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Crash Recovery

Chapter 18
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Review: The ACID properties

❖ A tomicity: All actions in the Xact happen, or none happen.

❖ C onsistency: If each Xact is consistent, and the DB starts 

consistent, it ends up consistent.

❖ I solation: Execution of one Xact is isolated from that of 

other Xacts.

❖ D urability: If a Xact commits, its effects persist.

❖ The Recovery Manager guarantees Atomicity & Durability.
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Motivation

❖ Atomicity: 

▪ Transactions may abort (“Rollback”).

❖ Durability:

▪ What if DBMS stops running?  (Causes?)

crash!
Desired Behavior after 
system restarts:

– T1, T2 & T3 should be 
durable.

– T4 & T5 should be 
aborted (effects not seen).

T1
T2
T3
T4
T5
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Assumptions

❖ Concurrency control is in effect. 

▪ Strict 2PL, in particular.

❖ Updates are happening “in place”.

▪ i.e. data is overwritten on (deleted from) the disk.

❖ A simple scheme to guarantee Atomicity & 
Durability?
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Handling the Buffer Pool

❖ Force every write to disk?

▪ Poor response time.

▪ But provides durability.

❖ Steal buffer-pool frames 
from uncommited Xacts?

▪ If not, poor throughput.

▪ If so, how can we ensure 
atomicity?

Force

No Force

No Steal Steal

Trivial

Desired
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More on Steal and Force

❖ STEAL (why enforcing Atomicity is hard)

▪ To steal frame F:  Current page in F (say P) is 
written to disk; some Xact holds lock on P.

• What if the Xact with the lock on P aborts?

• Must remember the old value of P at steal time (to 
support UNDOing the write to page P).

❖ NO FORCE (why enforcing Durability is hard)

▪ What if system crashes before a modified page is 
written to disk?

▪ Write as little as possible, in a convenient place, at 
commit time,to support REDOing modifications.
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Basic Idea: Logging

❖ Record REDO and UNDO information, for 
every update, in a log.

▪ Sequential writes to log (put it on a separate disk).

▪ Minimal info (diff) written to log, so multiple 
updates fit in a single log page.

❖ Log: An ordered list of REDO/UNDO actions

▪ Log record contains: 

<XID, pageID, offset, length, old data, new data> 

▪ and additional control info (which we’ll see soon).
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Write-Ahead Logging (WAL)

❖ The Write-Ahead Logging Protocol:

 Must force the log record for an update before the 
corresponding data page gets to disk.

 Must write all log records for a Xact before commit.

❖ #1 guarantees Atomicity.

❖ #2 guarantees Durability.

❖ Exactly how is logging (and recovery!) done?

▪ We’ll study the ARIES algorithms.
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WAL & 
the Log

❖ Each log record has a unique Log Sequence 
Number (LSN).

▪ LSNs always increasing.

❖ Each data page contains a pageLSN.

▪ The LSN of the most recent log record                                             
for an update to that page.

❖ System keeps track of flushedLSN.

▪ The max LSN flushed so far.

❖ WAL: Before a page is written,

▪ pageLSN  flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM



Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 10

Log Records

Possible log record types:

❖ Update

❖ Commit

❖ Abort

❖ End (signifies end of 
commit or abort)

❖ Compensation Log 
Records (CLRs)

▪ for UNDO actions

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecord fields:

update
records
only
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Other Log-Related State

❖ Transaction Table:

▪ One entry per active Xact.

▪ Contains XID, status (running/commited/aborted), 
and lastLSN.

❖ Dirty Page Table:

▪ One entry per dirty page in buffer pool.

▪ Contains recLSN -- the LSN of the log record which 
first caused the page to be dirty.
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Normal Execution of an Xact

❖ Series of reads & writes, followed by commit or 
abort.

▪ We will assume that write is atomic on disk.
• In practice, additional details to deal with non-atomic writes.

❖ Strict 2PL. 

❖ STEAL, NO-FORCE buffer management, with 
Write-Ahead Logging.
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Checkpointing

❖ Periodically, the DBMS creates a checkpoint, in 
order to minimize the time taken to recover in the 
event of a system crash.  Write to log:

▪ begin_checkpoint record:  Indicates when chkpt began.

▪ end_checkpoint record:  Contains current Xact table and 
dirty page table.  This is a `fuzzy checkpoint’:

• Other Xacts continue to run; so these tables accurate only as of 
the time of the begin_checkpoint record.

• No attempt to force dirty pages to disk; effectiveness of 
checkpoint limited by oldest unwritten change to a dirty page. 
(So it’s a good idea to periodically flush dirty pages to disk!)

▪ Store LSN of chkpt record in a safe place (master record).
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The Big Picture:  
What’s Stored Where

DB

Data pages
each

with a

pageLSN

Xact Table
lastLSN

status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecords

LOG

master record
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Simple Transaction Abort

❖ For now, consider an explicit abort of a Xact.

▪ No crash involved.

❖ We want to “play back” the log in reverse 
order, UNDOing updates.

▪ Get lastLSN of Xact from Xact table.

▪ Can follow chain of log records backward via the 
prevLSN field.

▪ Before starting UNDO, write an Abort log record.
• For recovering from crash during UNDO!
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Abort, cont.

❖ To perform UNDO, must have a lock on data!

▪ No problem!

❖ Before restoring old value of a page, write a CLR:

▪ You continue logging while you UNDO!!

▪ CLR has one extra field: undonextLSN
• Points to the next LSN to undo (i.e. the prevLSN of the record 

we’re currently undoing).

▪ CLRs never Undone (but they might be Redone when 
repeating history: guarantees Atomicity!)

❖ At end of UNDO, write an “end” log record.
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Transaction Commit

❖ Write commit record to log.

❖ All log records up to Xact’s lastLSN are 
flushed.

▪ Guarantees that flushedLSN  lastLSN.

▪ Note that log flushes are sequential, synchronous 
writes to disk.

▪ Many log records per log page.

❖ Commit() returns.

❖ Write end record to log.
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Crash Recovery: Big Picture

Start from a checkpoint (found 
via master record).

Three phases.  Need to:

– Figure out which Xacts 
committed since checkpoint, 
which failed (Analysis).

– REDO all actions.

(repeat history)

– UNDO effects of failed Xacts.

Oldest log 
rec. of Xact 
active at crash

Smallest 
recLSN in 
dirty page 
table after 
Analysis

Last chkpt

CRASH

A R U
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Recovery: The Analysis Phase

❖ Reconstruct state at checkpoint.

▪ via end_checkpoint record.

❖ Scan log forward from checkpoint.

▪ End record: Remove Xact from Xact table.

▪ Other records: Add Xact to Xact table, set 
lastLSN=LSN, change Xact status on commit.

▪ Update record: If P not in Dirty Page Table,

• Add P to D.P.T., set its recLSN=LSN.
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Recovery: The REDO Phase

❖ We repeat History to reconstruct state at crash:

▪ Reapply all updates (even of aborted Xacts!), redo CLRs.

❖ Scan forward from log rec containing smallest 
recLSN in D.P.T. For each CLR or update log rec 
LSN, REDO the action unless:  

▪ Affected page is not in the Dirty Page Table, or

▪ Affected page is in D.P.T., but has recLSN > LSN, or

▪ pageLSN (in DB)  LSN.

❖ To REDO an action:

▪ Reapply logged action.

▪ Set pageLSN to LSN.  No additional logging!
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Recovery: The UNDO Phase

ToUndo={ l | l a lastLSN of a “loser” Xact}

Repeat:

▪ Choose largest LSN among ToUndo.

▪ If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Xact.

▪ If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo 

▪ Else this LSN is an update.  Undo the update, 
write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.
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Example of Recovery

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN         LOG

00

05

10

20

30

40

45

50

60

Xact Table

lastLSN

status

Dirty Page Table

recLSN

flushedLSN

ToUndo

prevLSNs

RAM
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Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN         LOG
00,05

10

20

30

40,45

50

60

70

80,85

90

Xact Table

lastLSN

status

Dirty Page Table

recLSN

flushedLSN

ToUndo

undonextLSN

RAM
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Additional Crash Issues

❖ What happens if system crashes during 
Analysis?  During REDO?

❖ How do you limit the amount of work in 
REDO?

▪ Flush asynchronously in the background.

▪ Watch “hot spots”!

❖ How do you limit the amount of work in 
UNDO?

▪ Avoid long-running Xacts.
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Summary of Logging/Recovery

❖ Recovery Manager guarantees Atomicity & 
Durability.

❖ Use WAL to allow STEAL/NO-FORCE w/o 
sacrificing correctness.

❖ LSNs identify log records; linked into 
backwards chains per transaction (via 
prevLSN).

❖ pageLSN allows comparison of data page and 
log records.
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Summary, Cont.

❖ Checkpointing: A quick way to limit the 
amount of log to scan on recovery. 

❖ Recovery works in 3 phases:

▪ Analysis: Forward from checkpoint.

▪ Redo: Forward from oldest recLSN.

▪ Undo: Backward from end to first LSN of oldest 
Xact alive at crash.

❖ Upon Undo, write CLRs.

❖ Redo “repeats history”: Simplifies the logic!
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Hash-Based Indexes

Chapter 11
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Introduction

❖ As for any index, 3 alternatives for data entries k*:

▪ Data record with key value k

▪ <k, rid of data record with search key value k>

▪ <k, list of rids of data records with search key k>

▪ Choice orthogonal to the indexing technique

❖ Hash-based indexes are best for equality selections. 
Cannot support range searches.

❖ Static and dynamic hashing techniques exist; 
trade-offs similar to ISAM vs. B+ trees.
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Static Hashing

❖ # primary pages fixed, allocated sequentially, 
never de-allocated; overflow pages if needed.

❖ h(k) mod M = bucket to which data entry with
key k belongs. (M = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

2

0

N-1
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Static Hashing (Contd.)

❖ Buckets contain data entries.

❖ Hash fn works on search key field of record r.  Must 
distribute values over range 0 ... M-1.

▪ h(key) = (a * key + b) usually works well.

▪ a and b are constants;  lots known about how to tune h.

❖ Long overflow chains can develop and degrade 
performance.  

▪ Extendible and Linear Hashing: Dynamic techniques to fix 
this problem.
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Extendible Hashing

❖ Situation: Bucket (primary page) becomes full. 
Why not re-organize file by doubling # of buckets?

▪ Reading and writing all pages is expensive!

▪ Idea:  Use directory of pointers to buckets, double # of 
buckets by doubling the directory, splitting just the 
bucket that overflowed!

▪ Directory much smaller than file, so doubling it is 
much cheaper.  Only one page of data entries is split.  
No overflow page!

▪ Trick lies in how hash function is adjusted!
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Example

❖ Directory is array of size 4.

❖ To find bucket for r, take 
last `global depth’ # bits of 
h(r); we denote r by h(r).

▪ If h(r) = 5 = binary 101,  
it is in bucket pointed to 
by 01.

❖ Insert:  If bucket is full, split it (allocate new page, re-distribute).

❖ If necessary, double the directory.  (As we will see, splitting a
bucket does not always require doubling; we can tell by 
comparing global depth with local depth for the split bucket.)

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*
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Insert h(r)=20 (Causes Doubling)

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH
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Points to Note

❖ 20 = binary 10100.  Last 2 bits (00) tell us r belongs in 
A or A2.  Last 3 bits needed to tell which.

▪ Global depth of directory:  Max # of  bits needed to tell 
which bucket an entry belongs to.

▪ Local depth of a bucket: # of bits used to determine if an 
entry belongs to this bucket.

❖ When does bucket split cause directory doubling?

▪ Before insert, local depth of bucket = global depth.  Insert 
causes local depth to become > global depth; directory is 
doubled by copying it over and `fixing’ pointer to split 
image page.  (Use of least significant bits enables efficient 
doubling via copying of directory!)
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Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
 Allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant
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Comments on Extendible Hashing
❖ If directory fits in memory, equality search 

answered with one disk access; else two.

▪ 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 
records (as data entries) and 25,000 directory elements; 
chances are high that directory will fit in memory.

▪ Directory grows in spurts, and, if the distribution of hash 
values is skewed, directory can grow large.

▪ Multiple entries with same hash value cause problems!

❖ Delete:  If removal of data entry makes bucket 
empty, can be merged with `split image’.  If each 
directory element points to same bucket as its split 
image, can halve directory. 
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Linear Hashing

❖ This is another dynamic hashing scheme, an 
alternative to Extendible Hashing.

❖ LH handles the problem of long overflow chains 
without using a directory, and handles duplicates.

❖ Idea:  Use a family of hash functions h0, h1, h2, ...

▪ hi(key) = h(key) mod(2iN);  N = initial # buckets

▪ h is some hash function (range is not 0 to N-1)

▪ If N = 2d0, for some d0, hi consists of applying h and looking 
at the last di bits, where di = d0 + i.

▪ hi+1 doubles the range of hi (similar to directory doubling)
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Linear Hashing (Contd.)

❖ Directory avoided in LH by using overflow 
pages, and choosing bucket to split round-robin.

▪ Splitting proceeds in `rounds’.  Round ends when all 
NR initial (for round R) buckets are split.  Buckets 0 to 
Next-1 have been split;  Next to NR yet to be split.

▪ Current round number is Level.

▪ Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range `Next to NR’ , r belongs here.

• Else, r could belong to bucket hLevel(r) or bucket 
hLevel(r) + NR; must apply hLevel+1(r) to find out.
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Overview of LH File 

❖ In the middle of a round.

Levelh 

Buckets that existed at the

beginning of this round: 

this is the range of

Next

Bucket to be split 

of other buckets) in this round

Levelh search key value )(

search key value )(

Buckets split in this round:

If 

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in 

created (through splitting

`split image' buckets:
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Linear Hashing (Contd.)

❖ Insert:  Find bucket by applying hLevel / hLevel+1:

▪ If bucket to insert into is full:

• Add overflow page and insert data entry.

• (Maybe) Split Next bucket and increment Next.

❖ Can choose any criterion to `trigger’ split.

❖ Since buckets are split round-robin, long overflow 
chains don’t develop!

❖ Doubling of directory in Extendible Hashing is 
similar; switching of hash functions is implicit in 
how the # of bits examined is increased.
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Example of Linear Hashing

❖ On split, hLevel+1 is used to 
re-distribute entries.

0
hh

1

(This info

is for illustration

only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary 
bucket page

44* 36*32*

25*9* 5*

14*18*10*30*

31*35* 11*7*

0
hh

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY

PAGES

44* 36*

32*

25*9* 5*

14*18*10*30*

31*35* 11*7*

OVERFLOW

PAGES

43*

00100
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Example:  End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1

111

11

PRIMARY

PAGES
OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10*34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*
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LH Described as a Variant of EH
❖ The two schemes are actually quite similar:

▪ Begin with an EH index where directory has N elements.

▪ Use overflow pages, split buckets round-robin.

▪ First split is at bucket 0.  (Imagine directory being doubled 
at this point.)  But elements <1,N+1>, <2,N+2>, ... are the 
same.  So, need only create directory element N, which 
differs from 0, now.

• When bucket 1 splits, create directory element N+1, etc.

❖ So, directory can double gradually. Also, primary 
bucket pages are created in order.  If they are allocated
in sequence too (so that finding i’th is easy), we 
actually don’t need a directory!  Voila, LH.
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Summary

❖ Hash-based indexes: best for equality searches, 
cannot support range searches.

❖ Static Hashing can lead to long overflow chains.

❖ Extendible Hashing avoids overflow pages by 
splitting a full bucket when a new data entry is to be 
added to it.  (Duplicates may require overflow pages.)

▪ Directory to keep track of buckets, doubles periodically.

▪ Can get large with skewed data; additional I/O if this 
does not fit in main memory.
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Summary (Contd.)

❖ Linear Hashing avoids directory by splitting buckets 
round-robin, and using overflow pages. 

▪ Overflow pages not likely to be long.

▪ Duplicates handled easily.

▪ Space utilization could be lower than Extendible Hashing, 
since splits not concentrated on `dense’ data areas.

• Can tune criterion for triggering splits to trade-off 
slightly longer chains for better space utilization.

❖ For hash-based indexes, a skewed data distribution is 
one in which the hash values of data entries are not 
uniformly distributed!


