
Bazy danych 2022

Piotr Wieczorek

18 maja 2022

Piotr Wieczorek BD 2022 18 maja 2022 1 / 5

Czym są NULLe?

Pole ma jakąś wartość ale jej nie znamy (niepodpisany egzamin)

Pole nie ma wartości (student nie ma promotora (jeszcze))
Nie wiadomo, która z powyższych (może ma jakiegoś promotora, a może nie)

Piotr Wieczorek BD 2022 18 maja 2022 1 / 5

Czym są NULLe?

Pole ma jakąś wartość ale jej nie znamy (niepodpisany egzamin)
Pole nie ma wartości (student nie ma promotora (jeszcze))

Nie wiadomo, która z powyższych (może ma jakiegoś promotora, a może nie)

Piotr Wieczorek BD 2022 18 maja 2022 1 / 5

Czym są NULLe?

Pole ma jakąś wartość ale jej nie znamy (niepodpisany egzamin)
Pole nie ma wartości (student nie ma promotora (jeszcze))
Nie wiadomo, która z powyższych (może ma jakiegoś promotora, a może nie)

Piotr Wieczorek BD 2022 18 maja 2022 1 / 5

Czym są NULLe?

IF(OLD.text!=NEW.text) THEN -- OLD.text<>NEW.text
NEW.lasteditdate:=now();
INSERT INTO commenthistory(commentid, creationdate, text)

VALUES(OLD.id, OLD.lasteditdate, OLD.text);

IF(OLD.text IS DISTINCT FROM NEW.text) THEN
NEW.lasteditdate:=now();
INSERT INTO commenthistory(commentid, creationdate, text)

VALUES(OLD.id, OLD.lasteditdate, OLD.text);

Piotr Wieczorek BD 2022 18 maja 2022 2 / 5

Czym są NULLe?

IF(OLD.text!=NEW.text) THEN -- OLD.text<>NEW.text
NEW.lasteditdate:=now();
INSERT INTO commenthistory(commentid, creationdate, text)

VALUES(OLD.id, OLD.lasteditdate, OLD.text);

IF(OLD.text IS DISTINCT FROM NEW.text) THEN
NEW.lasteditdate:=now();
INSERT INTO commenthistory(commentid, creationdate, text)

VALUES(OLD.id, OLD.lasteditdate, OLD.text);

Piotr Wieczorek BD 2022 18 maja 2022 2 / 5

Czym są NULLe?

Operacje arytmetyka, porównania na NULLach - wynikiem NULL (UNKNOWN)

IS [NOT] NULL
a IS [NOT] DISTINCT FROM b
Tabelki wartościowań:

Piotr Wieczorek BD 2022 18 maja 2022 3 / 5

Czym są NULLe?

Operacje arytmetyka, porównania na NULLach - wynikiem NULL (UNKNOWN)
IS [NOT] NULL

a IS [NOT] DISTINCT FROM b
Tabelki wartościowań:

Piotr Wieczorek BD 2022 18 maja 2022 3 / 5

Czym są NULLe?

Operacje arytmetyka, porównania na NULLach - wynikiem NULL (UNKNOWN)
IS [NOT] NULL
a IS [NOT] DISTINCT FROM b

Tabelki wartościowań:

Piotr Wieczorek BD 2022 18 maja 2022 3 / 5

Czym są NULLe?

Operacje arytmetyka, porównania na NULLach - wynikiem NULL (UNKNOWN)
IS [NOT] NULL
a IS [NOT] DISTINCT FROM b
Tabelki wartościowań:

Piotr Wieczorek BD 2022 18 maja 2022 3 / 5

Czym są NULLe?

COUNT(*) zlicza NULLe

COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5

Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi

SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5

Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę

SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5

Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek

SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5

Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5

Czym są NULLe?

COUNT(*) zlicza NULLe
COUNT(kol) nie zlicza NULLi
SUM(kol) ignoruje NULLe, sumuje resztę
SUM(kol) zwraca NULL dla pustego zbioru krotek
SELECT COALESCE(SUM(kol),0) FROM table WHERE 1=2

podobnie inne funkcje agregujące (za wyjątkiem COUNT(*) i COUNT(kol), one zwracają 0)

Piotr Wieczorek BD 2022 18 maja 2022 4 / 5

Czym są NULLe?

Unpaid orders -> Ord3, Customers with no order -> EMPTY
Co gdy w Payments wartość Ord2 stanie się NULLem?
Unpaid orders -> EMPTY, Customers with no order -> Cust2
Więcej: P.Guagliardo, L. Libkin. Correctness of SQL queries on databases with nulls. SIGMOD Record (2017).

Piotr Wieczorek BD 2022 18 maja 2022 5 / 5

Czym są NULLe?

Unpaid orders -> Ord3, Customers with no order -> EMPTY
Co gdy w Payments wartość Ord2 stanie się NULLem?
Unpaid orders -> EMPTY, Customers with no order -> Cust2
Więcej: P.Guagliardo, L. Libkin. Correctness of SQL queries on databases with nulls. SIGMOD Record (2017).

Piotr Wieczorek BD 2022 18 maja 2022 5 / 5

Czym są NULLe?

Unpaid orders -> Ord3, Customers with no order -> EMPTY
Co gdy w Payments wartość Ord2 stanie się NULLem?
Unpaid orders -> EMPTY, Customers with no order -> Cust2
Więcej: P.Guagliardo, L. Libkin. Correctness of SQL queries on databases with nulls. SIGMOD Record (2017).

Piotr Wieczorek BD 2022 18 maja 2022 5 / 5

Czym są NULLe?

Unpaid orders -> Ord3, Customers with no order -> EMPTY

Co gdy w Payments wartość Ord2 stanie się NULLem?
Unpaid orders -> EMPTY, Customers with no order -> Cust2
Więcej: P.Guagliardo, L. Libkin. Correctness of SQL queries on databases with nulls. SIGMOD Record (2017).

Piotr Wieczorek BD 2022 18 maja 2022 5 / 5

Czym są NULLe?

Unpaid orders -> Ord3, Customers with no order -> EMPTY
Co gdy w Payments wartość Ord2 stanie się NULLem?

Unpaid orders -> EMPTY, Customers with no order -> Cust2
Więcej: P.Guagliardo, L. Libkin. Correctness of SQL queries on databases with nulls. SIGMOD Record (2017).

Piotr Wieczorek BD 2022 18 maja 2022 5 / 5

Czym są NULLe?

Unpaid orders -> Ord3, Customers with no order -> EMPTY
Co gdy w Payments wartość Ord2 stanie się NULLem?
Unpaid orders -> EMPTY, Customers with no order -> Cust2

Więcej: P.Guagliardo, L. Libkin. Correctness of SQL queries on databases with nulls. SIGMOD Record (2017).

Piotr Wieczorek BD 2022 18 maja 2022 5 / 5

Czym są NULLe?

Unpaid orders -> Ord3, Customers with no order -> EMPTY
Co gdy w Payments wartość Ord2 stanie się NULLem?
Unpaid orders -> EMPTY, Customers with no order -> Cust2
Więcej: P.Guagliardo, L. Libkin. Correctness of SQL queries on databases with nulls. SIGMOD Record (2017).

Piotr Wieczorek BD 2022 18 maja 2022 5 / 5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Transaction Management Overview

Chapter 16

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Transactions

❖ Concurrent execution of user programs is essential for
good DBMS performance.

▪ Because disk accesses are frequent, and relatively slow, it is
important to keep the cpu humming by working on several
user programs concurrently.

❖ A user’s program may carry out many operations on
the data retrieved from the database, but the DBMS is
only concerned about what data is read/written
from/to the database.

❖ A transaction is the DBMS’s abstract view of a user
program: a sequence of reads and writes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Concurrency in a DBMS

❖ Users submit transactions, and can think of each
transaction as executing by itself.

▪ Concurrency is achieved by the DBMS, which interleaves
actions (reads/writes of DB objects) of various transactions.

▪ Each transaction must leave the database in a consistent
state if the DB is consistent when the transaction begins.

• DBMS will enforce some ICs, depending on the ICs
declared in CREATE TABLE statements.

• Beyond this, the DBMS does not really understand the
semantics of the data. (e.g., it does not understand how
the interest on a bank account is computed).

❖ Issues: Effect of interleaving transactions, and crashes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Atomicity of Transactions

❖ A transaction might commit after completing all its
actions, or it could abort (or be aborted by the DBMS)
after executing some actions.

❖ A very important property guaranteed by the DBMS
for all transactions is that they are atomic. That is, a
user can think of a Xact as always executing all its
actions in one step, or not executing any actions at all.

▪ DBMS logs all actions so that it can undo the actions of
aborted transactions.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Example

❖ Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

❖ Intuitively, the first transaction is transferring $100
from B’s account to A’s account. The second is
crediting both accounts with a 6% interest payment.

❖ There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together. However,
the net effect must be equivalent to these two
transactions running serially in some order.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Example (Contd.)

❖ Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

❖ This is OK. But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

❖ The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Scheduling Transactions

❖ Serial schedule: Schedule that does not interleave the
actions of different transactions.

❖ Equivalent schedules: For any database state, the effect
(on the set of objects in the database) of executing the
first schedule is identical to the effect of executing the
second schedule.

❖ Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.

(Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Anomalies with Interleaved Execution

❖ Reading Uncommitted Data (WR Conflicts,
“dirty reads”):

❖ Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Anomalies (Continued)

❖ Overwriting Uncommitted Data (WW
Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Lock-Based Concurrency Control

❖ Strict Two-phase Locking (Strict 2PL) Protocol:
▪ Each Xact must obtain a S (shared) lock on object before

reading, and an X (exclusive) lock on object before writing.

▪ All locks held by a transaction are released when the
transaction completes

• (Non-strict) 2PL Variant: Release locks anytime, but
cannot acquire locks after releasing any lock.

▪ If an Xact holds an X lock on an object, no other Xact can
get a lock (S or X) on that object.

❖ Strict 2PL allows only serializable schedules.
▪ Additionally, it simplifies transaction aborts

▪ (Non-strict) 2PL also allows only serializable schedules,
but involves more complex abort processing

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Aborting a Transaction

❖ If a transaction Ti is aborted, all its actions have to be
undone. Not only that, if Tj reads an object last
written by Ti, Tj must be aborted as well!

❖ Most systems avoid such cascading aborts by releasing
a transaction’s locks only at commit time.

▪ If Ti writes an object, Tj can read this only after Ti commits.

❖ In order to undo the actions of an aborted transaction,
the DBMS maintains a log in which every write is
recorded. This mechanism is also used to recover
from system crashes: all active Xacts at the time of the
crash are aborted when the system comes back up.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

The Log

❖ The following actions are recorded in the log:

▪ Ti writes an object: the old value and the new value.

• Log record must go to disk before the changed page!

▪ Ti commits/aborts: a log record indicating this action.

❖ Log records are chained together by Xact id, so it’s
easy to undo a specific Xact.

❖ Log is often duplexed and archived on stable storage.

❖ All log related activities (and in fact, all CC related
activities such as lock/unlock, dealing with deadlocks
etc.) are handled transparently by the DBMS.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Recovering From a Crash

❖ There are 3 phases in the Aries recovery algorithm:

▪ Analysis: Scan the log forward (from the most recent
checkpoint) to identify all Xacts that were active, and all dirty
pages in the buffer pool at the time of the crash.

▪ Redo: Redoes all updates to dirty pages in the buffer pool,
as needed, to ensure that all logged updates are in fact
carried out and written to disk.

▪ Undo: The writes of all Xacts that were active at the crash
are undone (by restoring the before value of the update,
which is in the log record for the update), working
backwards in the log. (Some care must be taken to handle
the case of a crash occurring during the recovery process!)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Summary

❖ Concurrency control and recovery are among the
most important functions provided by a DBMS.

❖ Users need not worry about concurrency.

▪ System automatically inserts lock/unlock requests and
schedules actions of different Xacts in such a way as to
ensure that the resulting execution is equivalent to
executing the Xacts one after the other in some order.

❖ Write-ahead logging (WAL) is used to undo the
actions of aborted transactions and to restore the
system to a consistent state after a crash.

▪ Consistent state: Only the effects of commited Xacts seen.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Concurrency Control

Chapter 17

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Conflict Serializable Schedules

❖ Two schedules are conflict equivalent if:

▪ Involve the same actions of the same transactions

▪ Every pair of conflicting actions is ordered the
same way

❖ Schedule S is conflict serializable if S is
conflict equivalent to some serial schedule

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Example

❖ A schedule that is not conflict serializable:

❖ The cycle in the graph reveals the problem.
The output of T1 depends on T2, and vice-
versa.

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2
A

B

Dependency graph

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Dependency Graph

❖ Dependency graph: One node per Xact; edge
from Ti to Tj if Tj reads/writes an object last
written by Ti.

❖ Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Review: Strict 2PL

❖ Strict Two-phase Locking (Strict 2PL) Protocol:
▪ Each Xact must obtain a S (shared) lock on object

before reading, and an X (exclusive) lock on object
before writing.

▪ All locks held by a transaction are released when
the transaction completes

▪ If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

❖ Strict 2PL allows only schedules whose
precedence graph is acyclic

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Two-Phase Locking (2PL)

❖ Two-Phase Locking Protocol

▪ Each Xact must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

▪ A transaction can not request additional locks
once it releases any locks.

▪ If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

View Serializability

❖ Schedules S1 and S2 are view equivalent if:

▪ If Ti reads initial value of A in S1, then Ti also reads
initial value of A in S2

▪ If Ti reads value of A written by Tj in S1, then Ti also
reads value of A written by Tj in S2

▪ If Ti writes final value of A in S1, then Ti also writes
final value of A in S2

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Lock Management

❖ Lock and unlock requests are handled by the lock
manager

❖ Lock table entry:
▪ Number of transactions currently holding a lock

▪ Type of lock held (shared or exclusive)

▪ Pointer to queue of lock requests

❖ Locking and unlocking have to be atomic operations

❖ Lock upgrade: transaction that holds a shared lock
can be upgraded to hold an exclusive lock

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Deadlocks

❖ Deadlock: Cycle of transactions waiting for
locks to be released by each other.

❖ Two ways of dealing with deadlocks:

▪ Deadlock prevention

▪ Deadlock detection

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Deadlock Prevention

❖ Assign priorities based on timestamps.
Assume Ti wants a lock that Tj holds. Two
policies are possible:

▪ Wait-Die: It Ti has higher priority, Ti waits for Tj;
otherwise Ti aborts

▪ Wound-wait: If Ti has higher priority, Tj aborts;
otherwise Ti waits

❖ If a transaction re-starts, make sure it has its
original timestamp

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Deadlock Detection

❖ Create a waits-for graph:

▪ Nodes are transactions

▪ There is an edge from Ti to Tj if Ti is waiting for Tj
to release a lock

❖ Periodically check for cycles in the waits-for
graph

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T3 T3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Multiple-Granularity Locks

❖ Hard to decide what granularity to lock
(tuples vs. pages vs. tables).

❖ Shouldn’t have to decide!

❖ Data “containers” are nested:

Tuples

Tables

Pages

Database

contains

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Solution: New Lock Modes, Protocol

❖ Allow Xacts to lock at each level, but with a
special protocol using new “intention” locks:

Before locking an item, Xact
must set “intention locks”
on all its ancestors.

For unlock, go from specific
to general (i.e., bottom-up).

SIX mode: Like S & IX at
the same time.

-- IS IX

--

IS

IX







 



S X





S

X

 







 



Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Multiple Granularity Lock Protocol

❖ Each Xact starts from the root of the hierarchy.

❖ To get S or IS lock on a node, must hold IS or IX
on parent node.

▪ What if Xact holds SIX on parent? S on parent?

❖ To get X or IX or SIX on a node, must hold IX or
SIX on parent node.

❖ Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Examples

❖ T1 scans R, and updates a few tuples:

▪ T1 gets an SIX lock on R, then repeatedly gets an S
lock on tuples of R, and occasionally upgrades to
X on the tuples.

❖ T2 uses an index to read only part of R:

▪ T2 gets an IS lock on R, and repeatedly
gets an S lock on tuples of R.

❖ T3 reads all of R:

▪ T3 gets an S lock on R.

▪ OR, T3 could behave like T2; can
use lock escalation to decide which.

-- IS IX

--

IS

IX







 



S X





S

X

 







 



Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Dynamic Databases

❖ If we relax the assumption that the DB is a
fixed collection of objects, even Strict 2PL will
not assure serializability:

▪ T1 locks all pages containing sailor records with
rating = 1, and finds oldest sailor (say, age = 71).

▪ Next, T2 inserts a new sailor; rating = 1, age = 96.

▪ T2 also deletes oldest sailor with rating = 2 (and,
say, age = 80), and commits.

▪ T1 now locks all pages containing sailor records
with rating = 2, and finds oldest (say, age = 63).

❖ No consistent DB state where T1 is “correct”!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

The Problem

❖ T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.

▪ Assumption only holds if no sailor records are
added while T1 is executing!

▪ Need some mechanism to enforce this
assumption. (Index locking and predicate
locking.)

❖ Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Index Locking

❖ If there is a dense index on the rating field
using Alternative (2), T1 should lock the
index page containing the data entries with
rating = 1.

▪ If there are no records with rating = 1, T1 must
lock the index page where such a data entry would
be, if it existed!

❖ If there is no suitable index, T1 must lock all
pages, and lock the file/table to prevent new
pages from being added, to ensure that no
new records with rating = 1 are added.

r=1

Data

Index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Predicate Locking

❖ Grant lock on all records that satisfy some
logical predicate, e.g. age > 2*salary.

❖ Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.

▪ What is the predicate in the sailor example?

❖ In general, predicate locking has a lot of
locking overhead.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Locking in B+ Trees

❖ How can we efficiently lock a particular leaf
node?

▪ Btw, don’t confuse this with multiple granularity
locking!

❖ One solution: Ignore the tree structure, just lock
pages while traversing the tree, following 2PL.

❖ This has terrible performance!

▪ Root node (and many higher level nodes) become
bottlenecks because every tree access begins at the
root.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Two Useful Observations

❖ Higher levels of the tree only direct searches
for leaf pages.

❖ For inserts, a node on a path from root to
modified leaf must be locked (in X mode, of
course), only if a split can propagate up to it
from the modified leaf. (Similar point holds
w.r.t. deletes.)

❖ We can exploit these observations to design
efficient locking protocols that guarantee
serializability even though they violate 2PL.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

A Simple Tree Locking Algorithm

❖ Search: Start at root and go down;
repeatedly, S lock child then unlock parent.

❖ Insert/Delete: Start at root and go down,
obtaining X locks as needed. Once child is
locked, check if it is safe:

▪ If child is safe, release all locks on ancestors.

❖ Safe node: Node such that changes will not
propagate up beyond this node.

▪ Inserts: Node is not full.

▪ Deletes: Node is not half-empty.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Example

ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

A Better Tree Locking Algorithm
(See Bayer-Schkolnick paper)

❖ Search: As before.

❖ Insert/Delete:

▪ Set locks as if for search, get to leaf, and set
X lock on leaf.

▪ If leaf is not safe, release all locks, and restart
Xact using previous Insert/Delete protocol.

❖ Gambles that only leaf node will be modified;
if not, S locks set on the first pass to leaf are
wasteful. In practice, better than previous alg.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Example

ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Delete 38*
2) Insert 25*
4) Insert 45*
5) Insert 45*,

then 46*

23

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Even Better Algorithm

❖ Search: As before.

❖ Insert/Delete:

▪ Use original Insert/Delete protocol, but set
IX locks instead of X locks at all nodes.

▪ Once leaf is locked, convert all IX locks to X
locks top-down: i.e., starting from node
nearest to root. (Top-down reduces chances
of deadlock.)

(Contrast use of IX locks here with their use in
multiple-granularity locking.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Hybrid Algorithm

❖ The likelihood that we really need an X lock
decreases as we move up the tree.

❖ Hybrid approach:

Set S locks

Set SIX locks

Set X locks

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Optimistic CC (Kung-Robinson)

❖ Locking is a conservative approach in which
conflicts are prevented. Disadvantages:

▪ Lock management overhead.

▪ Deadlock detection/resolution.

▪ Lock contention for heavily used objects.

❖ If conflicts are rare, we might be able to gain
concurrency by not locking, and instead
checking for conflicts before Xacts commit.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Kung-Robinson Model

❖ Xacts have three phases:

▪ READ: Xacts read from the database, but
make changes to private copies of objects.

▪ VALIDATE: Check for conflicts.

▪ WRITE: Make local copies of changes
public.

ROOT

old

new

modified
objects

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Validation

❖ Test conditions that are sufficient to ensure
that no conflict occurred.

❖ Each Xact is assigned a numeric id.

▪ Just use a timestamp.

❖ Xact ids assigned at end of READ phase, just
before validation begins. (Why then?)

❖ ReadSet(Ti): Set of objects read by Xact Ti.

❖ WriteSet(Ti): Set of objects modified by Ti.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Test 1

❖ For all i and j such that Ti < Tj, check that Ti
completes before Tj begins.

Ti

Tj
R V W

R V W

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Test 2

❖ For all i and j such that Ti < Tj, check that:

▪ Ti completes before Tj begins its Write phase +

▪ WriteSet(Ti) ReadSet(Tj) is empty.

Ti

Tj
R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Test 3

❖ For all i and j such that Ti < Tj, check that:

▪ Ti completes Read phase before Tj does +

▪ WriteSet(Ti) ReadSet(Tj) is empty +

▪ WriteSet(Ti) WriteSet(Tj) is empty.

Ti

Tj

R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Applying Tests 1 & 2: Serial Validation

❖ To validate Xact T:

valid = true;
// S = set of Xacts that committed after Begin(T)

< foreach Ts in S do {

if ReadSet(Ts) does not intersect WriteSet(Ts)
then valid = false;

}
if valid then { install updates; // Write phase

Commit T } >
else Restart T

end of critical section

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

Comments on Serial Validation

❖ Applies Test 2, with T playing the role of Tj
and each Xact in Ts (in turn) being Ti.

❖ Assignment of Xact id, validation, and the
Write phase are inside a critical section!

▪ I.e., Nothing else goes on concurrently.

▪ If Write phase is long, major drawback.

❖ Optimization for Read-only Xacts:

▪ Don’t need critical section (because there is no
Write phase).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

Serial Validation (Contd.)

❖ Multistage serial validation: Validate in stages, at
each stage validating T against a subset of the Xacts
that committed after Begin(T).

▪ Only last stage has to be inside critical section.

❖ Starvation: Run starving Xact in a critical section (!!)

❖ Space for WriteSets: To validate Tj, must have
WriteSets for all Ti where Ti < Tj and Ti was active
when Tj began. There may be many such Xacts, and
we may run out of space.

▪ Tj’s validation fails if it requires a missing WriteSet.

▪ No problem if Xact ids assigned at start of Read phase.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

Overheads in Optimistic CC

❖ Must record read/write activity in ReadSet and
WriteSet per Xact.

▪ Must create and destroy these sets as needed.

❖ Must check for conflicts during validation, and
must make validated writes ``global’’.

▪ Critical section can reduce concurrency.

▪ Scheme for making writes global can reduce clustering
of objects.

❖ Optimistic CC restarts Xacts that fail validation.

▪ Work done so far is wasted; requires clean-up.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

``Optimistic’’ 2PL

❖ If desired, we can do the following:

▪ Set S locks as usual.

▪ Make changes to private copies of objects.

▪ Obtain all X locks at end of Xact, make
writes global, then release all locks.

❖ In contrast to Optimistic CC as in Kung-
Robinson, this scheme results in Xacts being
blocked, waiting for locks.

▪ However, no validation phase, no restarts
(modulo deadlocks).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 40

Timestamp CC

❖ Idea: Give each object a read-timestamp
(RTS) and a write-timestamp (WTS), give
each Xact a timestamp (TS) when it begins:

▪ If action ai of Xact Ti conflicts with action aj
of Xact Tj, and TS(Ti) < TS(Tj), then ai must
occur before aj. Otherwise, restart
violating Xact.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

When Xact T wants to read Object O

❖ If TS(T) < WTS(O), this violates timestamp
order of T w.r.t. writer of O.

▪ So, abort T and restart it with a new, larger TS. (If
restarted with same TS, T will fail again! Contrast
use of timestamps in 2PL for ddlk prevention.)

❖ If TS(T) > WTS(O):

▪ Allow T to read O.

▪ Reset RTS(O) to max(RTS(O), TS(T))

❖ Change to RTS(O) on reads must be written to
disk! This and restarts represent overheads.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

When Xact T wants to Write Object O

❖ If TS(T) < RTS(O), this violates timestamp order
of T w.r.t. writer of O; abort and restart T.

❖ If TS(T) < WTS(O), violates timestamp order of
T w.r.t. writer of O.
▪ Thomas Write Rule: We can safely ignore such

outdated writes; need not restart T! (T’s write is
effectively followed by another
write, with no intervening reads.)
Allows some serializable but non
conflict serializable schedules:

❖ Else, allow T to write O.

T1 T2
R(A)

W(A)
Commit

W(A)
Commit

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

Timestamp CC and Recoverability

❖ Timestamp CC can be modified
to allow only recoverable schedules:

▪ Buffer all writes until writer commits (but
update WTS(O) when the write is allowed.)

▪ Block readers T (where TS(T) > WTS(O)) until
writer of O commits.

❖ Similar to writers holding X locks until commit,
but still not quite 2PL.

T1 T2
W(A)

R(A)
W(B)
Commit

Unfortunately, unrecoverable
schedules are allowed:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 44

Multiversion Timestamp CC

❖ Idea: Let writers make a “new” copy while
readers use an appropriate “old” copy:

O
O’

O’’

MAIN
SEGMENT
(Current
versions of
DB objects)

VERSION
POOL
(Older versions that
may be useful for
some active readers.)

Readers are always allowed to proceed.

– But may be blocked until writer commits.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 45

Multiversion CC (Contd.)

❖ Each version of an object has its writer’s TS as
its WTS, and the TS of the Xact that most
recently read this version as its RTS.

❖ Versions are chained backward; we can
discard versions that are “too old to be of
interest”.

❖ Each Xact is classified as Reader or Writer.

▪ Writer may write some object; Reader never will.

▪ Xact declares whether it is a Reader when it begins.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 46

Reader Xact

❖ For each object to be read:

▪ Finds newest version with WTS < TS(T).
(Starts with current version in the main
segment and chains backward through
earlier versions.)

❖ Assuming that some version of every object
exists from the beginning of time, Reader
Xacts are never restarted.

▪ However, might block until writer of the
appropriate version commits.

T

old new
WTS timeline

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 47

Writer Xact

❖ To read an object, follows reader protocol.

❖ To write an object:

▪ Finds newest version V s.t. WTS < TS(T).

▪ If RTS(V) < TS(T), T makes a copy CV of V,
with a pointer to V, with WTS(CV) = TS(T),
RTS(CV) = TS(T). (Write is buffered until T
commits; other Xacts can see TS values but
can’t read version CV.)

▪ Else, reject write.

T

old newWTS
CV

V
RTS(V)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 48

Transaction Support in SQL-92

❖ Each transaction has an access mode, a
diagnostics size, and an isolation level.

NoNoNoSerializable

MaybeNoNoRepeatable Reads

MaybeMaybeNoRead Committed

MaybeMaybeMaybeRead Uncommitted

Phantom
Problem

Unrepeatable
Read

Dirty
Read

Isolation Level

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 49

Summary

❖ There are several lock-based concurrency
control schemes (Strict 2PL, 2PL). Conflicts
between transactions can be detected in the
dependency graph

❖ The lock manager keeps track of the locks
issued. Deadlocks can either be prevented or
detected.

❖ Naïve locking strategies may have the
phantom problem

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 50

Summary (Contd.)

❖ Index locking is common, and affects
performance significantly.
▪ Needed when accessing records via index.

▪ Needed for locking logical sets of records (index
locking/predicate locking).

❖ Tree-structured indexes:
▪ Straightforward use of 2PL very inefficient.

▪ Bayer-Schkolnick illustrates potential for
improvement.

❖ In practice, better techniques now known; do
record-level, rather than page-level locking.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 51

Summary (Contd.)

❖ Multiple granularity locking reduces the overhead
involved in setting locks for nested collections of objects
(e.g., a file of pages); should not be confused with tree
index locking!

❖ Optimistic CC aims to minimize CC overheads in an
``optimistic’’ environment where reads are common and
writes are rare.

❖ Optimistic CC has its own overheads however; most
real systems use locking.

❖ SQL-92 provides different isolation levels that control
the degree of concurrency

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 52

Summary (Contd.)

❖ Timestamp CC is another alternative to 2PL; allows
some serializable schedules that 2PL does not (although
converse is also true).

❖ Ensuring recoverability with Timestamp CC requires
ability to block Xacts, which is similar to locking.

❖ Multiversion Timestamp CC is a variant which ensures
that read-only Xacts are never restarted; they can
always read a suitable older version. Additional
overhead of version maintenance.

