Bazy danych 2022

Piotr Wieczorek

25 maja 2022

BD 2022 25 maja 2022

1/12

Transactions

START TRANSACTION [transaction_mode [, ...]]
where transaction_mode is one of:

ISOLATION LEVEL ! SERIALIZABLE | REPEATABLE READ

| READ COMMITTED | READ UNCOMMITTED !
READ WRITE | READ ONLY
[NOT] DEFERRABLE

ROLLBACK;
COMMIT;

BD 2022 25 maja 2022 1/12

Transactions

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SELECT * FROM sometable;

COMMIT,;

BD 2022 25 maja 2022 2/12

|
Isolation levels (SQL Standard)

Transaction Support in SQL-92

< Each transaction has an access mode, a
diagnostics size, and an isolation level.

Isolation Level Dirty |Unrepeatable |Phantom
Read |Read Problem
Read Uncommitted | Maybe | Maybe Maybe
Read Committed No Maybe Maybe
Repeatable Reads |No No Maybe
Serializable No No No

BD 2022

25 maja 2022

-
CC in PostgreSQL: Multiversion Concurrency Control (MVCC)

@ https://wuw.postgresql.org/docs/current/transaction-iso.html

BD 2022 25 maja 2022 4/12

https://www.postgresql.org/docs/current/transaction-iso.html

|
CC in PostgreSQL: Multiversion Concurrency Control (MVCC)

@ https://wuw.postgresql.org/docs/current/transaction-iso.html
@ A Critique of ANSI SQL Isolation Levels. H. Berenson, P. Bernstein, J. Gray, J. Melton, E.
O’Neil, and P. O’'Neil. ACM-SIGMOD Conference on Management of Data, June 1995.

@ Serializable Snapshot Isolation in PostgreSQL. D. Ports and K. Grittner. VLDB Conference,
August 2012.

@ Serializable isolation for snapshot databases. ACM Trans. Database Syst. 34(4): 20:1-20:42
(2009) Michael J. Cahill, Uwe Rhm, Alan D. Fekete:

BD 2022 25 maja 2022 4/12

https://www.postgresql.org/docs/current/transaction-iso.html

-
CC in PostgreSQL

@ dirty read

@ nonrepeatable read
@ phantom read

@ serialization anomaly

Table 13.1. Transactlon Isolatlon Levels

Isolation Level ‘Dlrty Read ‘ Nonrepeatable Read‘ Phantom Read ‘Serlallzatlon Anomaly
Read uncommitted ‘A\Iowed, but not in PG‘ Possible ‘ Possible ‘ Possible

Read committed ‘ Not possible ‘ Possible ‘ Possible ‘ Possible

Repeatable read ‘ Not possible ‘ Not possible ‘Al\owed, but not in PG‘ Possible

Serializable ‘ Not possible ‘ Not possible ‘ Not possible ‘ Not possible

BD 2022 25 maja 2022 5/12

N
Read Committed

@ default isolation level in PostgreSQL

BD 2022 25 maja 2022 6/12

N
Read Committed

@ default isolation level in PostgreSQL
@ a SELECT query sees a snapshot of the database as of the instant the query begins to run.

BD 2022 25 maja 2022 6/12

N
Read Committed

@ default isolation level in PostgreSQL
@ a SELECT query sees a snapshot of the database as of the instant the query begins to run.

@ SELECT does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.

BD 2022 25 maja 2022 6/12

Read Committed

@ default isolation level in PostgreSQL
@ a SELECT query sees a snapshot of the database as of the instant the query begins to run.

@ SELECT does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.

@ two successive SELECT commands can see different data, even though they are within a
single transaction

BD 2022 25 maja 2022 6/12

N
Read Committed

@ default isolation level in PostgreSQL
@ a SELECT query sees a snapshot of the database as of the instant the query begins to run.

@ SELECT does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.

@ two successive SELECT commands can see different data, even though they are within a
single transaction

@ UPDATE & DELETE commands behave the same as SELECT in terms of searching for target
rows, but ...

BD 2022 25 maja 2022 6/12

N
Read Committed

@ default isolation level in PostgreSQL
@ a SELECT query sees a snapshot of the database as of the instant the query begins to run.

@ SELECT does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.

@ two successive SELECT commands can see different data, even though they are within a
single transaction

@ UPDATE & DELETE commands behave the same as SELECT in terms of searching for target
rows, but ...

@ if such target row has already been updated (or deleted):

BD 2022 25 maja 2022 6/12

N
Read Committed

@ default isolation level in PostgreSQL
@ a SELECT query sees a snapshot of the database as of the instant the query begins to run.

@ SELECT does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.

@ two successive SELECT commands can see different data, even though they are within a
single transaction

@ UPDATE & DELETE commands behave the same as SELECT in terms of searching for target
rows, but ...

@ if such target row has already been updated (or deleted):
> wait for the first updating transaction to commit or roll back

BD 2022 25 maja 2022 6/12

N
Read Committed

@ default isolation level in PostgreSQL

@ a SELECT query sees a snapshot of the database as of the instant the query begins to run.

@ SELECT does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.

@ two successive SELECT commands can see different data, even though they are within a
single transaction

@ UPDATE & DELETE commands behave the same as SELECT in terms of searching for target
rows, but ...

@ if such target row has already been updated (or deleted):

> wait for the first updating transaction to commit or roll back
> if it rolls back, then its effects are negated and the second updater can proceed

Piotr Wie k BD 2022 25 maja 2022 6/12

N
Read Committed

@ default isolation level in PostgreSQL
@ a SELECT query sees a snapshot of the database as of the instant the query begins to run.

@ SELECT does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.

@ two successive SELECT commands can see different data, even though they are within a
single transaction

@ UPDATE & DELETE commands behave the same as SELECT in terms of searching for target
rows, but ...
@ if such target row has already been updated (or deleted):

> wait for the first updating transaction to commit or roll back

> if it rolls back, then its effects are negated and the second updater can proceed

> if it commits, ignore the row if it is deleted, otherwise apply its operation to the updated version.
Re-evaluate the WHERE clause to see if the updated version of the row still matches.

Piotr Wi BD 2022 25 maja 2022 6/12

Read Committed

BEGIN;
UPDATE accounts SET balance = balance + 10.00 WHERE acctnum = 11;

UPDATE accounts SET balance = balance - 10.00 WHERE acctnum 22;
COMMIT;

@ [tis possible for an updating command to see an inconsistent snapshot: it can see the effects
of concurrent updating commands on the same rows it is trying to update, but it does not see
effects of those commands on other rows in the database.

Piotr W BD 2022 25 maja 2022 7/12

Read Committed

BEGIN;
UPDATE accounts SET balance = balance + 10.00 WHERE acctnum = 11;
UPDATE accounts SET balance = balance - 10.00 WHERE acctnum 22;

COMMIT;

@ [tis possible for an updating command to see an inconsistent snapshot: it can see the effects
of concurrent updating commands on the same rows it is trying to update, but it does not see
effects of those commands on other rows in the database.

@ Isis good or bad? What if two such transactions concurrently try to change the balance of
account 11?

Piotr Wiec BD 2022 25 maja 2022 7/12

Read Committed

BEGIN;

UPDATE accounts SET balance = balance + 10.00 WHERE acctnum = 11;
UPDATE accounts SET balance = balance - 10.00 WHERE acctnum 22;
COMMIT;

@ [tis possible for an updating command to see an inconsistent snapshot: it can see the effects
of concurrent updating commands on the same rows it is trying to update, but it does not see
effects of those commands on other rows in the database.

@ Isis good or bad? What if two such transactions concurrently try to change the balance of
account 11?

@ We clearly want the second transaction to start with the updated version of the account’s row.
Because each command is affecting only a predetermined row, letting it see the updated
version of the row does not create any troublesome inconsistency.

BD 2022 25 maja 2022 7/12

Read Committed

Assume website is a two-row table with website.hits equaling 9 and 10:

BEGIN;

UPDATE website SET hits = hits + 1;

-- run from another session: DELETE FROM website WHERE hits = 10;
COMMIT;

Piotr V k BD 2022 25 maja 2022 8/12

Read Committed

Assume website is a two-row table with website.hits equaling 9 and 10:

BEGIN;

UPDATE website SET hits = hits + 1;

-- run from another session: DELETE FROM website WHERE hits = 10;
COMMIT;

@ DELETE will have no effect even though there is a website.hits = 10 row before and after the
UPDATE!

Piotr W BD 2022 25 maja 2022 8/12

N
Read Committed

Assume website is a two-row table with website.hits equaling 9 and 10:

BEGIN;

UPDATE website SET hits = hits + 1;

-- run from another session: DELETE FROM website WHERE hits = 10;
COMMIT;

@ DELETE will have no effect even though there is a website.hits = 10 row before and after the
UPDATE!

Read Committed mode is adequate for many applications, and this mode is fast and simple to use;
however, it is not sufficient for all cases.

Piotr Wi BD 2022 25 maja 2022 8/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

BD 2022 25 maja 2022 9/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

BD 2022 25 maja 2022 9/12

|
Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

@ However, the query does see the effects of previous updates executed within its own
transaction, even though they are not yet committed.

BD 2022 25 maja 2022 9/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

@ However, the query does see the effects of previous updates executed within its own
transaction, even though they are not yet committed.

@ Stronger guarantee than is required by the SQL standard: prevents phantom read

Piotr Wie k BD 2022 25 maja 2022 9/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

@ However, the query does see the effects of previous updates executed within its own
transaction, even though they are not yet committed.

@ Stronger guarantee than is required by the SQL standard: prevents phantom read
@ Updates will only find target rows that were committed as of the transaction start time.

Piotr Wie k BD 2022 25 maja 2022 9/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

However, the query does see the effects of previous updates executed within its own
transaction, even though they are not yet committed.

Stronger guarantee than is required by the SQL standard: prevents phantom read

Updates will only find target rows that were committed as of the transaction start time.
If target is updated (or deleted) by another transaction:

Piotr Wie k BD 2022 25 maja 2022 9/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

However, the query does see the effects of previous updates executed within its own
transaction, even though they are not yet committed.

Stronger guarantee than is required by the SQL standard: prevents phantom read

Updates will only find target rows that were committed as of the transaction start time.
If target is updated (or deleted) by another transaction:
> wait for the first updating transaction to commit or roll back

Piotr Wie k BD 2022 25 maja 2022 9/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

However, the query does see the effects of previous updates executed within its own
transaction, even though they are not yet committed.

Stronger guarantee than is required by the SQL standard: prevents phantom read
Updates will only find target rows that were committed as of the transaction start time.

If target is updated (or deleted) by another transaction:

> wait for the first updating transaction to commit or roll back
> if it rolls back, then its effects are negated—can proceed

Piotr Wie k BD 2022 25 maja 2022 9/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

However, the query does see the effects of previous updates executed within its own
transaction, even though they are not yet committed.

Stronger guarantee than is required by the SQL standard: prevents phantom read

Updates will only find target rows that were committed as of the transaction start time.
If target is updated (or deleted) by another transaction:

> wait for the first updating transaction to commit or roll back
> if it rolls back, then its effects are negated—can proceed
> but if it commits: roll back!

Piotr Wie k BD 2022 25 maja 2022 9/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

However, the query does see the effects of previous updates executed within its own
transaction, even though they are not yet committed.

Stronger guarantee than is required by the SQL standard: prevents phantom read

Updates will only find target rows that were committed as of the transaction start time.
If target is updated (or deleted) by another transaction:

> wait for the first updating transaction to commit or roll back
> if it rolls back, then its effects are negated—can proceed
> but if it commits: roll back!

Piotr Wie k BD 2022 25 maja 2022 9/12

Repeatable Reads (Snapshot Isolation)

@ Each query sees a snapshot as of the start of the first non-transaction-control statement in the
transaction; successive SELECT commands within a single transaction see the same data

@ it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions.

However, the query does see the effects of previous updates executed within its own
transaction, even though they are not yet committed.

Stronger guarantee than is required by the SQL standard: prevents phantom read

Updates will only find target rows that were committed as of the transaction start time.
If target is updated (or deleted) by another transaction:

> wait for the first updating transaction to commit or roll back
> if it rolls back, then its effects are negated—can proceed
> but if it commits: roll back!

In Repeatable Reads each transaction sees a completely stable view of the database. However,
this view will not necessarily always be consistent with some serial execution (can a summary but
not individual changes).

Piotr Wie k BD 2022 25 maja 2022 9/12

Repeatable Read vs. Serializable: Serialization anomaly

-- mytab
class | value
_______ oo
1] 10
1] 20
2 | 100
2 | 200

@ Transaction A computes SELECT SUM(value) FROM mytab WHERE class = 1;

BD 2022 25 maja 2022 10/12

Repeatable Read vs. Serializable: Serialization anomaly

-- mytab
class | value
_______ oo
1] 10
1] 20
2 | 100
2 | 200

@ Transaction A computes SELECT SUM(value) FROM mytab WHERE class = 1;
@ then inserts the result (30) as the value in a new row with class = 2.

BD 2022 25 maja 2022 10/12

Repeatable Read vs. Serializable: Serialization anomaly

-- mytab
class | value
_______ oo
1] 10
1] 20
2 | 100
2 | 200

@ Transaction A computes SELECT SUM(value) FROM mytab WHERE class = 1;
@ then inserts the result (30) as the value in a new row with class = 2.

@ Concurrently, serializable transaction B computes:
SELECT SUM(value) FROM mytab WHERE class = 2;

Piotr Wi BD 2022 25 maja 2022 10/12

Repeatable Read vs. Serializable: Serialization anomaly

-- mytab
class | value
_______ oo
1] 10
1] 20
2 | 100
2 | 200

@ Transaction A computes SELECT SUM(value) FROM mytab WHERE class = 1;
@ then inserts the result (30) as the value in a new row with class = 2.

@ Concurrently, serializable transaction B computes:
SELECT SUM(value) FROM mytab WHERE class = 2;

@ then inserts the result (300) as the value in a new row with class = 1.

BD 2022 25 maja 2022 10/12

Repeatable Read vs. Serializable: Serialization anomaly

-- mytab
class | value

Transaction A computes SELECT SUM(value) FROM mytab WHERE class = 1;
then inserts the result (30) as the value in a new row with class = 2.

Concurrently, serializable transaction B computes:
SELECT SUM(value) FROM mytab WHERE class = 2;

then inserts the result (300) as the value in a new row with class = 1.
Then both transactions try to commit. What happens?

BD 2022 25 maja 2022 10/12

Repeatable Read vs. Serializable: Serialization anomaly

-- mytab

class | value

_______ e e o
1] 10
1] 20
2 | 100
2 | 200

@ Transaction A computes SELECT SUM(value) FROM mytab WHERE class = 1;

then inserts the result (30) as the value in a new row with class = 2.

Concurrently, serializable transaction B computes:
SELECT SUM(value) FROM mytab WHERE class = 2;

then inserts the result (300) as the value in a new row with class = 1.
Then both transactions try to commit. What happens?

ERROR: could not serialize access due to read/write dependencies...

Piotr Wi BD 2022 25 maja 2022 10/12

Repeatable Read vs. Serializable: Serialization anomaly

-- mytab
class | value

Transaction A computes SELECT SUM(value) FROM mytab WHERE class = 1;
then inserts the result (30) as the value in a new row with class = 2.

Concurrently, serializable transaction B computes:
SELECT SUM(value) FROM mytab WHERE class = 2;

then inserts the result (300) as the value in a new row with class = 1.
Then both transactions try to commit. What happens?

ERROR: could not serialize access due to read/write dependencies...

To guarantee true serializability PostgreSQL uses predicate locking: no deadlocks, just
monitoring.

Piotr Wi BD 2022 25 maja 2022 10/12

Serializable

BEGIN TRANSACTION

UPDATE Duties SET Status = 'reserve'
WHERE DoctorId = :D

AND Shift = :S

AND Status = 'on duty'

SELECT COUNT(DISTINCT DoctorId) INTO tmp
FROM Duties

WHERE Shift = :S

AND Status = 'on duty'

IF (tmp = 0) THEN ROLLBACK ELSE COMMIT

BD 2022

25 maja 2022

11/12

Serializable: some hints

@ Declare transactions as READ ONLY when possible.

BD 2022 25 maja 2022 12/12

https://www.postgresql.org/docs/current/transaction-iso.html

Serializable: some hints

@ Declare transactions as READ ONLY when possible.
@ Don’t put more into a single transaction than needed for integrity purposes.

BD 2022 25 maja 2022 12/12

https://www.postgresql.org/docs/current/transaction-iso.html

Serializable: some hints

@ Declare transactions as READ ONLY when possible.
@ Don’t put more into a single transaction than needed for integrity purposes.
@ Don't leave connections dangling “idle in transaction” longer than necessary.

BD 2022 25 maja 2022 12/12

https://www.postgresql.org/docs/current/transaction-iso.html

Serializable: some hints

@ Declare transactions as READ ONLY when possible.

@ Don’t put more into a single transaction than needed for integrity purposes.

@ Don't leave connections dangling “idle in transaction” longer than necessary.

@ More: https://wuw.postgresql.org/docs/current/transaction-iso.html

BD 2022 25 maja 2022 12/12

https://www.postgresql.org/docs/current/transaction-iso.html

