
Trzeci sprawdzian z SQL 1.04.2020

Oczekujemy rozwiązania w postaci pliku zawierającego TREŚCI poleceń SQL, a nie
znalezionej odpowiedzi. Nie będą sprawdzane jakiekolwiek zapytania niepoprawne skła-
dniowo, sprawdź swoje rozwiązanie używając \i plik.sql ! Plik możesz wysyłać wielo-
krotnie, sprawdzana będzie wyłącznie najnowsza wersja.

Wczytaj do swojej bazy danych plik hsm.dump. Jest to dump bazy https://hsm.
stackexchange.com/poświęconej dyskusjom na tematy związane z historią matematyki
i nauki.

Zachęcam do korzystania z dokumentacji PostgreSQL.
Format nazwy pliku z rozwiązaniem: grupa-imie-nazwisko.sql, gdzie grupa to ini-

cjały prowadzącego Twoją grupę: (pwi/plg/mpy/rfe/pga), np. pwi-Jan-Kowalski.sql.
Wymagany format pliku z rozwiązaniem (tu też podaj swoje imię, nazwisko i grupę):

-- Imię Nazwisko, grupa np. Jan Kowalski, pwi
-- Zadanie 1
<zapytanie> -- zastąp napis `<zapytanie>` swoim zapytaniem :)

-- Zadanie 2
<zapytanie>
...

Zadanie 1 (2 pkt.) Uznajemy, że dany post A jest wyczerpującą odpowiedzią na inny
post B, jeśli B.AcceptedAnswerID=A.id. Utwórz ranking najbardziej pomocnych Oryginalnie:

A.AcceptedAnswerID=B.idużytkowników. W tym celu zdefiniuj perspektywę ranking z polami: displayname, Oryginalnie: któ-
rzy wyczerpująco
odpowiedzieli na
najwięcej pytań

liczba_odpowiedzi taką, że każdy użytkownik posiada w niej krotkę ze swoim
displayname i liczbą wyczerpujących odpowiedzi, których udzielił. Perspektywa
powinna być posortowana według liczba_odpowiedzi malejąco, a w drugiej ko-
lejności wg displayname alfabetycznie. Oczywiście

sortowanie ma
większy sens przy
pisaniu zapytania
korzystającego z
perspektywy, a nie
ją definiującego.

Ze względu na usterki w oryginalnym sformułowaniu zadania będzie ono sprawdzane
z tolerancją dla ew. pomyłek, które mogły być tymi usterkami spowodowane. Po-
nadto (również w przypadku wszystkich pozostałych zadań) można sobie wyobrazić
wiele różnych poprawnych rozwiązań, prezentowana wersja nie jest jedyną popraw-
ną.

CREATE VIEW ranking(DisplayName, liczba_odpowiedzi) AS
SELECT DisplayName, count(DISTINCT answers.Id) AS liczba_odpowiedzi

FROM posts AS answers
JOIN posts AS questions

ON questions.AcceptedAnswerId = answers.Id
RIGHT JOIN users

ON answers.OwnerUserId=users.id
GROUP BY users.Id, DisplayName
ORDER BY 2 DESC, 1

https://skos.ii.uni.wroc.pl/mod/resource/view.php?id=15325
https://hsm.stackexchange.com/
https://hsm.stackexchange.com/
https://www.postgresql.org/docs/11/index.html


;

-- sprawdzenie
SELECT * FROM ranking ORDER BY 2 DESC, 1;

Zadanie 2 (3 pkt.) Wyświetl id, displayname i reputation użytkowników, którzy

• nie dostali nigdy odznaki Enlightened
• ale mają więcej upvotes niż średnia liczba upvotes użytkowników z tą odzna-

ką (uwaga: weź pod uwagę, że jeden użytkownik może dostać jedną odznakę
wielokrotnie)

• oraz napisali więcej niż jeden komentarz pod postami stworzonymi w 2020 r.

Wynik uporządkuj rosnąco względem daty założenia konta użytkownika.

WITH enlightened AS
(SELECT DISTINCT u.id, u.upvotes
FROM users u
JOIN badges ON u.id = userid

WHERE badges.name = 'Enlightened')
SELECT u.id,u.displayname,u.reputation
FROM users u
JOIN comments c ON c.userid = u.id
JOIN posts p ON p.id = c.postid

WHERE extract(year from p.creationdate) = 2020
AND u.upvotes > (SELECT avg(upvotes) FROM enlightened)
AND u.id NOT IN (SELECT id FROM enlightened)

GROUP BY u.id, u.displayname, u.reputation, u.creationdate
HAVING count(c.id)>1
ORDER BY u.creationdate;

Zadanie 3 (3 pkt.) Znajdź użytkowników (id, displayname), którzy mają pośredni
kontakt z rekurencją. Mówimy, że użytkownik ma pośredni kontakt z rekurencją,
jeśli:

• w body któregoś posta użył słowa recurrence lub
• napisał komentarz do posta osoby, która ma pośredni kontakt z rekurencją.

WITH RECURSIVE foo AS (
SELECT users.Id, DisplayName

FROM users JOIN posts ON users.Id = OwnerUserId
WHERE body LIKE '%recurrence%'

UNION
SELECT users.Id, users.DisplayName



FROM users
JOIN comments ON users.Id = UserId
JOIN posts ON PostId = posts.Id
JOIN foo ON OwnerUserId = foo.Id

)
SELECT * FROM foo;


