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Czym są NULLe?

Pole ma jakąś wartość ale jej nie znamy (niepodpisany egzamin)

Pole nie ma wartości (student nie ma promotora (jeszcze))
Nie wiadomo, która z powyższych (może ma jakiegoś promotora, a może nie)
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Czym są NULLe?

IF(OLD.text!=NEW.text) THEN -- OLD.text<>NEW.text
NEW.lasteditdate:=now();
INSERT INTO commenthistory(commentid, creationdate, text)

VALUES(OLD.id, OLD.lasteditdate, OLD.text);

IF(OLD.text IS DISTINCT FROM NEW.text) THEN
NEW.lasteditdate:=now();
INSERT INTO commenthistory(commentid, creationdate, text)

VALUES(OLD.id, OLD.lasteditdate, OLD.text);
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Czym są NULLe?

Operacje arytmetyka, porównania na NULLach - wynikiem NULL (UNKNOWN)

IS [ NOT ] NULL
a IS [ NOT ] DISTINCT FROM b
Tabelki wartościowań:
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Czym są NULLe?

COUNT(*) zlicza NULLe

COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5



Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi

SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5



Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę

SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5



Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek

SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5



Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5



Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5



Czym są NULLe?

Unpaid orders -> Ord3, Customers with no order -> EMPTY
Co gdy w Payments wartość Ord2 stanie się NULLem?
Unpaid orders -> EMPTY, Customers with no order -> Cust2
Więcej: P.Guagliardo, L. Libkin. Correctness of SQL queries on databases with nulls. SIGMOD Record (2017).
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Transaction Management Overview

Chapter 16
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Transactions

❖ Concurrent execution of user programs is essential for 
good DBMS performance.

▪ Because disk accesses are frequent, and relatively slow, it is 
important to keep the cpu humming by working on several 
user programs concurrently.

❖ A user’s program may carry out many operations on 
the data retrieved from the database, but the DBMS is 
only concerned about what data is read/written 
from/to the database.

❖ A transaction is the DBMS’s abstract view of a user 
program:  a sequence of reads and writes.
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Concurrency in a DBMS

❖ Users submit transactions, and can think of each 
transaction as executing by itself.

▪ Concurrency is achieved by the DBMS, which interleaves 
actions (reads/writes of DB objects) of various transactions.

▪ Each transaction must leave the database in a consistent 
state if the DB is consistent when the transaction begins.

• DBMS will enforce some ICs, depending on the ICs 
declared in CREATE TABLE statements.

• Beyond this, the DBMS does not really understand the 
semantics of the data.  (e.g., it does not understand how 
the interest on a bank account is computed).

❖ Issues: Effect of interleaving transactions, and crashes.
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Atomicity of Transactions

❖ A transaction might commit after completing all its 
actions, or it could abort (or be aborted by the DBMS) 
after executing some actions.

❖ A very important property guaranteed by the DBMS 
for all transactions is that they are atomic. That is, a 
user can think of a Xact as always executing all its 
actions in one step, or not executing any actions at all.

▪ DBMS logs all actions so that it can undo the actions of 
aborted transactions.
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Example

❖ Consider two transactions (Xacts):

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

❖ Intuitively, the first transaction is transferring $100 
from B’s account to A’s account.  The second is 
crediting both accounts with a 6% interest payment.

❖ There is no guarantee that T1 will execute before T2 or 
vice-versa, if both are submitted together.  However, 
the net effect must be equivalent to these two 
transactions running serially in some order.
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Example (Contd.)

❖ Consider a possible interleaving (schedule):

T1: A=A+100,   B=B-100   
T2: A=1.06*A,  B=1.06*B

❖ This is OK.  But what about:

T1: A=A+100,   B=B-100   
T2: A=1.06*A, B=1.06*B

❖ The DBMS’s view of the second schedule:

T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)
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Scheduling Transactions

❖ Serial schedule: Schedule that does not interleave the 
actions of different transactions.

❖ Equivalent schedules: For any database state, the effect 
(on the set of objects in the database) of executing the 
first schedule is identical to the effect of executing the 
second schedule.

❖ Serializable schedule:  A schedule that is equivalent to 
some serial execution of the transactions.

(Note: If each transaction preserves consistency, every 
serializable schedule preserves consistency. )
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Anomalies with Interleaved Execution

❖ Reading Uncommitted Data (WR Conflicts, 
“dirty reads”):

❖ Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A),   R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A),  R(A), W(A), C
T2: R(A), W(A), C
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Anomalies (Continued)

❖ Overwriting Uncommitted Data (WW 
Conflicts):

T1: W(A),  W(B), C
T2: W(A), W(B), C
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Lock-Based Concurrency Control

❖ Strict Two-phase Locking (Strict 2PL) Protocol:
▪ Each Xact must obtain a S (shared) lock on object before 

reading, and an X (exclusive) lock on object before writing.

▪ All locks held by a transaction are released when the 
transaction completes

• (Non-strict) 2PL Variant: Release locks anytime, but 
cannot acquire locks after releasing any lock.

▪ If an Xact holds an X lock on an object, no other Xact can 
get a lock (S or X) on that object.

❖ Strict 2PL allows only serializable schedules.
▪ Additionally, it simplifies transaction aborts

▪ (Non-strict) 2PL also allows only serializable schedules, 
but involves more complex abort processing
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Aborting a Transaction

❖ If a transaction Ti is aborted, all its actions have to be 
undone.  Not only that, if Tj reads an object last 
written by Ti,  Tj must be aborted as well!

❖ Most systems avoid such cascading aborts by releasing 
a transaction’s locks only at commit time.

▪ If Ti writes an object, Tj can read this only after Ti commits.

❖ In order to undo the actions of an aborted transaction, 
the DBMS maintains a log in which every write is 
recorded.  This mechanism is also used to recover 
from system crashes:  all active Xacts at the time of the 
crash are aborted when the system comes back up.
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The Log

❖ The following actions are recorded in the log:

▪ Ti writes an object:  the old value and the new value.

• Log record must go to disk before the changed page!

▪ Ti commits/aborts:  a log record indicating this action.

❖ Log records are chained together by Xact id, so it’s 
easy to undo a specific Xact.

❖ Log is often duplexed and archived on stable storage.

❖ All log related activities (and in fact, all CC related 
activities such as lock/unlock, dealing with deadlocks 
etc.) are handled transparently by the DBMS.
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Recovering From a Crash

❖ There are 3 phases in the Aries recovery algorithm:

▪ Analysis:  Scan the log forward (from the most recent 
checkpoint) to identify all Xacts that were active, and all dirty 
pages in the buffer pool at the time of the crash.

▪ Redo:  Redoes all updates to dirty pages in the buffer pool, 
as needed, to ensure that all logged updates are in fact 
carried out and written to disk.

▪ Undo:  The  writes of all Xacts that were active at the crash 
are undone (by restoring the before value of the update, 
which is in the log record for the update), working 
backwards in the log.  (Some care must be taken to handle 
the case of a crash occurring during the recovery process!)
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Summary

❖ Concurrency control and recovery are among the 
most important functions provided by a DBMS.

❖ Users need not worry about concurrency.

▪ System automatically inserts lock/unlock requests and 
schedules actions of different Xacts in such a way as to 
ensure that the resulting execution is equivalent to 
executing the Xacts one after the other in some order.

❖ Write-ahead logging (WAL) is used to undo the 
actions of aborted transactions and to restore the 
system to a consistent state after a crash.

▪ Consistent state:  Only the effects of commited Xacts seen.
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Concurrency Control

Chapter 17
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Conflict Serializable Schedules

❖ Two schedules are conflict equivalent if:

▪ Involve the same actions of the same transactions

▪ Every pair of conflicting actions is ordered the 
same way

❖ Schedule S is conflict serializable if S is 
conflict equivalent to some serial schedule
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Example

❖ A schedule that is not conflict serializable:

❖ The cycle in the graph reveals the problem. 
The output of T1 depends on T2, and vice-
versa.

T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2
A

B

Dependency graph
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Dependency Graph

❖ Dependency graph:  One node per Xact; edge 
from Ti to Tj if Tj reads/writes an object last 
written by Ti.

❖ Theorem: Schedule is conflict serializable if 
and only if its dependency graph is acyclic
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Review: Strict 2PL

❖ Strict Two-phase Locking (Strict 2PL) Protocol:
▪ Each Xact must obtain a S (shared) lock on object 

before reading, and an X (exclusive) lock on object 
before writing.

▪ All locks held by a transaction are released when 
the transaction completes

▪ If an Xact holds an X lock on an object, no other 
Xact can get a lock (S or X) on that object.

❖ Strict 2PL allows only schedules whose 
precedence graph is acyclic
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Two-Phase Locking (2PL)

❖ Two-Phase Locking Protocol

▪ Each Xact must obtain a S (shared) lock on object 
before reading, and an X (exclusive) lock on object 
before writing.

▪ A transaction can not request additional locks 
once it releases any locks.

▪ If an Xact holds an X lock on an object, no other 
Xact can get a lock (S or X) on that object.
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View Serializability

❖ Schedules S1 and S2 are view equivalent if:

▪ If Ti reads initial value of A in S1, then Ti also reads 
initial value of A in S2

▪ If Ti reads value of A written by Tj in S1, then Ti also 
reads value of A written by Tj in S2

▪ If Ti writes final value of A in S1, then Ti also writes 
final value of A in S2

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)
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Lock Management

❖ Lock and unlock requests are handled by the lock 
manager

❖ Lock table entry:
▪ Number of transactions currently holding a lock

▪ Type of lock held (shared or exclusive)

▪ Pointer to queue of lock requests

❖ Locking and unlocking have to be atomic operations

❖ Lock upgrade: transaction that holds a shared lock 
can be upgraded to hold an exclusive lock
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Deadlocks

❖ Deadlock: Cycle of transactions waiting for 
locks to be released by each other.

❖ Two ways of dealing with deadlocks:

▪ Deadlock prevention

▪ Deadlock detection
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Deadlock Prevention

❖ Assign priorities based on timestamps. 
Assume Ti wants a lock that Tj holds. Two 
policies are possible:

▪ Wait-Die: It Ti has higher priority, Ti waits for Tj; 
otherwise Ti aborts

▪ Wound-wait: If Ti has higher priority, Tj aborts; 
otherwise Ti waits

❖ If a transaction re-starts, make sure it has its 
original timestamp
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Deadlock Detection

❖ Create a waits-for graph:

▪ Nodes are transactions

▪ There is an edge from Ti to Tj if Ti is waiting for Tj 
to release a lock

❖ Periodically check for cycles in the waits-for 
graph
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Deadlock Detection (Continued)

Example:

T1:  S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T3 T3
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Multiple-Granularity Locks

❖ Hard to decide what granularity to lock 
(tuples vs. pages vs. tables).

❖ Shouldn’t have to decide!

❖ Data “containers” are nested: 

Tuples

Tables

Pages

Database

contains
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Solution: New Lock Modes, Protocol

❖ Allow Xacts to lock at each level, but with a 
special protocol using new “intention” locks:

Before locking an item, Xact 
must set “intention locks” 
on all its ancestors.

For unlock, go from specific 
to general (i.e., bottom-up).

SIX mode: Like S & IX at 
the same time.

-- IS IX

--

IS

IX







 



S X





S

X

 







 


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Multiple Granularity Lock Protocol

❖ Each Xact starts from the root of the hierarchy.

❖ To get S or IS lock on a node, must hold IS or IX 
on parent node.

▪ What if Xact holds SIX on parent? S on parent?

❖ To get X or IX or SIX on a node, must hold IX or 
SIX on parent node.

❖ Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 16

Examples

❖ T1 scans R, and updates a few tuples:

▪ T1 gets an SIX lock on R, then repeatedly gets an S 
lock on tuples of R, and occasionally upgrades to 
X on the tuples.

❖ T2 uses an index to read only part of R:

▪ T2 gets an IS lock on R, and repeatedly               
gets an S lock on tuples of R.

❖ T3 reads all of R:

▪ T3 gets an S lock on R. 

▪ OR, T3 could behave like T2; can                                      
use lock escalation to decide which.

-- IS IX

--

IS

IX







 



S X





S

X

 







 


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Dynamic Databases

❖ If we relax the assumption that the DB is a 
fixed collection of objects, even Strict 2PL will 
not assure serializability:

▪ T1 locks all pages containing sailor records with 
rating = 1, and finds oldest sailor (say, age = 71).

▪ Next, T2 inserts a new sailor; rating = 1, age = 96.

▪ T2 also deletes oldest sailor with rating = 2 (and, 
say, age = 80), and commits.

▪ T1 now locks all pages containing sailor records 
with rating = 2, and finds oldest (say, age = 63).

❖ No consistent DB state where T1 is “correct”!



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 18

The Problem

❖ T1 implicitly assumes that it has locked the 
set of all sailor records with rating = 1.

▪ Assumption only holds if no sailor records are 
added while T1 is executing!

▪ Need some mechanism to enforce this 
assumption.  (Index locking and predicate 
locking.)

❖ Example shows that conflict serializability 
guarantees serializability only if the set of 
objects is fixed!
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Index Locking

❖ If there is a dense index on the rating field 
using Alternative (2), T1 should lock the 
index page containing the data entries with 
rating = 1.

▪ If there are no records with rating = 1, T1 must 
lock the index page where such a data entry would
be, if it existed!

❖ If there is no suitable index, T1 must lock all 
pages, and lock the file/table to prevent new 
pages from being added, to ensure that no 
new records with rating = 1 are added.

r=1

Data

Index
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Predicate Locking

❖ Grant lock on all records that satisfy some 
logical predicate,  e.g. age > 2*salary.

❖ Index locking is a special case of predicate 
locking for which an index supports efficient 
implementation of the predicate lock.

▪ What is the predicate in the sailor example?

❖ In general, predicate locking has a lot of 
locking overhead.
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Locking in B+ Trees

❖ How can we efficiently lock a particular leaf 
node?

▪ Btw, don’t confuse this with multiple granularity 
locking!

❖ One solution:  Ignore the tree structure, just lock 
pages while traversing the tree, following 2PL.

❖ This has terrible performance!

▪ Root node (and many higher level nodes) become 
bottlenecks because every tree access begins at the 
root.
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Two Useful Observations

❖ Higher levels of the tree only direct searches 
for leaf pages.

❖ For inserts, a node on a path from root to 
modified leaf must be locked (in X mode, of 
course), only if a split can propagate up to it 
from the modified leaf.  (Similar point holds 
w.r.t. deletes.)

❖ We can exploit these observations to design 
efficient locking protocols that guarantee 
serializability even though they violate 2PL.
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A Simple Tree Locking Algorithm

❖ Search:  Start at root and go down; 
repeatedly, S lock child then unlock parent.

❖ Insert/Delete: Start at root and go down, 
obtaining X locks as needed.  Once child is 
locked, check if it is safe:

▪ If child is safe, release all locks on ancestors.

❖ Safe node: Node such that changes will not 
propagate up beyond this node.

▪ Inserts:  Node is not full.

▪ Deletes:  Node is not half-empty.
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Example

ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1)  Search 38*
2)  Delete 38*
3)  Insert 45*
4)  Insert 25*

23
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A Better Tree Locking Algorithm 
(See Bayer-Schkolnick paper)

❖ Search: As before.

❖ Insert/Delete:

▪ Set locks as if for search, get to leaf, and set 
X lock on leaf.

▪ If leaf is not safe, release all locks, and restart 
Xact using previous Insert/Delete protocol.

❖ Gambles that only leaf node will be modified; 
if not, S locks set on the first pass to leaf are 
wasteful.  In practice, better than previous alg.
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Example

ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1)  Delete 38*
2)  Insert 25*
4)  Insert 45*
5)  Insert 45*, 

then 46*  

23
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Even Better Algorithm

❖ Search: As before.

❖ Insert/Delete: 

▪ Use original Insert/Delete protocol, but set 
IX locks instead of X locks at all nodes. 

▪ Once leaf is locked, convert all IX locks to X 
locks top-down: i.e., starting from node 
nearest to root. (Top-down reduces chances 
of deadlock.)

(Contrast use of IX locks here with their use in 
multiple-granularity locking.)
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Hybrid Algorithm

❖ The likelihood that we really need an X lock 
decreases as we move up the tree.

❖ Hybrid approach:

Set S locks

Set SIX locks

Set X locks
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Optimistic CC (Kung-Robinson)

❖ Locking is a conservative approach in which 
conflicts are prevented. Disadvantages:

▪ Lock management overhead.

▪ Deadlock detection/resolution.

▪ Lock contention for heavily used objects.

❖ If conflicts are rare, we might be able to gain 
concurrency by not locking, and instead 
checking for conflicts before Xacts commit.
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Kung-Robinson Model

❖ Xacts have three phases:

▪ READ:  Xacts read from the database, but 
make changes to private copies of objects.

▪ VALIDATE:  Check for conflicts.

▪ WRITE: Make local copies of changes 
public.

ROOT

old

new

modified
objects
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Validation

❖ Test conditions that are sufficient to ensure 
that no conflict occurred.

❖ Each Xact is assigned a numeric id.

▪ Just use a timestamp.

❖ Xact ids assigned at end of READ phase, just 
before validation begins.  (Why then?)

❖ ReadSet(Ti): Set of objects read by Xact Ti.

❖ WriteSet(Ti): Set of objects modified by Ti.
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Test 1

❖ For all i and j such that Ti < Tj, check that Ti 
completes before Tj begins.

Ti

Tj
R V W

R V W
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Test 2

❖ For all i and j such that Ti < Tj, check that:

▪ Ti completes before Tj begins its Write phase +

▪ WriteSet(Ti)            ReadSet(Tj)  is empty.

Ti

Tj
R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 34

Test 3

❖ For all i and j such that Ti < Tj, check that:

▪ Ti completes Read phase before Tj does +

▪ WriteSet(Ti)            ReadSet(Tj)  is empty +

▪ WriteSet(Ti)            WriteSet(Tj)  is empty.

Ti

Tj

R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 35

Applying Tests 1 & 2: Serial Validation

❖ To validate Xact T:  

valid = true;
// S = set of Xacts that committed after Begin(T)

< foreach Ts in S do {

if ReadSet(Ts) does not intersect WriteSet(Ts)
then valid = false;

}
if valid then { install updates; // Write phase

Commit T } >
else Restart T

end of critical section
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Comments on Serial Validation

❖ Applies Test 2, with T playing the role of Tj 
and each Xact in Ts (in turn) being Ti.

❖ Assignment of Xact id, validation, and the 
Write phase are inside a critical section!

▪ I.e., Nothing else goes on concurrently.

▪ If Write phase is long, major drawback.

❖ Optimization for Read-only Xacts:

▪ Don’t need critical section (because there is no 
Write phase).
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Serial Validation (Contd.)

❖ Multistage serial validation: Validate in stages, at 
each stage validating T against a subset of the Xacts 
that committed after Begin(T).

▪ Only last stage has to be inside critical section.

❖ Starvation: Run starving Xact in a critical section (!!)

❖ Space for WriteSets: To validate Tj, must have 
WriteSets for all Ti where  Ti < Tj and Ti was active 
when Tj began.  There may be many such Xacts, and 
we may run out of space.

▪ Tj’s validation fails if it requires a missing WriteSet.

▪ No problem if Xact ids assigned at start of Read phase.
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Overheads in Optimistic CC

❖ Must record read/write activity in ReadSet and 
WriteSet per Xact.

▪ Must create and destroy these sets as needed.

❖ Must check for conflicts during validation, and 
must make validated writes ``global’’.

▪ Critical section can reduce concurrency.

▪ Scheme for making writes global can reduce clustering 
of objects.

❖ Optimistic CC restarts Xacts that fail validation.

▪ Work done so far is wasted; requires clean-up.
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``Optimistic’’ 2PL

❖ If desired, we can do the following:

▪ Set S locks as usual.

▪ Make changes to private copies of objects.

▪ Obtain all X locks at end of Xact, make 
writes global, then release all locks.

❖ In contrast to Optimistic CC as in Kung-
Robinson, this scheme results in Xacts being 
blocked, waiting for locks.

▪ However, no validation phase, no restarts 
(modulo deadlocks).
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Timestamp CC

❖ Idea: Give each object a read-timestamp 
(RTS) and a write-timestamp (WTS), give 
each Xact a timestamp (TS) when it begins:

▪ If action ai of Xact Ti conflicts with action aj 
of Xact Tj, and TS(Ti) < TS(Tj), then ai must 
occur before aj.  Otherwise, restart 
violating Xact.
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When Xact T wants to read Object O

❖ If TS(T) < WTS(O), this violates timestamp 
order of T w.r.t. writer of O.

▪ So, abort T and restart it with a new, larger TS.  (If 
restarted with same TS, T will fail again!  Contrast 
use of timestamps in 2PL for ddlk prevention.)

❖ If TS(T) > WTS(O):

▪ Allow T to read O.

▪ Reset RTS(O) to max(RTS(O), TS(T))

❖ Change to RTS(O) on reads must be written to 
disk!  This and restarts  represent overheads.
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When Xact T wants to Write Object O

❖ If TS(T) < RTS(O), this violates timestamp order 
of T w.r.t. writer of O; abort and restart T.

❖ If TS(T) < WTS(O), violates timestamp order of 
T w.r.t. writer of O.
▪ Thomas Write Rule: We can safely ignore such 

outdated writes; need not restart T!  (T’s write is 
effectively followed by another                            
write, with no intervening reads.)                     
Allows some serializable but non                     
conflict serializable schedules:

❖ Else, allow T to write O.

T1     T2
R(A)

W(A)
Commit

W(A)
Commit
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Timestamp CC and Recoverability

❖ Timestamp CC can be modified                               
to allow only recoverable schedules:

▪ Buffer all writes until writer commits (but 
update WTS(O) when the write is allowed.)

▪ Block readers T (where TS(T) > WTS(O)) until 
writer of O commits.

❖ Similar to writers holding X locks until commit, 
but still not quite 2PL.

T1     T2
W(A)

R(A)
W(B)
Commit

Unfortunately, unrecoverable 
schedules are allowed:
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Multiversion Timestamp CC

❖ Idea:  Let writers make a “new” copy while 
readers use an appropriate “old” copy:

O
O’

O’’

MAIN
SEGMENT
(Current
versions of
DB objects)

VERSION
POOL
(Older versions that
may be useful for 
some active readers.)

Readers are always allowed to proceed.

– But may be blocked until writer commits.
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Multiversion CC (Contd.)

❖ Each version of an object has its writer’s TS as 
its WTS, and the TS of the Xact that most 
recently read this version as its RTS.

❖ Versions are chained backward; we can 
discard versions that are “too old to be of 
interest”.

❖ Each Xact is classified as Reader or Writer.

▪ Writer may write some object; Reader never will.

▪ Xact declares whether it is a Reader when it begins.
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Reader Xact

❖ For each object to be read:

▪ Finds newest version with WTS < TS(T).
(Starts with current version in the main 
segment and chains backward through 
earlier versions.)

❖ Assuming that some version of every object 
exists from the beginning of time, Reader 
Xacts are never restarted.

▪ However, might block until writer of the 
appropriate version commits.

T

old                       new
WTS timeline
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Writer Xact

❖ To read an object, follows reader protocol.

❖ To write an object:

▪ Finds newest version V s.t.  WTS < TS(T). 

▪ If RTS(V) < TS(T), T makes a copy CV of V, 
with a pointer to V, with WTS(CV) = TS(T), 
RTS(CV) = TS(T).  (Write is buffered until T 
commits; other Xacts can see TS values but 
can’t read version CV.)

▪ Else, reject write.

T

old                       newWTS
CV

V
RTS(V)
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Transaction Support in SQL-92

❖ Each transaction has an access mode, a 
diagnostics size, and an isolation level.

NoNoNoSerializable

MaybeNoNoRepeatable Reads

MaybeMaybeNoRead Committed

MaybeMaybeMaybeRead Uncommitted

Phantom 
Problem

Unrepeatable 
Read

Dirty
Read

Isolation Level
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Summary

❖ There are several lock-based concurrency 
control schemes (Strict 2PL, 2PL). Conflicts 
between transactions can be detected in the 
dependency graph

❖ The lock manager keeps track of the locks 
issued. Deadlocks can either be prevented or 
detected.

❖ Naïve locking strategies may have the 
phantom problem 
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Summary (Contd.)

❖ Index locking is common, and affects 
performance significantly. 
▪ Needed when accessing records via index.

▪ Needed for locking logical sets of records (index 
locking/predicate locking).

❖ Tree-structured indexes:
▪ Straightforward use of 2PL very inefficient.

▪ Bayer-Schkolnick illustrates potential for 
improvement.

❖ In practice, better techniques now known; do 
record-level, rather than page-level locking.
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Summary (Contd.)

❖ Multiple granularity locking reduces the overhead 
involved in setting locks for nested collections of objects 
(e.g., a file of pages); should not be confused with tree 
index locking!

❖ Optimistic CC aims to minimize CC overheads in an 
``optimistic’’ environment where reads are common and 
writes are rare.

❖ Optimistic CC has its own overheads however; most 
real systems use locking.

❖ SQL-92 provides different isolation levels that control 
the degree of concurrency



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 52

Summary (Contd.)

❖ Timestamp CC is another alternative to 2PL; allows 
some serializable schedules that 2PL does not (although 
converse is also true).

❖ Ensuring recoverability with Timestamp CC requires 
ability to block Xacts, which is similar to locking.

❖ Multiversion Timestamp CC is a variant which ensures 
that read-only Xacts are never restarted; they can 
always read a suitable older version. Additional 
overhead of version maintenance. 


