaje się na indeksy dla tekstów, w których chcemy
poszukiwać dowolnych podsłów (dane DNA) także z błędami.

